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ABSTRACT Early detection of COVID-19 positive people are now extremely needed and considered to be
one of the most effective ways how to limit spreading the infection. Commonly used screening methods are
reverse transcription polymerase chain reaction (RT-PCR) or antigen tests, which need to be periodically
repeated. This paper proposes a methodology for detecting the disease in non-invasive way using wearable
devices and for the analysis of bio-markers using artificial intelligence. This paper have reused a publicly
available dataset containing COVID-19, influenza, and Healthy control data. In total 27 COVID-19 positive
and 27 healthy control were pre-selected for the experiment, and several feature extraction methods were
applied to the data. This paper have experimented with several machine learning methods, such as XGBoost,
k-nearest neighbour k-NN, support vector machine, logistic regression, decision tree, and random forest, and
statistically evaluated their perfomance using various metrics, including accuracy, sensitivity and specificity.
The proposed experiment reached 78 % accuracy using the k-NN algorithm which is significantly higher than
reported for state-of-the-art methods. For the cohort containing influenza, the accuracy was 73 % for k-NN.
Additionally, we identified the most relevant features that could indicate the changes between the healthy
and infected state. The proposed methodology can complement the existing RT-PCR or antigen screening
tests, and it can help to limit the spreading of the viral diseases, not only COVID-19, in the non-invasive

way.

INDEX TERMS Artificial intelligence, COVID, signal processing.

I. INTRODUCTION

The deadly coronavirus SARS CoV-2 belongs to the
family of coronaviridae, which has two subfamilies:
Coronavirid and Toroviridae. Those coronaviruses are known
to be infectious to for example, birds, and mammals including
humans [1]. The course of the disease varies significantly.
It starts with completely asymptomatic courses to mild,
moderate, or severe courses, which in many cases end
in death. The spectrum of the symptoms of Coronavirus
is broad and includes fever, cough, shortness of breath,
hoarse voice, abdominal pain, or chest pain [2], and infected
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individuals may experience a rare loss of taste and smell [3].
The disease may end with long-term complications such as
inter alia respiratory, neurological, cardiovascular problems,
and many other potential issues that have yet to be fully
described [4]-[6]. Some similarities in the development of
the COVID-19 pandemic and epidemics of severe acute
respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS) have been observed [7].

The average incubation period of COVID-19 currently
ranges from 2 to 11 days [8]. The major disease transmission
of the virus occurs through social contact, particularly
through face-to-face exposure, coughing, sneezing, or during
talking, [9]. The combination of the high reproduction
number of the disease, high portion of asymptotic or
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mild-symptom cases in the population, long prodromal stage,
during which the patient is infectious but with no visible
symptoms and infection fatality rate 1.04 % [10] has led
to 108 million cases and 2.4 million deaths worldwide by
02/2021 [11].

According to the Johns Hopkins University, more than
2 million deaths occurred in the world since the outbreak
of this pandemic [11]. The most accurate diagnostics for
the disease are imaging technologies, which can achieve
an accuracy of nearly 100 % [12]. The most popular diag-
nostic method (among others) is the reverse transcription-
polymerase chain reaction (RT-PCR) [1]. PCR-tests showed
a sensitivity of 77,7 % and specificity of 98,8 % [13].
Pharyngeal RT-PCR tests showed the sensitivity of 78.2
% and specificity of 98.8 %. Although these methods are
relatively accurate, they are often used after the onset of
the disease for confirmation. Unfortunately, the disease was
proven to be the most communicable 2 days before and 1 day
after the onset of the disease symptoms [14].

In [15], the authors presented the disease stages of
COVID-19. They distinguished between the early stage of
infection (stage I), the pulmonary phase (stage II), and the
hyper-inflammation phase (stage III). The detection of the
disease in the prodromal stage would have the most signif-
icant impact, since it reflects the phase in which the person
is infectious but, she/he feels healthy, which leads to social
contacts and spreading of the disease to other people [14].
The authors indicated that symptoms in this phase, included
dry cough, fever, and mild constitutional symptoms. The
detection of the virus in this stage minimise contagiousness,
preventing the development of further complications and
reducing the duration of the disease [15]. The risk factors for
this disease are old age, civilization diseases, and renal and
hepatic dysfunctions [8].

Vaccination is currently considered one of the most
promising ways to fight the disease. Until this, the most
effective methods to prevent the infections are mask wearing,
social distancing, keeping hygienic practices, handwashing,
applying quarantine, and disinfection. These methods are
considered the most effective for fighting this mortal
disease [7], [16].

Detection of the disease two days before the onset of
the disease is very important. During those (on average)
two days, a person is not aware of the infection which
causes communication of the disease at the workplace,
to family members, and to other possible social contacts.
Unfortunately, such early detection is not an easy task since
the disease symptoms are difficult to be recognized.

The common availability of wearables in the population
makes them an ideal intelligent screening tool. These
devices allow continuous monitoring of various physiological
parameters, such as heart rate (HR), heart rate variability
(HRV), resting heart rate (RHR), respiration rate (RR), skin
temperature, and oxygen saturation (SpO2) [17].

This paper provides a comprehensive overview of recent
progress in the area of wearable technologies for e-health
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and COVID-19 use cases. It also introduces a novel
methodology based on artificial intelligence, with wearable
sensor signal analyses, and proves that these devices can
be used for early detection with interesting accuracy. For
the statistical evaluation, 27 samples of COVID-positive
cases and 27 healthy control cases were used. The paper
also includes the results of the univariate tests conducted
to identify the feature of importance. We tested a few
classifiers in real time allowing us to identify those that would
achieve the highest prediction. A significant advantage of
this work is that it takes into consideration the important
parameters related to the disease, that is, the incubation
period and the highest contagiousness period thus ensur-
ing, the reduction of disease contagiousness as much as
possible.
o Creation of the methodology which is able to detect
COVID-19 disease in the early stage
o The usage of wearable devices and machine learning
allows created solution serve as potential screening test
o The consideration of the parameter such as incubation
period and the highest contagiousness interval should
reduce the most efficiently the number of new infected
people
« Identification what kind of the features are indicators of
being contagiousness in the early stage of the COVID-19
disease
o Extension of the original work into classification
problem, with success of 78 % accuracy for k-NN
The rest of this paper is structured as follows. Section II
describes related works. Section III - introduces the exper-
iment, described the data, the methodology of feature
extraction, metrics used for evaluation - based support
system methodologies, and machine learning and statistical
evaluation methodologies. Section IV presents the results
and describes the research outcomes of this work. The
discussion, which explains how to understand the results,
is described in Section VII. The paper is concluded in
Section VIIL.

Il. RELATED WORKS

The coronavirus was announced by the WHO relatively
recently, on 29 December 2019. Thus, resources amount the
virus are still scant, and the behavior of this virus under
various circumstances is still waiting exploration. Wearable
sensors have seen significant improvements in their quality,
accuracy, and reliability. Due to their broad availability in
the population, they have opened new possibilities for their
utilization.

Early detection of COVID-19 can significantly decrease
the reproduction number and prevent spreading the infection
to other people. Unfortunately, this very challenging, since,
no visible symptoms are observed within approximately two
days before onset the disease.

The most characteristic symptoms of COVID-19 after
onset are currently considered a fever, fatigue, and dry
cough [16]. Other symptoms, are nasal congestion, pains,
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aches, colds, dyspnoea, diarrhoea, sore throat, unusual loss
of smell and taste, headaches, and sometimes also trembling.
Unfortunately, these symptoms, especially visible ones, are
useless for early detection. However, even slight changes in
related physiological signals can be identified as for detection
markers.

In [18], changes in several other biomarkers during
COVID-19 were examined. For the evaluation - a wearable
ring (in particular, Ourora) was used. The device measured
inter alia the heart rate, heart rate variability, respiratory
rate, and temperature. An interesting finding was that 38 out
of 50 participants developed temperature anomalies, that
were measurable before other symptoms. The temperature
proved to be statistically more significant than other metrics.
Some reports have proven a strong correlation between fever
and cardiac rhythm [19]. Increase in HR has been reported as
8.5 beats per minute on average per 1 °C. This correlation is
measurable especially during resting heart rate (RHR). A pos-
sible reason for this could be that the sensors of wearables are
more accurate at resting time. This change was observed not
just during the development of COVID-19 but also during the
development of other influenza diseases. Unfortunately, other
factors also have an impact on the increase in RHR, including
short sleep.

In December 2020, a study was published [20] that
confirmed that these correlations could also be valid for
COVID-19. The authors tried to detect the disease in the pre-
symptomatic stage using the smartwatches that are available
on the market (only those gathered by Fitbit were selected).
The data were collected on a per-minute basis. Anomaly
detection was still relatively low (63 %) for COVID-19
cases. The results were validated on a database containing
114 samples, that were available online. The features were
based on heart rate and the number of steps.

A few studies have also a tempted to detect infection from
sleep activity patterns measured by wearable devices. The
data for the experiment were collected from approximately
5300 subjects using smartwatches such as Fitbit, Apple
Watch, or Garmica. Thirty-two of the participants were
diagnosed with COVID-19. In 63 % of COVID-19 cases,
some anomalies were found in the records, which was
significantly more frequent than in the rest of the data.
The authors proposed two approaches: the abnormal resting
heart rate (RHR-Diff) - based approach and the heart rate-
to-steps (HROS-AD algorithms) - based approaches. The
RHR-Diff approach was based on standardized residuals
and a 28-day sliding window. The second approach used,
the HROS was computed by dividing the heart rate by
the number of steps. One-hour intervals were compared
using Gaussian density estimation (HROS-AD algorithm).
The CuSum method was an online version based on the
cumulative statistics. For this algorithm, a 28 day time-frame
was adopted and the deviations of the elevated residual RHRs
were evaluated. Unfortunately, the specificity of the methods
was not provided, which is very important for this kind of
study.
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The above-described works focused on wearables at the
person-level. Some studies have been built on these works,
extending them to the analysis of the development of the
pandemic trend, the so-called crowd-level analysis.

One such work is presented in [19]. The authors proposed
a simple system for alerting physiological anomaly detection
based on variance in sleep patterns and RHR computed from
photoplethysmography (PPG) wearable data. The records
of 1.3 million users were collected from Huami devices.
The deviation from the mean and average values was taken
into consideration for the analysis. Although, this system
was not good enough for a common disease detection,
a methodology for the pandemic was developed using this
system. For this reason, CDNet architecture was used,
which is a heterogeneous neural network regression model.
CDNet consists of two neural networks: CatNN and DenNN.
It contains sparse categorical features (holiday activity,
season, and weather) and dense numerical features (historical
physiological anomaly rate, historical officially reported
COVID-19 rate, and active user density). The simulation was
performed for North China, Central China, South China, and
South-Central Europe. The detected physiological anomaly
rate was compared with COVID-19 infection rate using
Pearson’s correlation. The highest correlation among the
set of Chinese cities was observed for Foshan as 0.81.
Average value among all cities was 0.68. Nevertheless,
the capability to predict such disease shows some limits,
in particular there is suspicion that to local events change
people’s common rhythm, and there were problems regarding
individual variability.

In another work, the researchers analysed the influence
of respiration rate together with oxygen saturation (SpO2)
gathered from wearable smartwatches on COVID-19 [21].
The statistical analysis was evaluated with chi-square distri-
bution and independent t-test based measures on pre-selected
208 cases. The authors demonstrated that there were no
significant differences between gender and IoT factors based
on chi-square distribution.

In [22], the methodology was based on the wearable
device (Empatica E4) and on neural networks. The device
allows analysis of a broader spectrum of signals, for example
the galvanic skin response (GSR), the inter-beat interval
(IBI), skin temperature, pulse oximeter, and blood pressure.
A questionnaire with information about the occurrence of
symptoms was also included to obtain. Parameters such
as age, gender, weight, height, habits, and addiction to
smoking and drinking. All data were used during the NN
training [22]. The cohort included 87 subjects: 30 were
HC, 27 asymptomatic COVID-19 cases and 30 symptomatic
cases. The data were divided into 15 s windows. However,
the details of the procedure are not provided in the article. The
CovidDeep - a four-layer neural network, was introduced and
used for the detection of COVID-19 cases. The architecture
consists of data pre-processing, synthetic data generation
with the TUTOR framework, architecture pre-training, grow-
and-prune synthesis with a decision tree (DT) and random
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forest. This combination of data contains some hardly
collectible data in reality. Common smartwatches do not
provide as many spectra of data as Empatica offers, and,
the number of its users is significantly lower than, that of
Fitbit or Apple Watch [22]. In another study, symptoms such
as respiration rate detected by wearables were analysed [23].
The cohort of 271 (81 positive cases and 190 negative
cases) was evaluated with the WHOOP strap algorithm. Here,
the median value of respiration per minute was collected
during night which was regarded as the respiration rate. A
total of 20 % of COVID-19 subjects were recognised 2 days
before the clear onset of the disease, while 80 % of COVID-
19 subjects were unfortunately detected 3 days after the
onset. These results were achieved with the use of a gradient
boosting classifier. The outcome of 80 % is a relatively high
number; however, the most important in screening tests, are
early symptoms - during the prodromal stage [23].

The variance in respiration rate was examined together
with heart rate and heart rate variability in [24] using Fitbit.
The methodology used achieved 0.77 + 0.03 area under
the curve (AUC) trained on NN. Nonetheless, the sensitivity
was 47 % and specificity 95 %. The number of positive
participants was 1181, and 13662 were negative. The
following parameters were extracted: Shannon entropy of
the nocturnal RR series, the mean nocturnal heart rate
during non-Rapid Eye Movement (NREM) sleep, and the
estimated mean respiration rate during deep sleep. During
pre-processing, the physiological signals were normalised
using z-score. A combination of parameters, including age,
gender, and BMI, were fed into the convolutional neural
network. It was found that the heart rate in combination with
respiration rate increased during the illness, and the heart rate
variability decreased.

An interesting work [25] studied differences between
cases: the outbreak of the pandemic (6270), the actual
COVID-19 cases (230), and influenza non-COVID-19 cases
(426) by using smartwatches. The authors found a higher
intensity and variety in symptoms in COVID-19 cases
compared to normal influenza. A few symptoms, as chest
pain, anosmia, and shortness of breath, were commonly
observed in COVID-19 cases, of course, these are not early
markers of the disease. Based on the wearables’ analyses,
a reduction in the number of daily steps for a longer period
was treated as the symptom of ‘“long COVID”. Hence,
the wearables could serve as devices for monitoring recovery
after COVID-19.

Moreover, [26] some broader view of the usage of artificial
intelligence (AI) and internet of things for creating the
support system methodology in hospitals. The combination
of these techniques could be useful in disease diagnosis, treat-
ment, and management. During the COVID-19 pandemic,
it will found application, for example, in data storing of
PCR and tests, from imaging technologies. In this work,
the authors used the machine learning algorithms, such as
Random Forest (RF), Naive Bayes (NB), and Support Vector
Machine (SVM). The dataset was reused and gathered under
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laboratory conditions in 2020 [27]. The data contained a
record of 600 patients. Among these, 80 were diagnosed
positively with COVID-19. The number of features was 18,
and they included blood parameters. In this work, the authors
achieved the best results for SVM: 95 % accuracy, 94 % F1,
95 % of precision, 95 % recall, and 95 % for the Area Under
Curve. As the pre-processing step, normalisation and feature
selection were used. Nevertheless, there is no mention of the
stage of the disease at which the data were gathered.

To date, mainly smartwatches and smart masks [28] have
been used for the early detection of COVID-19. Moreover,
some new solutions for measuring physiological parameters
have recently been introduced, which are described below.

The characteristics of the ear-related area have allowed
researchers to create a photoplethysmography-based device
for measuring oxygen saturation in-ear SpO2 [29]. It is as
effective as finger pulse oximetry, with an even faster average
response. This device is suitable for monitoring COVID-19
and post-COVID-19 cases such as the possible occurring
of hypoxemia related to breathlessness declination [29].
Furthermore, the usage of a headset wearable device allowed
coughing to be monitored, which, however is not a suitable
symptom for early detection [30].

The Biovitals Sentinel platform is an academic project,
that uses armband biosensors (Everion) to detect COVID-19.
The monitored parameters are skin temperature, respiratory
rate, blood pressure, pulse rate, blood oxygen saturation,
and statistics regarding daily activities [31]. The introduced
platform could serve as a source of data for potential support
system methodologies.

In [32], the authors used a skin sensor that was equipped
with an accelerometer and a temperature sensor, and can
be placed on the throat. A remarkable advantage of this
solution was that it could wirelessly register cough frequency,
intensity, and duration, as well as the respiratory rate. The
study also included heart rate measurements. This solution
contributed to a continuous physiological monitoring system
and to the data analytical part. Again, this system cannot
be used to warn against infection in the early stages. Upon
the onset of coughing, the person already knows about the
infection and can change the behaviour to protect others.

In summary, there are currently several approaches that use
wearables to detect COVID-19 and there is a big promise of
that this technology can offer accurate early disease detection
and screening to a broader population in an easy and non-
invasive way. A methodology, based on a medical device
- Empatica, that used advanced sensors was introduced.
Unfortunately, this device is relatively expensive and is not
widespread among the population.

Finding a methodology based on cheaper and commer-
cially successful smartwatches, such as Fitbit or Apple
Watch, could have a significantly higher impact. Several
previous works suggest that the heart rate and activity can
indicate the development of COVID-19 and flu in general in
their early stage. It is noteworthy that the use of wearables for
telemonitoring has both advantages and drawbacks. On the
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TABLE 1. The summary of the state-of-the-art.

Citation Main aim Device Kind of data Number of the Accuracy, efficiency Machine learning Comments
gathered dataset method
[18] Statistical analysis of daily Ourora ring Temperature 50 COVID-19 cases 38/50 patients Threshold based on More wearables should include
temperature for COVID-19 exhibited some min/max temperature temperature sensors
disease and creating digital temperature anomalies | record after z-score,
biomarkers before the onset of the | Statistical evaluation:
disease nonparametric Kruskal
Wallace test, with
Tukey—Kramer post
hoc comparison
[19] Predicting the epidemic trend | Huami Heart rate, sleep data | 1.3 mln participants The highest Pearson CDNet (CatNN, The simulation provided for North,
including anomaly detection (ACC, PPG) correlation for DenNN) Central, South China and South-Central
with COVID-19 infection Chinese cities: Foshan Europe
rate 0.81,
average 0.68
[20] Anomaly detection of Limited to Fitbit Heart rate, sleep 73 HC, 32 COVID- 63 % anomaly Developed algorithms: It is anomaly detection evaluated on
COVID-19 disease in disorders, number of | 19 cases, 15 detection in COVID- RHR-Diff, HROS-AD, | COVID-19 disease cases without
steps Influenza 19 cases CuSum considering classification problem
[21] Correlation of wearables Lack of detailed Respiration rate, 208 cases no significant Chi-Square distribution | There should be o difference of future
related data with gender and informations oxygen saturation differences between and independent created support system methodologies
10T factors IoT factors and gender | measures t-Test between the population according to the
analysed factors
[22] Evaluation of COVID-19 Empatica E4 GSR, IBI, skin 24 HC, 46 COVID- 98,1 \% accuracy COVIDDeep The data contains self-assement done by
disease based on Empatica temperature, pulse 19 cases (22 patients, the pre-processing step is not
device oximeter, blood asymptomatic, 24 clear. The results are obtained with the
pressure monitor + symptomatic) rare using medical device — Empatica.
questionnaire
[23] Detection of COVID-19 WHOORP strap Respiration rate 81 COVID-19 cases, | 20 % COVID-19 Gradient Boosting 80 % is well results of accuracy, however,
disease 190 HC subjects recognised classifier the target is to detect disease before the
before the onset, 80 % clear onset.
cases 3 days after
onset
[24] Assessment of the need of Fitbit Respiration rate, 2754 COVID-19 0.77 +/- 0.03 AUC, Computed parameters: Some extra parameters were provided
hospitalization of COVID-19 heart rate, heart rate cases sensitivity 47 %, Shannon entropy of the | during training — among others: age,
patients based on respiration variability specificity 95 % nocturnal RR series, gender, BMI. Heart rate together with
rate, heart rate, rate the mean nocturnal respiration rate increasing during illness,
variability and also age, heart rate during deep heart rate variability is decreasing.
gender, BMI sleep, pre-processing:
transformation into z-
score, algorithm: CNN
[25] Comparision of COVID-19 Fitbit Self-report data, 41 COVID-19 cases Statistical differences Statistical evaluations The authors demonstrate the higher
disease in the early outbreak, RHR, step counts, 42685 self-reported in tests intensity and variety in symptoms for
later outbreak and also with nightly sleep hours flu, 1265 pre- COVID cases than for normal flu.
Influezna pandemic COVID-
19
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Computing the ratio of heart rate to

number of steps (activity)

e

Classifiers:

» XGBoost

» KNN

> SVM

> Logistic
Regression
Decision Tree
Random Forest

FIGURE 1. Scheme of the experiment.

one hand, they can present economic solutions for screening
tests and continuous objective monitoring and they are
easily accessible. On the other hand, they are not accurate
as imaging technologies (X-ray or CT) or PCR testing
technologies [33].

IIl. EXPERIMENT

The main objective of this research was to develop a method-
ology for the detection of COVID-19 in its early stages using
wearable electronic devices. Notably, we developed s that
considered the character of the development of the disease,
that is, the incubation period and contagiousness of the
disease. Moreover, the use of the most commonly gathered
signals (heart rate and number of steps) by smartwatches
allows us to potentially apply this solution as a broad
screening test.

The research follows up mainly on paper [20] where
regular fitness smartwatches were used for collecting data
from 4642 volunteers in total. Of these, 114 of them were later
diagnosed as COVID-19 positive. This experiment used the
data from this paper [20]. In [20], the experiment consisted of
three steps: (a) signal pre-processing of the data, (b) machine
learning, and (c) statistical evaluation of the accuracy. The
detailed scheme of the experiment is presented in Fig. 1.
First, the ratio of the heart rate to the number of steps was
computed. This was used as a pre-processing step to obtain a
more informative feature. The experiment was designed for
two scenarios: classification between COVID-19 and healthy
controls (HC), and classification between COVID-19, HC,
and influenza. Next, the feature extraction was carried out for
two-time windows, and then the difference between them was
computed. We applied the minimum redundancy maximum
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» COVID and HC

_ 50 features

Classification with Stratified Cross-
‘ Validation (Standarization + Selected
Classifiers)

b

relevance (mRMR) based on the feature preselection. The
number of features was set to 50 to select the most valuable
of them and to facilitate the classifier’s learning process.
The next step was the classification with XGBoost, k-NN,
SVM, logistic regression, decision tree, and random forest.
The results were evaluated using metrics.

The data consisted of records of the number of steps
and heart rate. These values were measured every minute.
To partially suppress the effect of the person’s activities,
the heart rate value was first divided by the number of
steps, and these normalised values were used for further
processing.

The experiment was designed to compare values measured
from sensors of COVID-19 positive persons and distinguish
these values from healthy controllers. Based on previous
works, there is an assumption that the infected human body
has a different response in terms of heart rate in the prodromal
stage of the diseases, even few days before the onset of the
disease [18], [20], [24]. The highest changes in the elevated
resting heart rate (RHR) are registered two days before the
onset of the disease [25]. Some studies have also confirmed
that, especially in the resting time, heart rate is slightly higher
than in the case of a healthy person. Unfortunately, biological
systems are not fully deterministic, and in particular the
heart rate does not responding equally to the same activity
or situation. For this reason, the data were averaged for a
one minute period. Further, different persons have different
responses of the body - for example, based on their fitness,
age and weight, etc. Thus, we did compare absolute values
between all persons, rather, we compared changes in each
person during the healthy state and near the onset of the
disease.
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To construct a system that compares changes in the body
responses of each person, we defined two time frames in
the collected data. The detailed procedure of this step can
be found in Subsection III-B. Next, the set of features was
extracted for each window. Subsequently, the difference was
calculated for the set of features extracted between the later
and previous window.

Unfortunately, there is still a lack of data in this domain.
Hence, we preferred to obtain insight into the data and use
statistics to understand the features. The features used for
the experiment were first pre-selected to suppress possible
over-fitting. The method used for the selection of the features
was the minimum redundancy maximum relevance (mRMR).
The number of features was 50. To evaluate the resulting
accuracy, we used the classification of COVID-19 positive
or COVID-19 negative classes. For statistical evaluation,
10-fold Stratified Cross-Validation was used. We also
included Standardization. For evaluation of the model,
we compared results using different machine learn-
ing algorithms including XGBoost, k-Nearest Neighbour
(k-NN), Support Vector Machines (SVM), Logistic Regres-
sion (LR), Decision Tree (DT), and Random Forest (RF).
For further statistical evaluation, the Mann-Whitney U test
was used. This method allows for checking whether is a
statistical difference in the distribution of the analyzing
groups. To minimize the number of type I errors, the false
discovery rate (FDR) was calculated.

A. TRAINING DATA

The data used for this research cames originally from [20].
For the study, the data were gathered using the wearable
devices and the application MyPHD app. The wearables
used included Fitbit, Apple Watch, Garmin Watch, Oura
Ring, BioStrap, Masimo Pulse Oximeter, Empatica, Motiv
Ring, and others. Data regarding steps, heart rate, and
partly sleep records were analysed. The data reused in this
paper were the records of steps per minute and heart rate
per second, while, the sleep data were omitted cause of
their limited numbers. In this study, 5262 participants were
enrolled. Among these, 114 participants were diagnosed with
COVID-19. To balance the data, 34 HC and 27 COVID-19
cases, including 7 influenza cases, were utilized.

B. FEATURE EXTRACTION

The data gathered from wearable devices measure phys-
iological data which are continuous time-series records.
Although deep learning has shown great results in end-to-end
learning, we have a relatively limited amount of training data.
Thus, we manually extracted features characterising time-
series signals [34]. The inspiration for the feature extraction
of physiological signal features was taken from [34]-[36],
and [37]. These covered the most frequently used features for
physiological signals. The number of measured samples was
still quite limited. These samples were records of a relatively
long period, so we decided to use hand-crafted features
for the feature extraction. To be sure about this decision,
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we evaluated also NNs, such as long-short term memory
and 1-D convolution neural network. Nevertheless, as shown
later, there were no observable significant results. Three
types of features were extracted: (a) temporal, (b) statistical,
and (c) in the spectral domain. For the temporal domain,
auto-correlation, centroid, mean absolute differences, mean
differences, median absolute differences, median differences,
distance, the sum of absolute differences, total energy,
entropy, peak-to-peak distance, the area under the curve,
absolute energy, maximum peaks, minimum peaks, slope,
and zero-crossing rate were taken into account. Subsequently,
from the statistical domain, the following features were
extracted: histogram, inter-quartile range, mean absolute
deviation, median absolute deviation, root mean square, stan-
dard deviation, variance, empirical cumulative distribution
function (ECDF) percentile count, ECDF slope, kurtosis,
skewness, maximum, minimum, mean, median, ECDF, and
ECDF Percentile. The spectral domain represents features
such as - fast Fourier transform (FFT) mean coefficient,
wavelet absolute mean, wavelet standard deviation, wavelet
variance, spectral distance, fundamental frequency, maxi-
mum frequency, median frequency, spectral maximum peaks,
maximum power spectrum, spectral centroid, decrease,
kurtosis, skewness, spread, slope, variation, spectral roll-
off, roll-on, human range entropy, Mel-frequency cepstral
coefficients (MFCC), linear prediction cepstral coefficients
(LPCC), power bandwidth, spectral entropy, wavelet entropy,
and wavelet energy. The feature extraction was performed
thanks using the Python package: tsfel [38]. By adding a few
temporal features, the work builds on packages such as FATS,
CESIUM, TSFRESH, and HCTSA.

A scheme for - feature extraction is presented in Fig. 2. For
extracting the healthy control samples from the HC cohort,
the set of features was computed for two windows (pj -
earlier and p,. - later window). The fixed-sized of the windows
was set, and we specified the spacing between them. In the
next step, the difference between a set of features for the
aforementioned windows was calculated. Where:

« The vector of features extracted from the earlier healthy

state is expressed as frc1

o The vector of features extracted from the later healthy

state is expressed as fyc2

o The final vector for HC is expressed as: f = fyca - fuci

o The end of earlier healthy state window is expressed as

THC

« The beginning of later healthy state window is expressed

as tgc2

o The Spacing between windows is expressed as: Spacing

=tgC2-tyCl1

The scheme of the feature extraction for HC is presented
in Fig. 2.

However, to extracting COVID-19 cases, a similar proce-
dure was carried out. Otherness was represented by taking
into consideration the onset of the disease. The shift in the
computation of the windows was defined as the ability to
detect the disease in the prodromal stage. This is because the
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FIGURE 2. Scheme of feature extraction for HC and COVID-19 cases.

highest peak of contagiousness of this disease is registered
two days before the onset of the disease. The next steps were
the same as in the case of HC sample extraction. The scheme
of the described steps is shown in Fig. 2.

Where:
« The vector of features extracted from the healthy state is

expressed as fy
o The vector of features extracted from COVID early state
is expressed as fc
o The final vector for COVID-19 case is expressed as: f
=fc —fu
o The end of earlier healthy state window is expressed as
H
o The beginning of COVID-19 window is expressed as #¢
« The beginning of the onset of symptoms is expressed as
0]
o The diagnosis of COVID-19 is expressed as tp
o The Onset is expressed as: Onset = tc + pc
o The Spacing between windows is expressed as:
Spacing =tc — tg
C. EVALUATION
To evaluate the quality of the algorithms several metrics were
used: accuracy, sensitivity, specificity, and the Matthews cor-
relation coefficient. From a clinical perspective, sensitivity,
and specificity are only as important as the accuracy [39].
Sensitivity is defined as the ratio of positive cases regarded by
the algorithm as positive cases to the whole set of real positive
cases. Specificity is the ratio of negative cases classified
as negative to the whole set of real negative cases [40].
The Matthews correlation coefficient is mostly dedicated to
imbalanced datasets.
The equations for the metrics are presented below:
Accuracy:
TP + TN

Accuracy = (D
TP + TN 4 FP + FN
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Sensitivity:
o TP
Sensitivity = ———— 2)
TP + FN
Specificity:
Specificit N 3)
ecificity = ——
P YT INYFP

The Matthews correlation coefficient (MCC):
_ TP % TN — FP % FN
~ (TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC

D. MACHINE LEARNING AND STATISTICAL EVALUATION
To identify the most informative features that could distin-
guish the disease, a univariate test was performed. In this
case, a non-parametric Mann-Whitey U-test was used. For
this purpose, we selected features, that were significantly
different from each other. For the use of this test, it is not
necessary to assume that the values are normally distributed.
It is suitable for small datasets. One of the obstacles
of the Mann-Whitney U-test is that it is endangered by
error-type-I [41]. For this reason, the Benjamini-Hochberg
procedure was used to controll the false discovery rate
(FDR) [42]. However, FDR is a strong criterion for a small
cohort, dedicated to multiple hypothesis testing.

1) MACHINE LEARNING ALGORITHMS

In this work, a few supervised machine learning algorithms
were used. These were: SVM [43], logistic regression [43],
k-NN [43], decision tree [43], random forest [43], and
XGBoost [43]. The advantage of SVM is that it is gen-
erally robust to over-fitting [44] and has a relatively good
generalization capability [45]. The principle of its operation
is based on non-linearly transformed training data into a
higher dimension. The decision boundary is chosen by the
algorithm that converges to the best separating hyper-plane.
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The hyper-plane is found by support vectors and determined
by them, the so-called margins. The SVM tries to find the
maximal marginal hyper-plane (MMH), which allows the
correct classification of unseen data classification, correctly.
The SVM works is based-on neural networks [44], [46].

The k-Nearest Neighbor classifier belongs to lazy and non-
parametric classifiers. K is the number of the neighbours,
and the test datasets are compared with the training dataset.
This classifier could be vulnerable to over-fitting because
of existing noise. Including match weighting, the attributes
can solve this problem by considering a change in distance
metrics [44] to calculate the distances between the sample
and the neighbours.

One of the simplest supervised machine learning algo-
rithms is logistic regression (LR), which is a classification
algorithm. The output is interpreted as a probability [45].
Despite the non-complicated principle of working, it could
achieve good results [46]. However, it could suffer from
multicollinearity [45].

A decision trees, Random Forest, and XGBoost are a group
of tree classifiers [44].

There are a few types of decision trees. The most
commonly used are C4.5, ID3, and CART. In this study,
CART was applied for the classification purposes [47].
CART is a non-parametric algorithm. Prominent advantages
of CART are its ability to deal with missing values and use
pruning (post pruning). The decision-making indicator uses
the Gini diversity index [48]. Decision trees can deal with
linearly inseparable data. The disadvantage of this algorithm
is that it is difficult to manage high dimensional data, and is
vulnerable to overfitting [45].

Random forest is an extended version of the decision tree.
This algorithm trains many decision trees and defines classes
based-on voting. The main advantage is that it is robust to
noise and does not overfit. Hence, it can be regarded as a fast
methodology. However, it slows down with an increase in the
number of trees [45].

XGBoost belongs to the tree gradient boosting system.
This algorithm can achieve state-of-the-art results for struc-
tured data. This algorithm characterises faster computing
and also uses regularization techniques - XGBoost also uses
shrinkage methodology and feature (column) sub-sampling
to protect against overfitting.

The algorithm parameters were optimised using a grid
search. For XGBoost, we optimized the following parame-
ters: subsample ratio of the training instances, control the
balance of positive and negative weights, minimum sum of
instance weight (hessian) needed in a child, maximum depth
of a tree, step size shrinkage used in the update to prevent
overfitting, gamma minimum loss reduction required to make
a further partition on a leaf node of the tree, set of parameters
for subsampling of columns, and subsample ratio of columns
for each level.

For k-NN, the parameters that were optimised were the:
number of neighbours, type of metric used for the evaluation,
and weight function used in prediction.
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TABLE 2. The scenario of carried out experiments.

Cases Len_window SHIFT  Spacing

5 2 7
COVID+HC+Influenza 7 2 7

10 2 7

5 2 7
COVID+HC 7 2 7

10 2 7

SVM was evaluated using several values: C, regularization
parameter, the degree of the polynomial kernel function,
if chosen and gamma kernel coefficient for radial basis
function, sigmoid, and polynomial. The kernel types used in
the algorithm were: linear, polynomial, radial basis function,
sigmoid, and precomputed.

The logistic regression was optimised by the parameters: C
- the inverse of regularization strength, penalty normally used
in the penalisation, and solver - a type of algorithm which is
using in the optimization problem.

Whereas, the parameters which were used for optimising
the Decision Tree was: the minimum number of samples
necessary to split an internal node, the minimum number of
samples necessary at a leaf node, the number of features taken
into consideration for the best split, the maximum depth of the
tree, types of weights during balancing the data.

The parameters that were used for the random forest were
as follows: the number of trees in the forest, the minimum
number of samples necessary to split an internal node,
the minimum number of samples required to be at a leaf node,
the number of features taken into consideration for the best
split, the maximum depth of the tree, and types of weights
during balancing the data.

IV. RESULTS
The machine learning algorithms were trained for two cases:
A) for cohort containing COVID-19 cases and HC, and
B) for cohort containing COVID-19 cases + Influenza and
HC. The size of the spacing between windows was fixed
to 7 days, and the SHIFT was equal 2 days (please, check
the designation in Fig. 2). The summary of the parameters
used for experiments is presented in Table 2. Based on the
statistical evaluation of the extracted features, we conducted
the Mann—Whitney U-test with FDR correction. The results
for the two scenarios with Fig. 2 5-day windows are shown
in Table 3 and Table 4. The distinction between those
two groups is provided in the view of checking samples
from two different distributions that is with pr without
Influenza cases. The features distributions containing only
people having COVID-19 versus HC should be different from
the distribution of the features containing COVID-19 cases
and influenza cases versus HC. The same dependency was
compared. The number of extracted features was 381 and
their descriptions can be found in [49].

The features, which passed the Mann-Whitney U test for
the cohort containing 27 people suffering from COVID-19
disease and 27 HC are the following: sets of MFCC,
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TABLE 3. Mann-Whitney U-test including also FDR correction for the cohort of COVID-19 disease and HC.

Features pval pval_FDR
MFCC_11 0.0045 0.3546
FFT mean coefficient_117 = 0.0070 0.3546
FFT mean coefficient_189 = 0.0070 0.3546
Spectral slope 0.0102 0.3546
FFT mean coefficient_43 0.0134 0.3546
FFT mean coefficient_254  0.0134 0.3546
FFT mean coefficient_233 = 0.0140 0.3546
Maximum frequency 0.0160 0.3546
Spectral roll-off 0.0160 0.3546
FFT mean coefficient_130 0.0174 0.3546
MFCC_0 0.0174 0.3546
FFT mean coefficient_49 0.0189 0.3546
FFT mean coefficient_149 = 0.0189 0.3546
FFT mean coefficient_0 0.0206 0.3546
FFT mean coefficient_202 = 0.0215 0.3546
MFCC_2 0.0224 0.3546
FFT mean coefficient_37 0.0243 0.3546
FFT mean coefficient_247 = 0.0243 0.3546
MFCC_9 0.0243 0.3546
FFT mean coefficient_167 = 0.0263 0.3546
FFT mean coefficient_188 = 0.0263 0.3546
Spectral kurtosis 0.0263 0.3546
Fundamental frequency 0.0274 0.3546
Spectral skewness 0.0274 0.3546
Histogram_5 0.0283 0.3546

TABLE 4. Mann-Whitney U-test including also FDR correction for the cohort of COVID-19 disease, Influenza and HC.

Features pval pval_FDR
FFT mean coefficient_163 = 0.0024 0.2389
FFT mean coefficient_243 = 0.0031 0.2389
FFT mean coefficient_189  0.0032 0.2389
FFT mean coefficient_202 = 0.0040 0.2389
FFT mean coefficient_149 = 0.0059 0.2389
FFT mean coefficient_242 = 0.0065 0.2389
Spectral kurtosis 0.0065 0.2389
FFT mean coefficient_182 = 0.0070 0.2389
FFT mean coefficient_167 = 0.0075 0.2389
Maximum frequency 0.0094 0.2389
Spectral roll-off 0.0094 0.2389
FFT mean coefficient_254  0.0101 0.2389
FFT mean coefficient_117 = 0.0118 0.2389
Histogram_5 0.0122 0.2389
FFT mean coefficient_25 0.0126 0.2389
Zero crossing rate 0.0130 0.2389
FFT mean coefficient_233  0.0138 0.2389
FFT mean coefficient_194 = 0.0147 0.2389
MFCC_11 0.0152 0.2389
FFT mean coefficient_43 0.0157 0.2389
FFT mean coefficient_39 0.0162 0.2389
FFT mean coefficient_150 = 0.0162 0.2389
Spectral skewness 0.0162 0.2389
FFT mean coefficient_143 = 0.0167 0.2389
FFT mean coefficient_0 0.0172 0.2389
FFT mean coefficient_130 = 0.0172 0.2389
FFT mean coefficient_251 = 0.0172 0.2389
Spectral slope 0.0177 0.2389
FFT mean coefficient_235  0.0183 0.2389
FFT mean coefficient_207 @ 0.0188 0.2389
FFT mean coefficient_48 0.0212 0.2421

FFT, mean coefficient, linear prediction cepstral coefficients
(LPCC), spectral slope, maximum frequency, spectral roll-
off, spectral kurtosis, fundamental frequency, spectral skew-
ness, zero-crossing rate, slope, min, spectral centroid, median
frequency, ECDF percentile, and signal distance. The features
that passed the test, for the assumed confidence level o =
0.05, are presented in Table 3. After applying the FDR
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Features pval pval_FDR
Zero crossing rate 0.0283 0.3546
LPCC_3 0.0297 0.3546
LPCC_9 0.0297 0.3546
Slope 0.0297 0.3546
Min 0.0304 0.3546
FFT mean coefficient_21 0.0309 0.3546
FFT mean coefficient_243  0.0321 0.3546
FFT mean coefficient_175 = 0.0333 0.3546
FFT mean coefficient_144 = 0.0346 0.3546
MFCC_7 0.0346 0.3546
FFT mean coefficient_163 = 0.0374 0.3546
Spectral centroid 0.0374 0.3546
LPCC_0 0.0388 0.3546
FFT mean coefficient_249 = 0.0403 0.3546
Median frequency 0.0403 0.3546
ECDF Percentile_0 0.0409 0.3546
FFT mean coefficient_39 0.0418 0.3546
FFT mean coefficient_185 = 0.0418 0.3546
FFT mean coefficient_242  0.0418 0.3546
FFT mean coefficient_6 0.0434 0.3546
FFT mean coefficient_57 0.0450 0.3546
Signal distance 0.0450 0.3546
FFT mean coefficient_235 = 0.0467 0.3546
FFT mean coefficient_154 = 0.0484 0.3546
FFT mean coefficient_194 = 0.0484 0.3546
Features pval pval_FDR
FFT mean coefficient_56 0.0212 0.2421
Min 0.0216 0.2421
FFT mean coefficient_236 = 0.0225 0.2421
FFT mean coefficient_53 0.0238 0.2421
FFT mean coefficient_29 0.0245 0.2421
FFT mean coefficient_15 0.0252 0.2421
FFT mean coefficient_165 = 0.0259 0.2421
FFT mean coefficient_247 @ 0.0259 0.2421
FFT mean coefficient_152 = 0.0267 0.2421
FFT mean coefficient_185 = 0.0267 0.2421
Spectral centroid 0.0267 0.2421
FFT mean coefficient_134 = 0.0299 0.2586
Slope 0.0299 0.2586
Median frequency 0.0316 0.2615
Spectral spread 0.0316 0.2615
FFT mean coefficient_125 = 0.0333 0.2647
FFT mean coefficient_155 = 0.0333 0.2647
FFT mean coefficient_250 = 0.0352 0.2738
FFT mean coefficient_50 0.0372 0.2832
FFT mean coefficient_160 = 0.0382 0.2851
FFT mean coefficient_230 = 0.0392 0.2872
FFT mean coefficient_175 = 0.0413 0.2874
FFT mean coefficient_255  0.0413 0.2874
FFT mean coefficient_222 = 0.0424 0.2874
FFT mean coefficient_229 = 0.0447 0.2874
FFT mean coefficient_231 = 0.0458 0.2874
FFT mean coefficient_30 0.0470 0.2874
Signal distance 0.0470 0.2874
FFT mean coefficient_180 = 0.0483 0.2874
FFT mean coefficient_196 = 0.0483 0.2874
FFT mean coefficient_187 = 0.0495 0.2874

correction, none of the checked features passed the test.
Nevertheless, it is a strong criterion. The minimum obtained
value was 0.3456. The p-value with FDR correction between
the two scenarios. The minimum p-value of evaluated
features for the scenario with COVID-19, influenza, and HC
cases was lower than for the scenario with only COVID-19
and HC cases (0.2389).
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TABLE 5. Results for detection of COVID-19 disease for 5-day windows
(cohort: 27 HC, 27 COV).

Classifier Accuracy  Sensitivity = Specificity MCC
XGBoost 0.71 0.72 0.71 0.46
k-NN 0.78 0.77 0.80 0.60
SVM 0.65 0.66 0.65 0.33
Logistic Regression 0.69 0.69 0.69 0.41
Decision Tree 0.50 0.52 0.49 0.01
Random Forest 0.62 0.59 0.66 0.27

TABLE 6. Results for detection of COVID-19 disease for 7-day windows
(cohort: 26 HC, 26 COV).

Classifier Accuracy  Sensitivity  Specificity MCC
XGBoost 0.67 0.68 0.66 0.35
k-NN 0.68 0.73 0.63 0.37
SVM 0.66 0.70 0.63 0.35
Logistic Regression 0.63 0.60 0.64 0.26
Decision Tree 0.54 0.50 0.57 0.08
Random Forest 0.59 0.56 0.61 0.18

For the second scenario, the features that passed the Mann-
Whitney U test with the assumed confidence level were
the following: the set of FFT mean coefficients, spectral
kurtosis, maximum frequency, spectral roll-off, histogram,
zero-crossing rate, spectral skewness, spectral slope, min,
spectral centroid, slope, median frequency, spectral spread,
and signal distance.

Subsequently, in this section, the classification results for
the two cohorts are presented in Sections tables 5 to 10.
In what follows, we explain the parameter selection should
be explained. The shift (marked as Onset) was set to 2 days
(Fig. 2). Due to registration, the highest contagiousness peak
was registered exactly 2 days before the clear visibility of
the patient’s onset [14]. However, in view of the incubation
period, the space between windows was set to 7 days. The
incubation period was 2 to 11 days [8]. The selection of
this parameter was set to 7 days, which indicates that the
sum of the later windows (based on which the feaures
were calculated) and spacing was longer than the registered
maximum of the incubation period. The variable remained
equivalent to the length of windows, that is, 5-, 7- and 10-
days windows were tested. The results were achieved for
the following classifiers: XGBoost, k-NN, SVM, logistic
regression, decision tree, and random forest.

A. COVID-19 DETECTION

For the cohort containing COVID-19 cases and HC,
the results of the classifications are presented in tables 5 to 7.
For the 5-day windows (Table 5), the highest accuracy (0.78),
specificity (0.77), sensitivity (0.80), and MCC (0.60) were
registered for k-NN. We observed that high accuracies were
achieved for XGBoost (0.71) and logistic regression (0.69).
This was evaluated on 27 HC and 27 COVID-19 cases using
stratified cross validation. We also optimised the machine
learning models. For the best k-NN, the following parameters
were registered as the most optimal: 11 nearest neighbors,
as the distance metric was chosen as the Manhattan distance.
Moreover, we used weight function, which was computed as
weights points by the inverse of their distance.
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TABLE 7. Results for detection COVID-19 disease for 10-days windows
(cohort: 24 HC, 24 COV).

Classifier Accuracy  Sensitivity = Specificity MCC
XGBoost 0.65 0.65 0.67 0.34
k-NN 0.71 0.84 0.60 0.46
SVM 0.67 0.67 0.67 0.36
Logistic Regression 0.70 0.72 0.68 0.42
Decision Tree 0.53 0.61 0.46 0.07
Random Forest 0.58 0.53 0.63 0.18

TABLE 8. Results for detection of COVID-19 disease and including
Influenza cases for 5-days windows (cohort: 34 HC, 27 COV, Influenza 7).

Classifier Accuracy  Sensitivity  Specificity MCC
XGBoost 0.66 0.68 0.65 0.35
k-NN 0.73 0.71 0.76 0.49
SVM 0.71 0.75 0.68 0.45
Logistic Regression 0.69 0.76 0.62 0.40
Decision Tree 0.52 0.50 0.55 0.05
Random Forest 0.56 0.56 0.56 0.13

The outcomes of the classification for the 7-day windows
are shown in Table 6. The results obtained were lower in
comparison to those from Table 6. The k-NN classifier had
the highest accuracy (0.68), sensitivity (0.73), and MCC
(0.37), whereas, the highest specificity was reported for
XGBoost (0.66).

The results with a window of 10-days are presented in
Tab. 7. Once again, the k-NN achieved the highest results
in accuracy (0.71), sensitivity (0.84) and MCC (0.46). For
the logistic regression, the highest results were obtained for
specificity (0.68).

B. COVID-19 AND INFLUENZA DETECTION

The second dataset contained the COVID-19 cases, people
with Influenza, and HC. COVID-19 disease and influenza
were treated as one class and HC as the second. This time,
the data were balanced. For the 5-day windows, the cohort
contained 31 HC, 24 COVID, and 7 influenza cases (Table 8).
The highest accuracy was obtained in this case for k-NN
(0.73), and it also had, the best-recorded specificity (0.76)
and MCC (0.49). The sensitivity was highest with logistic
regression (0.76). The following parameters were identified
as the most optimal for k-NN: three nearest neighbors,
Euclidean distance as the best distance, and every point in
the neighborhood were weighted equally. The most optimal
parameters for logistic regression were the L2 penalty, and
the “saga” algorithm for the optimization, and inverse of
regularization strength was C=464. Furthermore, we evalu-
ated the second dataset using a 7-day window length. This
time, the best results were obtained with logistic regression
(0.71). Specificity (0.68) and MCC (0.45) were also highest
for this classifier. The sensitivity (0.89) was the best for
logistic regression. Lastly, the best outcome in accuracy
(0.73), sensitivity (0.82), and MCC (0.50) for the 10-day
window length was achieved with k-NN. The specificity
(0.66) was best with logistic regression.

V. EXPERIMENT
In this paper, we introduced a methodology for early
COVID-19 detection in the prodromal phase based on records
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TABLE 9. Results for detection of COVID-19 disease and including
Influenza cases for 7-days windows (cohort: 33 HC, 26 COV, Influenza 7).

Classifier Accuracy  Sensitivity  Specificity MCC
XGBoost 0.63 0.64 0.62 0.28
k-NN 0.70 0.89 0.51 0.44
SVM 0.68 0.80 0.57 0.39
Logistic Regression 0.71 0.74 0.68 0.45
Decision Tree 0.54 0.50 0.57 0.08
Random Forest 0.60 0.55 0.65 0.21

TABLE 10. Results for detection of COVID-19 disease and including
Influenza cases for 10-days windows (cohort: 31 HC, 24 COV, Influenza 7).

Classifier Accuracy  Sensitivity  Specificity MCC
XGBoost 0.63 0.63 0.62 0.27
k-NN 0.73 0.82 0.64 0.50
SVM 0.68 0.72 0.65 0.39
Logistic Regression 0.67 0.67 0.66 0.35
Decision Tree 0.52 0.54 0.50 0.04
Random Forest 0.59 0.58 0.59 0.18

from smartwatches. Machine learning techniques are used
for the analysis of the signal. The data originated from
paper [20], where only a portion of the data was used.
We selected 27 COVID-19 and 7 influenza samples as
a positive class, and 34 healthy controllers as a negative
class. In the original paper, 32 COVID positive samples,
15 influenzas, and 72 healthy controllers were used. The
reason for this is that some of the records missed some
important data parts that were needed for the comparison of
the signals. The size of the data is not very large, however,
it is currently the largest public dataset of this kind available.

A few scenarios were tested with various fixed parameters,
that is, shift between windows, spacing between windows,
and changeable length of windows. These parameters were
fixed by considering the incubation periods and the highest
interval of contagiousness. A wrong selection can result in
the risk of considering people already in quarantine. The
purpose of this work was to concentrate on the prodromal
stage analysis, and the parameters were selected accordingly.

The set of extracted features covers several domains:
temporal, statistical, and spectral. Thanks to this, it could
represent a larger range in the variability of the analysed
signals. Based on the statistical analysis, the most informative
features were those related to changes in frequency and the
spectral. This could be explained by the fact that the final
features were computed as the difference of the extracted
features for two windows - later and earlier. The statistical
evaluation showed that features such as MFCC, FFT, spectral-
based, histogram, and LPCC differed significantly in the
comparison of HC and COVID-19 cases. However, for the
scenario with (COVID-19, Influenza) and HC, the following
features were relevant: FFT, spectral-based, MFCC. These
features seem to contradict. What is observable, under stricter
requirements (after FDR correction), none of the p-values for
the features were below 0.05. One of the most significant
differences was in the p-value, as the p-value with the
FDR correction was lower for the cohort with influenza.
This could indicate differences between the intensity of the
symptoms for influenza and COVID-19 cases, this same
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p-value should be various. This revealed changes in the
patterns of some frequencies (activities) between the HC
and COVID-19 cases. Besides an increase or a decrease in
parameter detection, the results showed a higher accuracy
registered for k-NN in most of the cases. Good outcomes
were achieved also with the logistic regression and for
cohort containing only COVID-19 and HC, as well also for
XGBoost. The success of the logistic regression indicates
the ease of the recognition of the samples containing disease
cases and HC based on the extracted features. The best
results obtained with k-NN suggest existing aggregations
and sufficient boundaries between them. The results obtained
with XGBoost may be reached due to the more complex
nature of this classifier. Nevertheless, this classifier might
have been slightly overfitted. In the context of analysing the
length of the windows, cohorts, and obtained predictions,
the best detection was obtained for 5-day windows and a
dataset containing COVID-19 and HC. The accuracy was
0.77. The sensitivity (0.77) and specificity (0.80) were similar
in value, which suggests that COVID-19 cases and HC were
recognised on a comparable level. The results for detection
of COVID-19 for 7-day windows and 10-day windows were
also above 0.70. Nevertheless, the choice of shorter windows
is much better in reality. The records for comparing HC and
potentially ill windows do not need to be gathered from many
days which is easier in the application - For all of these
cases, the best-performing classifier was k-NN. Considering
the datasets containing influenza cases, the best accuracies
for each studied case were above 0.70. The highest sensitivity
was recognised for 7-day windows, and with the use of k-NN,
it was 0.89. Nonetheless, the specificity was low: at 0.51.
When many positive cases were detected, the recognition
of negative cases was random. The results between the two
cohorts were at a similar level, although. The detection of
only COVID-19 cases was slightly more accurate. This could
indicate differences in the distribution of COVID-19 data
and a dataset containing COVID-19 together with influenza.
I has been reported that the symptoms of COVID-19 last
longer than those of influenza. Similarly, they peak later after
the illness onset [25]. Nonetheless, this statement is linked
to symptoms in general. However, among symptoms onset,
the increase in resting heart rate was reported to be higher
for COVID-19 than for influenza. In the case of influenza,
it was also visible, however, in a milder manifestation. These
measurements were gathered with the smartwatches [25].
Due to the use of smartwatches, the results from this
study could potentially be applied on a large scale. These
devices are low-cost and can be used for limited screening
tests [50]. The raw data used for this research could be
distinguished into activity recognition (i.e. step counting) and
heart rate measurements. Based on step counting, the most
accurate device for this purpose is the pedometer. However,
smartwatches are more comfortable for this purpose. They
are non-invasive, user-friendly, and because of this suitable
for this research. Another sensor, which is being used for
activity recognition is an accelerometer. Some wearables are

119487



IEEE Access

J. Skibinska et al.: COVID-19 Diagnosis at Early Stage

equipped also with sensors such as gyroscopes, magnetome-
ters, barometers, and altimeters. They could increase the
quality of activity recognition. However, the prices of these
devices are higher: hence, they are often not included in
standard smartwatches [51].

HR records were measured based on to the optical tech-
nique of PPG measurements. Unfortunately, optical sensing
can cause some problems with the accuracy of this sensor,
especially during activity. The signals gathered by PPG could
be noised because of a movement, ambient light, and also
tissue compression. The noise in the PPG signal can influence
the correctness of computing the real value of HR [51]. Some
devices use an accelerometer to increase the robustness of
the HR estimation. Concerning these facts, the choice of a
smartwatch could influence the robustness of the gathered
HR values, which may limit the maximum accuracy of
the created support system methodology. A solution could
be combinations of more accurate pedometers for activity
recognition, with smartwatches. With this combination,
higher accuracy can be obtained, however, it would be more
impractical as the use of these wearables should be as
unobtrusive and discrete as possible [52]{53].

Regarding the smartwatches, the most frequently used
device for the original study was Fitbit [20]. The type of
used device used was not provided in the database. Thus, it is
challenging to claim the kind of device used for collecting
the data in each case or this study. The most common fitness
smartwatch - Fitbit, offers, among others, collecting data
from a 3-axis accelerometer [54] - and PPG to extract the
heart rate [55].

Some smartwatches can collect data more accurately and
from extra sensors, such as - measuring skin conductance,
skin temperature (gathered by infrared thermopile), BVP
and HRYV, and acceleration. Their disadvantage include their
higher price is higher [56], [57]. The Empatica offers the
ability to collect more accurate data and extended range
of gathered data is regarded as medical device [58]. The
experiment developed with the use of such a device could
produce more accurate results for the created support system
methodology. The increase in the number of modalities would
bring more informative physiological data and this could
also lead to a more robust model. Nevertheless, the use of
Empatica for screening tests is difficult because of its higher
price [22].

Finally, our findings must be compared with those of
original study on which this study was based [20]. In this
study, the same dataset was used as the one introduced
in [20]. In the original research, 32 COVID-19 cases were
analysed. In 25 cases some anomalies were detected, and
22 cases were in their early stage. Both works, this and
the original focus on prodromal stage detection. First, this
work did not treat outliers as anomaly detection issues,
but rather as a classification problem. Hence, we increased
parameters such as sensitivity and accuracy. The work also
evaluated the data from several domains such frequency,
spectral, and statistical aspects. The devices used for both

119488

studies were smartwatches, as mentioned before. The authors
of the original work published offline and online algorithms
for analysing the provided data.

Two types of data were used to detect the RHR and
the ratio between the HR and the number of steps.
The algorithm applied for analysing the RHR was the
RHR difference (RHR-Diff) [20], was based on standard-
ized residuals. We compared the 1-h resolution with the
28-day baseline. The second algorithm, the so-called HROS-
AD, was built on heart rate over steps signals to detect
anomalies. The values were compared for 1-hour with the
rest of the record using Gaussian density estimation [20].
For RHR-Diff and HROS-AD, anomalies were detected
in 22 COVID-19 cases. It should be emphasised that these
methods are dedicated to anomaly detection, so they indicate
some outliers. However, they do not clearly indicate wheter
the person has or does not have COVID-19. Our methodology
considers the classification problem.

The cumulative sum algorithm (CuSum) which works in
real-time was introduced in [20]. In particular, it camulated
the deviations of the elevated residuals RHRs. The 28 days
period was taken into consideration for this algorithm.
Thus, 62,5 % of COVID-19 cases and viral infections were
detected. Nevertheless, it should be treated as a specificity
issue, rather than not accuracy issue. The difference between
our paper and the original one is that we have created the
support system methodology with a specificity higher than
77 % and an accuracy 78 % for 5-day windows for the
COVID-19 detection. For the cohort containing influenza
cases, the accuracy was 73 % and 71 % for the specificity.
Moreover, our algorithm required a shorter period to detect
the prodromal stage of the disease.

VI. LIMITATION OF THE WORK
A few limitations are evident in this study. Due to the reuse
of the dataset from the original paper, some related problems
could occur [20]. The previous study did not mention exactly
where the data were gathered. The results obtained could be
biased for a specific group of people. For example, race and
ethnicity can influence the variance of cohort [25]. Further,
the dataset is limited. This implies that the machine learning
models created could be biased and overfitted. Future studies
should extend the dataset to create a more robust algorithm.
Nevertheless, there could be also pointed out some
challenges related to wearing wearable devices. It is the
responsibility of the people to wear them all the time the
device. In the real-world scenario, there is often a problem
of a lack of data. This will result in the use of some
pre-processing methodologies and will decrease the level
of reliability of the machine learning model. Furthermore,
this research focused on Fitbit; hence the solution may
be limited to this device. Other smartwatches could use
different pre-processing steps and approximations of the
gathered signals [59]. Moreover, the gathered signals could
be noisy [60]. People could wear the devices inappropriately.
The signals could also be biased by the noise coming
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from various sensors. The common smartwatches are not
certificated medical devices. Thus, future versions of the
hardware could incorporate other parameters. It is also not
clear what the responses of the human body of people with
several comorbidities are. Moreover, the comorbidities could
have an influence on the physiological parameters, and this
could distort the pattern of the signal which could be typical
for COVID-19 or HC cases.

VII. CONCLUSIONS

In this work, we introduced a methodology for the prodromal
stage detection of COVID-19. The work contributes a
methodology for the detection of COVID-19 in the early
stages. This tool uses smartwatches (wearable devices) and
reached interesting accuracy of 78 %. To limit the contagious-
ness of the disease, this approach is takes into consideration
the character of the disease, that is, the incubation period and
the highest contagiousness interval. This is a unique approach
in comparison to the previous works. We evaluated three
window lengths: 5, 7, and 10, and used features designed
for biomarker analysis. The model based on 5-day windows
allowed us to obtain the prediction with 78 % in accuracy.
We tested a few sets of parameters. The most practical
in reality will be the solution based on 5-day windows.
This research was based on [20]. The biggest difference
between our research and the original one was that this
work focused on creating a classification algorithm, instead
of an anomaly detection model, which has the potential to
reach better accuracy and serve as a better diagnostic tool.
Moreover, we provided an evaluation of the methodology
expressed by more metrics and achieved better results for
the models. The approach applied in this experiment could
serve as a potential screening test based on smartwatches.
The statistical evaluation based on the Mann-Whitney U
test indicated which of the features differed most in the
cohorts analyses. These were primarily from the statistical
and spectral domains. We compared the model results trained
on two different cohorts, COVID-19 and HC, and COVID-
19, influenza, and HC. The results were quite similar for
both cases, and slightly worse for the extended cohort with
influenza. Considering the algorithms, simple classifiers
such as k-NN and Logistic Regression, provided the best
results which could indicate that a non complex dependency
occurred in the datasets. In some cases, XGBoost achieved
also good outcomes.

The major limitation of the study and the opportunity for
future development is mainly the size of the training samples.
Itis, very difficult to obtain the data right at the time of disease
onset, since usually the subjects are, not aware about the
infection. Including parameters such as age, gender, weight,
height, habits, and addiction to smoking and drinking could
be worthwhile and could improve the accuracy of model
[8], [22]. Another big advantage would be to extend the
types and accuracy of the sensors used in wearable devices
or optimally to use certified medical devices (e.g. Empatica).
In the past, different sensor types were found across the same
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fitness products, which resulted in different measured values.
Certified medical devices are not used very often because
fitness devices are significantly cheaper. Not very practical
but also possible, could be an experiment that combines
several cheap fitness devices to cover more sensors at the
same time. This work rely significantly on resting heart rate
time; in the future, it could be interesting to identify and
compare various activities (e.g. during the sleep). This might
increase the accuracy and possibly shorten the required signal
length which is currently 5 days. However, such an approach
has a limitation - it cannot be broadly used for screening tests
as standard smartwatches.

VIIl. DATASET
The data were reused from the work [20] and could be
found here: !
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