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Abstract

Presented submission reviews moment methods for
the analysis of cylindrical antennas. By the presented
methods, which differ in the way of evaluating singu-
lar integrals appearing during the analysis, current
distribution and input impedance are computed. The
methods are compared from the point of view of accu-
racy and computational requirements. Finally, resulls
are confronted with King-Middleton theory.
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1. Introduction

In the previous paper {7], moment methods for the
analysis of wirc antennas, i.e. antennas the diameter of
which is negligiblc in comparison with the wavelength,
have been described.

The ,,wire antenna approach” provides simple algori-
thms the evaluation of which leads to current distributions
and input impedances which well agree with experimental
data.

If the diameter to wavelength ratio rises the idea of
the concentration of current and charge on the wire axis is
not valid more thanks to the skin effect' and the simple
approach that does not exhibit any singularity has to be
modified.

! In {3] pp.180-184, the ,,wire antenna approach” is

pointed out not being valid even for wire antennas. This
approach supposes slowly varying current distribution
which is not fulfilled at the input and at the ends of the an-
tenna. It is crucious happening that in spite of this
approximate solutions, analytic or numerical, of this
nonvalid integral equation often gives results for the
current distribution and input impedance that agrees very
well with experimental data“, writes author.

l

I

I

l
Fig.1 Cylindrical antenna

In all the paper, antennas are supposed being circular
cylinders of radius @ and length 24 which are situated to
the axis z (fig. 1) of the cylindrical coordinate system (r, o
z). Cylinders occur in the vacuum (@ =, £ = &, 0= 0)
and do not exhibit any losses.

Fig.2 Excitating electrical field between antenna terminals

In the middle of the cylinder (z = 0), there is a short
gap. In the gap, a hypothetical harmonic generator is assu-
med such that the excitating electrical field can be azimut-
hally symmetric. The voltage across the gap

V=-[ Ed (1.1)
gap

is supposed being 1V. In (1.1), E, is the z-component of
the excitating electrical field intensity on the interpolated
antenna surface (fig.2). Outside the gap, F, is zero because
of the perfect conductivity of the cylinder.

In the next section, piece-wise constant basis
functions combined with point match weighting and global
cosine basis functions combined with Galerkin’s method
are described. In the conclusion, both the methods are
compared.

All the theoretical conclusions are illustrated by re-
sults of computer simulations which have been performed
in matlab 4.2.

2. Cylindrical antennas

If current and charges are considered on the surface
of the antenna cylinder and rotationary symmetry of the
problem is supposed then the initial set of equations is [7]
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a;‘iz) +joa(z)=0 (2.1a)
4,(z) = .ﬁjhjl 2(5) ;(:M;;';)) dp'df  (2.1b)
-l
-E,(2) =—ij,(z)—%”—(zZ—). (2.1d)

Here, I, and o are current and charge density distri-
butions, A, and ¢ are vector and scalar potentials, w is cir-
cular frequency and R(z, &) is the distance between source
and destination points (look at fig.3) (2.2)

R(z.¢0,9') = \/4a2 sin* (¢ - @')/2) + (2 - g

In this case, evaluation of integrals in (2.1b,c) is
problematic because of the singularity at z=& ~ ¢ = ¢,
Fortunately, the singularity is the logarithmic [6] and
hence, the integrals exist.

Fig.3 Segment of cylindrical antenna

For many years, various methods of computing the
above singular integral have been developed. In the follo-
wing paragraphs, two approaches are discussed: the first
one uses piece-wise constant approximation and
collocation and the second one is based on the global
harmonic approximation and Galerkin’s method.

2.1 Piece-wise constant approximation,
point matching

_ If piece-wise constant approximation is used for sol-
ving (2.1) then computing the integral
() (08 21 - R(z.E0.0)
wlz,n)=— e d@'d{ (2.3)
2n (058 0 47rR(z,§, ?,0 )

for z = 0 and n = 0 is the cardinal problem. Since the
rotationary symmetry of the antenna is assumed the choice
of @ plays no role; for the simpicity let ¢ = 0. Since (2.3) is
even function, the relation can be re-defined as

2 Al22x e-ij(:,g')

— ———dp' dE =23
27 o.o4ﬂR(§,¢)') b ds

y= (24)

where
AR22% AR
=1 [Z—dprdz.

2.5
2r § 3 4xR (23)

Now, the singular integral (2.5) has to be evaluated.
Let 3 be divided into two sub-integrals [5]

3I=3,+3, (2.6a)
where
l Al22x l
3, =— —de'd 2.6b
Y £4er ods ( )

4

keeps the singularity (hence, it requires additional
handling) and

1 A/2 2;re».jm -1
3, = dp’ d 2.6¢
' 27:{{ inR 7 (26¢)

is a slowly varying function presenting no difficulties to
numerical calculations.

Eqn. (2.6b) can be expanded into an infinite scries
with excelent convergence properties [5]

l o
30_2;;.4,, (2.7)
where
21 (iJ"fk’"-‘K(ak)sm(Ak/z)dk. (238)
;r(,,g)’ 4 0

0

Here, K, is modified Bessel function of second kind. Fbr
the practical computing, (2.8) can be re-arranged

T H(%)’J a0
T
(@) ] -

NS ) —

oo @] -]

ereco RCN

Hete, nl=n(n-2)(n-4)... .

(2.9d)

efc.
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The term A, is dominant; magnitudes of other terms
rapidly fall down.

If point matching and delta function charge densities
at the ends of segments are assumed then {7]

Lol )l )
[y/(m" ,n*)— y/(m' ,n’)]

If m=n then the singularity appears and y is
computed according to the eqns.(2.5-9). In the opposite
case, eqn. (2.4) is directly numerically evaluated.

The above described algorithm written in matlab syn-
ax follows. The program uses first 2 terms of (2.7) for
computing.

First, all the non-singular integrals are computed:

Z,, = jopA y(m,n) +

- 2.10
JoeA ( )

for m = 1:(N+1)
z = m*del; % del denotes length of segment A
psi{m+l) = quad8('g int',~-del/2,del/2,1e-5,0,
z,a,k);
end

In the second step, singular integral is evaluated

rat = 0.5*del/a;

A0 = In{ rat + sgrt( l+rat~2});
Al = 0.25*rat*sqrt((l+rat"~2)"3);
psi{l)= 2*( ADO + Al}/{4*pi);

The integrated function 9_1int js defined as:

function out=g_int(ksi,z,a,k)
out=quad8('g',O,Z*pi,1e—5,0,ksi,z,a,k)/(2*pi);

function out=g(fi,ksi,z,a,k)
R sqrt{ (2*a*sin(fi}}"2 + (z~-ksi)"2);
out exp(~j*k*R)/ (4*pi*R};

o

Finally, the impedance matrix can be built up:

for m = 1:N
for n m:N
dist abs(m-n); % source-destination distance
hlp=2*psi(l+dist)-psi(l+abs(dist=-1)}-
psi(l+abs(dist+l)});
Z{m,n)=j*omega*mi*delta*psi (l+dist)+
hip/(j*omega*epsilon*delta);
Z{n,m) = Z(m,n); % matrix is symmetrical
end
end

o

2.2 Global cosine approximation,
Galerkin’s method

Initial equation we use for global approximation co-
mes from the relation [4]

,=——f—[a A’+k A] (2.11)

8z?

If infinitesimally narrow excitation gap and
excitation voltage 1V are assumed then electrical intensity
in the gap can be expressed as

E =-18(z) |dsh. (2.12)

Substituting (2.12) to (2.11) yields
A4, aws z) _
oz}

(2.13)

" Solution of differential equation (2.13) is of the form

A, = C,cos(kz) + (2.14)

7 sm(klz|)

Vectorial potential computed according to (2.14) has
to be of the same value as this evaluated from (2.1b)

+h
j 1(&)glz - &de = Ceod{kz) + —;—sin(klz!) . (2.15)
~h
Here
c=L & (2.16a)
47\ &
f9=c1y (2.16b)
and
8(Z‘§)=~l—jew dg’ (2.16¢)
277 R ' '

In the solution process, such a value of the constant C
has to be found to be fulfilled the condition f{+4) = 0.
If the function f{&) corresponding to the unknown

"current distribution 1(¢) is approximated by Fourier series

of N terms
N
IMGE ; F, cos(nn%)

then (2.15) comes to the linear equation of N+2 unknown
coefficients /o, Fy ... Fyand C.

First, let’s concentrate on compufation of the kernel
g(z-9 of the integral equation (2.15). In [2], pp.3-18, it
has been shown that g(z-£) can be expanded to the infinite
series (2.18)

D,

g(z—¢)=—-~+ZD cos(mzz-iff) 0<£<2h

2 m=1

(2.17)

where all the coefficients D,, can be evaluated according to

the relation
2h

1 g
D, == cs( )d 2.19
: fg os\ma2-fdg.  (2.19)

Since the kernel g(¢) of (2.19) is in ¢ = 0 singular,
g(0) is expressed as

&(s) = &1(¢) + 2:(s) (2.20)

where g1(4) = g({) in the range 0 < ¢ < 2A4 and zero

outside;

£o(¢) = g(¢) outside the range 0 < {'< 24 and zero inside.
Re-arranging (2.20) and applying cosine transform

J‘ [ &(s)cos{ag) dg

(2.21a)
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= ‘[—2’2 [ 6(a)cosag)da (2:21b)
to both sides of (2.20) yields
G,(@) = G(a)- G,(a) (2.22)
where
G(a)=-j %Jo(ﬂa)Hoz) (Bo) (2.23a)
= \/Z jg(g)cos(ag)dg (2.23b)
7T
Comparison of (2.19) and (2.21a) shows that
1 |» mm mm
Pn =y E[G(E) G(iﬁ)] (224)

In the above relations,

g i, P 2T
2h° A
There are no difficulties in evaluating G(a); it can
be expanded in highly convergent infinite series and re-
arranged to the form

G,(a<k)= :\/g{Ci[(k + a)Zh] + Ci[(k - a)2h]+jn' -

- jSi[(k + a)Zh] ~ J'S"[(k - a)zh]}

Gya>k)= —‘/;{Ci[(a+k)2h]+Ci[(a - k)2h] -

(2.25a)

~jSif(a +k)2n]+ jsil(a-kn]} - (2.25b)
In (2.25),
}rmxd =§_£sxnx (2.268)
.oy fcosx " k
Ci(x) =~ —ds. (2.26b)

It is convenient to rewrite G(a) from (2.23a) sepa-
rately for the cases a<kand a> k

Gla<k)=- j‘/%.]o (ba)H? (ba) (2.27a)
Gla> k)= E]o(ba)Ko(ba) : (2.27)

Here, J, and I, are Bessel and modified Bessel
functions of first kind, K, is modified Bessel function of
second kind and H, is Hankel function.

It is obvious, that all the functions (2.25) and (2.27)
are singular for a = k. Fortunately, it can be shown [2] that

singularities subtract off if the difference G(a) - Gx(a) is
computed

4h

G, (a) —+ C1(4kh) jSI(4kh)} (2.28)

=l

where y=0.577215.

Now, substituing (2.25), (2.27) and (2.28) to (2.24)
enables evaluating coefficients D,,. If D,, are known, eqn.
2.18 can be completed

glz-¢)= Z D, [cos(m;r 5 h) Cos{"l#Z_il.) +
-?-si r{m:r—Z%) sin(mzt —2%)]

Since the current distribution is even function in our
case sine terms of (2.29) are not needed

gz-¢)= ZD m( Zh) 06("'”5;1)

Substituing the current approximation (2.17) and the
kernel of integral equatlon (2.30) to the initial equation
(2 15) yields (2.31a)

ZZF ) 7 v cos(mfr2 ) Ccos(kz) + ——s:n(k]z‘)

Vo = 2} cos(mr{-] cos(mn%)df,

An infinite set of simultancous linear equations is
obtained by multiplying both sides of (2.31) by the
weighting function

= 003[(2 p+ l)n—z%}

and by 1ts mtegratmn from -h to +h. The result is

ZZF DY B om =CryV,,

n=0 m=0

(2.29)

(2.30)

where

(231b)

(2.32)

(2.33a)

where

h
Bom = 2‘!: cos[(2p + l)ﬂ;z;]cos[mn'iz;]dz (2.33b)

h o
r,=2 j cos(kz)co{(2 p+ l)z—z-z—'h—]dz (2.33¢c)
0
h‘ ’ z
v, =2 sin(kz)cos[(2p+ l)zrﬂ—]dz. (2.33d)
[}
Equation (2.33a) can be rewritten
N
2. LuF, =Cr, +v, (2.34a)

n=0

where
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T, =3 Dot B (2.34b)
m=0

Eqn.(2.34b) shows that I" has to be evaluated as
summ of infinite number of coefficients. Fortunately,

‘thanks to the orthogonality of harmonic functions used for

approximation and weighting, only two terms of this
infinite summ are non-zero

rpn = h[ﬂpJnDZn + Y n2pa 2p+l]

Set of equations generated by (2.34) can be rewritten
to the matrix form
ITF=Cr+v

(2.35)

(2.36)

from which the vector of Fourier coefficients of searched
current distribution can be obtained

=l 'r+I . (2.37)

Now, such a value of the constant C has to be found
to be fulfilled the condition of zero current at the ends of
dipole. Since leading terms of the current approximation

= g;F,,(C)cos(nn-;—)

are not good approximation to antenna current, the series
(2.42) is slowly convergent. Hence, good low order appro-
ximation has to be chosen (e.g. sine current dlstnbutlon)
and expanded to the series

xz)= ZX,, cos(nfti)
n=0 h
for improving convergence of (2.38)

=xz)+ io [F.(C)- X, ]cos(n xz/h) . (2.40)

At the ends of dipole, all the cosines equal (-1)".
Hence, boundary conditions are fulfilled if

g[F,(C)—X,](-l

By letting N =0, 1, ... N, (2.41) can be used to
generate a sequence Co, Cj, ... Cx Extrapolating this
sequence yields the coefficient C,, that gives the current

approximation
X]cos(mr) (2.42)

(2.39)

22.41)

I z) x Z[F

Then, the input admitance can be computed
according to the relation

- .]‘le’;{x(o)+");:[£,,(c_,) —X,,]} :

Since the algorithm based on the above description is
rather complicated its list is not presented here. If the
reader is interested in this list, he is kindly asked to
contact authors.

(2.43)

3. Conclusions

Presented paper has reviewed two methods that can
be used for numerical analysis of cylindrical antennas.

approximation minimization N =16 N =32
constant coliocation 84.6 + j40.6 86.5 +j43.2
cosine Galerkin 85.1 +j43.3 84.7 +i42.3

(2.38) -

Tab.1  Input impedance of symetrical dipole (a=0.001588A,
2h=0.5)) computed by discussed methods. Value taken from
King-Middieton is (83.6 + j41.3)Q.

By both methods, input impedance of the antenna s =
0.25 A and @ = 0.001588 A has been computed (tab.1). It
can be seen that no dramatical differences have appeared
between the methods (tab.1). A bit better accuracy of the
cosine approximation in combination with the Galerkin’s
method is payed by extremly high computational require-
ments and complexity of the algorithm.
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