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Abstract. It is well known that iterative channel estimation
and OFDM signals detection can significantly improve the
performance of communication system. However, its perfor-
mance is poor due to the modelling error of basis expan-
sion model (BEM) being large enough and can not being ig-
nored in rapidly time-variant channels. In this paper, chan-
nel estimation and OFDM signals detection are integrated
into a real non-linear least squares (NLS) problem. Then
the modified Broyden-Fletcher-Goldfarb-Shanno (MBFGS)
algorithm is adopted to search the optimal solution. In addi-
tion, Cramer-Rao Bound (CRB) for our proposed approach
is derived. Simulation results are presented to illustrate the
superiority of the proposed approach.
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1. Introduction

Increasing demand for high spectral efficiency and high
performance has led to the development of fourth-generation
(4G) broadband wireless systems. A potential transmission
technique for 4G is orthogonal frequency-division multi-
plexing (OFDM) which has recently become one of the most
popular modulation techniques and has been adopted as the
transmission technology in many wireless communication
standards such as Wireless Fidelity (Wi-Fi), Worldwide In-
teroperability for Microwave Access (WiMAX), Long Term
Evolution (LTE) standards, and the Digital Video Broadcast-
ing (DVB) Project [1]. In the OFDM communication sys-
tems, Channel estimation and signal detection are all key
techniques. In the last decade, they have been extensively
studied, respectively [2]-[23].

It is well known that coherent detection schemes are
superior to differentially coherent or noncoherent schemes
in terms of power efficiency, if channel information can be
established perfectly. In time-variant channels, for compu-
tational convenience, some papers [2]-[4] assume the chan-
nel is static within one or more consecutive OFDM sym-

bols. In practice, this assumption will bring a certain amount
of estimation error, especially in rapidly time-variant chan-
nels. However, the channel varies with time within a single
OFDM symbol, leading to a big challenge. This is because
the number of channel parameters which must be estimated
is at least NxL, where N and L denote the number of subcar-
riers and the number of channel taps, respectively, and it is
larger than the number of the observation data in one OFDM
symbol. Therefore, many existing works [5]-[11] resort to
simplify channel model as a way of reducing the required
number of channel parameters.

An alternative channel model is the Gauss-Markov
model (GMM) [5], which models the time-variation of each
tap by a Gauss-Markov process (usually only a first-order
process is considered). However, it could only be appropri-
ate for a slow-fading channel, not for a fast-fading channel
[6]. Another popular channel model is the basis expansion
model (BEM). In the BEM, the time-variation of each chan-
nel tap is expressed as a superposition of a few fixed basis
functions, so that only OxL BEM coefficients need to be es-
timated, where Q is the number of the basis functions. Sev-
eral BEM variates are proposed in the literature, e.g., the
complex-exponential BEM (CE-BEM) [7], the generalized
CE-BEM (GCE-BEM) [8], the polynomial BEM (P-BEM)
[9], the Karhunen-Loeve BEM (KL-BEM) [10], the discrete
prolate spheroidal BEM (DPS-BEM) [11], and the others.
Although the last two BEMs are closest to the true scenario,
they require statistical channel knowledge, which has led to
the model being usually unavailable in practice.

Based on the BEM models, the least squares estima-
tor (LSE), the linear minimum mean square error estimator
(LMMSEE) [12]-[14] and the best linear unbiased estimator
(BLUE) are proposed in [6]. For the CE-BEM is constructed
by a truncated Fourier series, it will cause the Gibbs phe-
nomenon when it is used in these estimators [15]. In order to
solve this problem, Hrycak proposes the orthogonal projec-
tion method [16] and the inverse reconstruction method [17].
Two methods based on P-BEM were proposed in [18] to esti-
mate channel time-variations information in OFDM systems.
The first one extracts these variations from the cyclic prefix
(CP). The second one estimates that parameters by using the
adjacent symbols. As the latter has more observation data,
it is superior to the former. However, in these two schemes,
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the pilots have been smeared by the inter-carrier interference
(ICI). Tao et al [19] proposed a channel estimation technique
using the ICI self-cancellation to resolve this problem. Nev-
ertheless, this scheme requires the number of pilots being
twice as much, leading to low spectral efficiency.

In terms of OFDM signals detection, the nonlinear
equalizer MMSE with Successive Detection proposed in
[20] outperformed the linear equalizers. For the purpose
of improving the performance of detection, Wang et al [21]
proposed a detection method which whitened the residual
ICI and the noise, while Sebesta et al [22] proposed another
scheme based on the cyclic autocorrelation function of CP.

Recently, in order to further improve system perfor-
mance, many works [24]-[27] resort to the iterative strategy.
In slowly time-variant channels, due to the exchange of in-
formation between channel estimation and OFDM signals
detection, the iterative strategy has achieved good perfor-
mance. However, in the rapidly time-variant channels, i.e.,
in the high speed railway or the low altitude aircraft, since
the modelling error of BEM is large enough, the subsequent
iterative operation is not adequate to compensate for this er-
TOr.

In this paper, we propose a new approach from the
point of view of global optimization. First, channel estima-
tion and OFDM signals detection are equivalent to a com-
plex non-linear least squares (NLS) problem. For conve-
nience, it is transformed to a real NLS problem on the
premise of that its characteristic remains the same. Then,
the modified Broyden-Fletcher-Goldfarb-Shanno (MBFGS)
algorithm [28], which is proved that it could achieve the
global solution even for nonconvex unconstrained optimiza-
tion problems, is adopted to solve the real NLS problem.
Lastly, in order to evaluate the quality of our proposed ap-
proach, Cramer-Rao Bound (CRB) is derived.

In a word, the contributions of our paper are given as
follows:

e We construct a real NLS problem, which perfectly rep-
resents the channel estimation and OFDM signals de-
tection in Rapidly Time-Variant Channels.

e We propose a method, which mainly employs the
MBFGS algorithm to solve the real NLS problem.

e We derive the CRB for our proposed approach.

The rest of the paper is structured as follows: Sec-
tion 2 briefly introduces the system model which includes
the OFDM system model, the basis expansion model and the
OFDM system based on BEM. In Section 3, we depict our
proposed method. CRB for our estimation is given in Sec-
tion 4. Simulation results are exhibited in Section 5. Con-
clusions are presented in Section 6.

The following notations are used throughout the pa-
per. Boldface lowercase and uppercase letters are used for
vectors and matrices, respectively. Superscripts 7', H and

denote transpose, conjugate transpose and pseudo inverse,
respectively. The notation £, diag(x) and x® (or X®) are
reserved for the estimated x, the diagonal matrix whose
main diagonal equals x and the vector x (or the matrix
X) in the k iteration, respectively. The matrix F denotes
the fast Fourier transform (FFT) matrix and the matrix F?
denotes the inverse fast Fourier transform (FFT) matrix.
Furthermore, we denote the xX x identity matrix as I,.

2. System Model

2.1 OFDM System Model

It is assumed that the synchronizations of frequency
and time are perfect. The received signal after removing the
cyclic prefix (CP) is given by

L-1
y(n) = Zhi,d(n—l),v+w(n), 0<n<N-1 (1)
1=0
where /!, is the Ith channel tap at the nth sample time, d(1)
is the nth transmitted sample, (-)y represents a cyclic shift
on the base of N, w(n) is the additive white Gaussian noise
(AWGN) with mean zero and variance 0'5], L is the total
number of channel taps. In order to avoid the inter-symbol
interference (ISI), it is assumed that the highest values of
path delays are always less than or equal to the length of CP
in this paper.

Collecting the samples of the received signal to form
a vector y = [y(0),---,y(N — 1)]” yields the following model
y=Hd+w 2)

where d = [d(0),---,d(N-D]", w = [w(0),---,w(N - D],
H, is an N X N channel impulse response matrix in the time
domain. Using hﬁ, =0for N> 1> L, H; can be expressed as

hg 0 0 héfl h(l)

iR . . ) )

. . !

i = R R 0
0 At hi K0
. . . 0
L0 0 Ay vy hy
- jiol diag(h!)A!

3)

where h; =[AL,--- 7h§v-1]T represents the /th channel tap
within an OFDM symbol duration, and A is the N X N cyclic
permutation matrix given by

0 0 0 1

1 0 0 O
A= .

0O o0 1 o0
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2.2 Basis Expansion Model

As can be seem from (3), it is very difficult to imple-
ment channel estimation in rapidly time-variant channels,
since the number of parameters which need to be estimated
is much larger than that of the observed data. A BEM [6] re-
garded as a simplified channel is employed, so that the num-
ber of estimated parameters is considerably reduced. Then,
the Ith channel tap h; can be presented as

0-1
h; = Z hq’lbq + g
q=0

=Bh;+¢g “4)

where b, is function,

[ e(72n0/N)(q=0Q/2)

the g¢th Dbasis eg., b, =
S2R(N=1)/N)(g—Q/2) ]T for CE-BEM

[7] or b, = 19 " for P-BEM [9], etc. B =
[bo,---,bo-1] is an N X Q matrix that collects Q(Q < N) or-
thonormal basis function b, as columns, h; = [ho, - ,hQ,I]T
represents the BEM coeflicients for the /th tap and & rep-
resents the corresponding modeling error. As shown in (4),
due to the BEM, the /th tap channel h; which needs to be
estimated can be equivalent to k;. Therefore, the number of
parameters for the /th tap decreases from N to Q.

2.3 OFDM System Model Based on BEM

Substituting (4) in (3), we can obtain

0-1

H = i 1ag(Zh by +enA

=0 q=0
-1

Q ~

M

dlag(bq) Z hgiAl + Z diag(s))A’

=0 =0
L-1
dlag(bq)FHA F+ Zdlag(sl)A (5)
=0

(Q-Q
»—O

»Q
O

with
. T
A4 = diag (FL[hq,O, e 7hq,L—l:| )

where F, stands for the first L columns of VNF.
In the light of (5), (2) can be written as

0-1 L-1
= ) diag(b)F¥A,Fd+ )" diag(epAld+w. ()
q=0 =0

After carrying out an N-point FFT, (6) becomes
0-1 L-1
r=F 2 diag(bq)FHAqFFHs +F Z diag(e)A'Fis + Fw

Z Fdlag(bq)FHAqs + Z Fdiag(g)A lFHs + @
q_
=Hs+y+w @)

with

0-1 L-1
H =Y, Fdiag(b,)F"'A,¢ = Y, Fdiag(e)A'FHs
q=0 =0

or

0-1
r= Z Fdiag(b)F"A,s +y + @
q=0
0-1
= Z Fdiag(b,)F"diag(s)FLh+y + w
q=0
=Ph+y+w (8)

with

=| Fdiag(bo)F" diag(s)F .-
h=[hop, -

,Fdiag(bo1)F" diag(s)F |

hor-1,++ ho-10s"+-ho-1.0-11"

where s = [5(0),---,s(N—1)]”, which is the N-point FFT
of d, represents the transmit data in the frequency domain.

= [w(0),---,w(N —1)]”, which is the N-point FFT of w,
represents the AWGN in the frequency domain.

Hijazi and Ros [24] proposed an iterative channel es-
timation and OFDM signals detection method, i.e., an alter-
nating least square (ALS) algorithm. With (8), the detected
information data which can be obtained by the LSE in the
previous iterations, are used for refining the channel estima-
tion by the least square (LS) equalizer [20] in the light of
(7). In slowly time-variant channels, since the BEM model-
ing error in (4) is small enough, the interference item ¥ in (7)
and (8) can be negligible [6]. Consequently the LS method
applied in (7) and (8) could be regarded as the optimal al-
gorithm, which can be proved in Appendix A. In addition,
according to the Lemma 1 proposed in [29], ALS algorithm
could achieve a local optimum solution.

Lemma 1 Supposing there are two resolved vectors @ and
B in the given equations, alternating optimization algorithm
(which solves for the optimal « by fixing B, and then solves
for the optimal B by fixing « and iterates in this manner until
convergence) could obtain a local optimum solution.

However, in rapidly time-variant channels, the interfer-
ence item ¥ in (7) and (8) can not be negligible for the BEM
modeling error being no longer small [6]. Moreover, be-
ing different from w, the interference item § associated with
the BEM modeling error and the transmitted data is non-
Gaussian distributed. According to Appendix A, since LS
method can not be guaranteed to be the optimal algorithm in
non-Gaussian, the ALS applied in [24] can not be guaran-
teed to achieve even a local optimum solution. For solving
this problem, a new method is proposed in the next section.



RADIOENGINEERING, VOL. 23, NO. 3, SEPTEMBER 2014

883

3. Proposed Method

3.1 Construction of the Real NLS Problem

We assume there are K equally spaced pilots, s;;, at sub-
carriers [; = (ixX N) /K, for 0 <i < K. All these pilots together

form the pilot vector s, = [slo,---,le_I]T. The remaining
subcarriers in single OFDM symbol are reserved for the in-
formation data, which can be collected in the information
vector s4. For convenience, we collect the unknown param-

eters in (7) or (8) to form a vector x = [sdH,hH]H e cMx1
with M = N - K+ Qx L. Consequently, (7) and (8) can be
written as

r=fe)+y+o €))

where f is a nonlinear map from x to Hs or Ph. For well es-
timating x in (9), the maximum likelihood estimation (MLE)
regarded as optimal estimator is adopted and given by

. 1 )
X=arg min Ellf(x)—rllz- (10)

Obviously, this is a complex NLS problem. In order
to avoid the complex derivative in the later discussion, the
problem should be transformed into a real NLS problem.
Due to the unknown parameter vectors of the real and imag-
inary parts being independent of each other, we can define

% = [Relsl” . Imls17 . Re[h]", Im[A]" | € R2!

P = [Re[r]”, Im{r]"|" € R2V1,

Then, (10) becomes
x= arg_min B(X) (11)

where ¢(x) = % llg(x)— i'||§ with g is a nonlinear map from ¥
T T’ T g
to [Re[Hs]",Im[Hs]"|" or [Re[Ph]".Im[Ph]"|".

3.2 Solution of the Real NLS Problem

It is known that BFGS algorithm [30] is a considerable
popular Quasi-Newton method for solving the convex opti-
mization problems. However, we could not directly adopt
this algorithm to solve the real NLS problem for the prob-
lem being not necessarily a convex optimization problem.
Fortunately, the MBFGS algorithm proposed in [28], has
been proved that it could achieve the global solution even
for nonconvex unconstrained optimization problems. There-
fore, we adopt the MBFGS algorithm to solve the real NLS
problem. The MBFGS uses several simple update formulas
to sequentially update ¥, starting from a random vector ¥©,
until a stable solution is obtained. The update formulas are
given at the top of next page.

Obviously, the estimated information vector and the
BEM coefficients vector can be extracted from the estimated

X. However, we have assumed that the information data are
continuous variables in (11) for convenience. In practical,
they only take the discrete constellation points. To overcome
this problem, we do a hard decision of §;. Then, together
with the pilots to update P in (8). Subsequently, we can
achieve the more exact f by the LS estimator [6]

A .
f

h=P'r. (14)

With the aid of ﬁ, renew the matrix H in (7). Then,
after eliminating the effect of the pilots on the information
data, (7) can be written as

F=r-Hys,=H;s;+w (15)

where H), is a N X K matrix, which is carved out of H corre-
sponding to the pilot subcarriers.

Lastly, the more exact information vector §4 can be eas-
ily obtained by LS equalizer [20]

$.=H,'F. (16)

3.3 Complexity Analysis

In this paper, the computational complexity of the pro-
posed method is evaluated by the number of real multipli-
cations. Assume that the operation of N X N complex ma-
trix inversion needs N> complex multiplications and a com-
plex multiplication is equivalent to three real multiplications.
For our proposed method, the main complexity is in solving
MBFGS, (14), (15) and (16). The number of real multipli-
cation required to calculate each step of MBFGS is listed
in Tab. 1. The computation of hin (14) requires 3QLN +
6(QL)>N +3(QL)? real multiplications. After updating the
matrix H in (7) in the light of iz, the computation of 7 in (15)
requires 3NK real multiplications. Lastly, the computation
of §4 in (16) requires 9N —21KN? + 3N? + 15K>N —3KN —
3K real multiplications. Therefore, the whole algorithm re-
quires I,,[9ON> + 150N? +3QLN?+27N?*+6QL>N +3LN +
4MN + 16M3 +4M? + 2M1og(2M) + 6M] +9N3 —21KN? +
3N?% +15K2N +6(QL)*>N +30QLN —3K> +3(QL)? real mul-
tiplications. Here, I,, represents the number of iterations in
MBFGS. Note that, for large N, the computational complex-
ity of the proposed method is ~O([9ImQ + 9]N3).

On the other hand, in order to compare the complex-
ity of different methods, the complexity of our proposed
method, the LSE proposed in [6] and the ALS algorithm
proposed in [24] are all presented in Tab. 2. Here, the sym-
bol I24; denotes the number of iterations in [24]. Assuming
Ir241 = L , it is concluded that these methods can be ordered
in terms of the complexity in an ascending manner as the
LSE, the ALS algorithm, and finally, our proposed method.
However, the theory analysis above and the simulation re-
sults given in Section 5 confirm that these methods are or-
dered in terms of the performance in opposite direction.
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Algorithm MBFGS

Step 1: Initialize k = 0, Q© = I,),, where Q denotes an approximation of the inverse Hessian of ¢(x*).
Step 2: In the light of (7) and (8), P®) and H® can be constructed by ¥*) and the pilot vector s,. Then, let V¢(¥®)) denote
the gradient of the ¢(%) with respect to #*). And it can be easily obtained from

Re[H,®] Re[P¥] —Im[H,%] —Im[P®] |"[ Re[g(x¥)-7]
Im[H,X] Im[P®] Re[H,M] Re[P¥] Im[g(x®)—F]
where H;® is a N x (N — K) matrix, which is carved out of H® corresponding to the information data subcarriers.
Step 3: Compute the search direction ¥ = —QWVg(x®),
Step 4: Cast about the optimal step length 1% = arg rﬂni(r)l p(EE + 10 78,

>

V(X)) = (12)

Step 5: Update solution %+ = g — 10070,

Step 6: Being similar to Step 2, P**D and H**D can be updated by ¥*!) and the pilot vector s,,. Then, compute ¢(x*+1)
and check convergence. If ”(;S(J‘c(k”))” < g for sufficiently small values of &, stop.

Step 7: Compute Vo(x**D) by (12).

Step 8: Set p**) = 10z® and g**1) = Vp(E*+D) — V(D) + X || Ve(20)|| p® with

4 _ 1+ max {0 _(V¢(f<k+“)—v¢(i<k>))Tp<k>}

[l

then update the approximation of the inverse Hessian by

T T T
) p(k) [ q(k)] © q(k) [ p(k)] p(k) [ p(k)]
Q =Ly ——|Q% | Ly — + . 13)
[g®]"p® [g®]"p® | [q®]p®
Step 9: Return to Step 3 with k=k+ 1.
is given by
The number of real multiplications
OR OR
Step 1 3 7) 7 0 7 7 LJi; = tmce{R_l__R_l__}
Step 2 60N’ +90QN-+30L N+3gLN +3LN+4NM+N 0x; 0x;
Step 3 4M Sut g
Step 4 2Mlog(2M) +2Re[%R‘la—fl_]
Step 5 M i Xi
Step 6 30N? 160N+ 30L°N +4M _ 2 po| o o 17
Step 7 60N’ +90N”+30QL’N +30LN* +3LN +4NM + N* o2 | 0% 0%j|
Step 8 16M3 +26N?
Step 9 0 For the sake of convenience, we can define
1 i S i . T - T
Tab. 1. Computation complexity of each step in MBFGS 5= [Re[sd]T,Im[sd]T] h= [Re[h]T,Im[h]T] '
The number of real multiplications As a result, (17) becomes
Our proposed method ~0 ([9ImQ + 9N 3)
3 _ 21 J 5454 J Sqh
LSE ~0(30QN?) J=—=| 50 g (18)
The ALS algorithm ~0(6I[24] ON 3) Tw hsq hh
Tab. 2. Computation complexity of each method. with
_ opt o o opt! op
Jss50 =Re| 55 E]’Jidh —Re[mﬁ]’
apt 9 apt 9
4. Cramer-Rao Bound Jis, =Re ”—,—,%]Jif = Re[ o
In order to evaluate the quality of our proposed ap- .
proach, the CRB for our estimation is derived in this section. Since out! osH HH -
Assuming the interference item ¥ can be negligible, the re- TRelsy]  ORelsy] (19)
ceived vector r in (7) or (8) is a complex circularly Gaussian d
process with mean g = Hs or u = Ph and variance R = o2 I. an ou' osPHH oy
According to the conclusion in [12], [31], its Fisher Matrix oI 5] = 3Im [S/] =—jH;", (20)
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then H
=5 H,", 21

with
B = [Iy-k, jIn-x]".

Similarly, we have

H hHPH

with
B =[I19,jlL0]".

Substituting (21) and (22) in (18), we obtain

;o2 Re|= H,/"H,Z\"| Re|Z H/ PE,"
" 02| Re [EzPHHdEIH ] Re [EZPH PE,! ]
(23)
Then, the Cramer-Rao Bound for & can be expressed as
2M-1
CRBj, = A (24)
i=2(N-K)

Note that the mean square error of the estimated h; is
given by
MSEy =E [(h; )" (Rt~ h;)]
= E|(Biu-B1)" (B~ B
= (i)' BB (- ) (25)
=F (ill - h[)H (ill - hz)]
= MSEy,

where MS Ej, represents the mean square error of the esti-
mated hy, for the columns of B being orthonormal.

Without loss of generality, we will consider the wide
sense stationary uncorrelated scattering (WSSUS) model as
the real channel mode, whose taps are independent with each
other. Therefore, the mean square error of the estimated h
can be written as

MSEjy = LX MSEy,. (26)

From (24), (25) and (26), we have

2M-1

1 -1
MSEy > - 2(NZ—K) 1. Q27)

5. Simulation Results

In this section, by using Matlab, we present simula-
tion results to assess the QPSK-OFDM system performance

based on the proposed algorithm. The parameters of the sys-
tem selected are in concordance with the standard WiMAX
IEEE 802.16e. The system operates with a 1.25 MHz band-
width and is divided into 512 subcarriers. The carrier fre-
quency is set to 3.5 GHz. The length of CP, as well as the
number of pilots, is 64. The scheme given in [32], [33]
will be used for generating the time-variant channels. We
further assume the number of taps is 4. The mean power
and the time delay of the I/th path are ¢ /19 and 0.8 -1 us
for I € {0,---,L — 1}, respectively. Moreover, all channel
taps have a Jakes Doppler spectrum. In our proposed al-
gorithm, the P-BEM will be adopted to simplify the time-
variant channels, leading to estimated parameters reduction.
As a rule of thumb, the Q depicted in (5) should satisfy
©@-1)/2 =[f,1+1 [34]. Here, f, represent the normal-
ized Doppler frequency shift. Therefore, in our simula-
tion, Q =5 is selected for f, = 0.2 representing slowly time-
variant cahnnels or f;, = 0.8 representing rapidly time-variant
channels.

Note that, the receiver velocity v is related to the nor-
malized Doppler frequency f, by the formula [6], [16]

v=fy i
JeN
where ¢, B and f, represent the speed of light, the OFDM
signal bandwidth and the carrier frequency, respectively.
Hence, we can easily find that f,, =0.2 and f,, = 0.8 are equiv-
alent to a user moving at the speed of 151 km/h and 603 km/h
with the WIMAX system parameters, respectively.

1 —+— ALS,SNR=20dB.f =0.2
=-#:= ALS,SNR=20dB.f =0.8

MSE

10 . , | ! ' ! i t
1 2 3 4 5 6 7 8 9 10

Iteration number

~., . —ke— OPA,SNR=200B, =0.2
10"k s = 4= OPA,SNR=200B, =0.8

S
* -*._.*i-.

b ST
. . *-.-*._.*_._*__,*____*._._.4..

Iteration number

Fig. 1. Convergence characteristic of the ALS algorithm and
OPA under various normalized Doppler shift. Solid
curves: f,, = 0.2. Dashed curves: f, = 0.8.

Fig. 1 shows the MSE of channel estimation for the
ALS algorithm [24] and our proposed algorithm (OPA) un-
der various numbers of iterations. Note, the solid lines and
the dashed lines represent the simulations under the normal-
ized Doppler frequency shift f, = 0.2 and f,, = 0.8, respec-
tively. From the graph, it can be seen that the ALS algo-
rithm has to go through 4 iterations before convergence for
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fn» = 0.2 while 8 iterations are needed for f,, = 0.8. OPA has
to go through 9 iterations before convergence for f, = 0.2
while 14 iterations are needed for f;, = 0.8. According to the
complexity analysis in part 3 of Section 3, it can easily be
found that the convergence speed of OPA is slower than that
of the ALS algorithm, and consequently the complexity of
OPA is about 3.5 times more than that of the ALS algorithm
for f,, = 0.2 while about 2.7 times for f, = 0.8. However, the
simulation results given in Fig. 2 and Fig. 3 illustrate that
OPA outperforms the ALS algorithm in rapidly time-variant
channels.

b 3

—e— LSE/f =02
—— ALS/f =02
—de— OPA/f =0.2
10" | ——CRB/f =0.2 3
-.@-- LSE/f =0.8
— 4= ALS,f =08
10°F | == OPA[ =0.8 k
_____ CRB,f =0.8

L
0 5 10 15 20 25 30 35 40
SNR(dB)

Fig. 2. MSE versus SNR for LSE, the ALS algorithm and OPA.
Solid curves: f, = 0.2. Dashed curves: f, =0.8.

In the condition of convergence, Fig. 2 shows the MSE
of channel estimation for LSE, the ALS algorithm and OPA
under various SNR. As a reference, we also plot the CRB
for our proposed algorithm. The simulation results indicate
that both the ALS algorithm and OPA are much better than
LSE. This is due to LSE applying to the FDKD [35] pilot
structure only and LSE not using the transmitted informa-
tion data. Furthemore, when f,, = 0.2, the MSE of OPA is
substantially the same as that of the ALS algorithm, which
is relatively close to the CRB. When f;, = 0.8, the MSE of
OPA is superior to that of the ALS algorithm. However, due
to the BEM modeling error in (4) being relatively large un-
der the rapidly time-variant channel, the MSE of OPA is still
a little worse than that of CRB.

Fig. 3 shows the bit error rate (BER) performance with
respect to the SNR for f;, = 0.2 and f, = 0.8. It is obvi-
ous that the detection performance is almost in consistence
with the corresponding channel estimation performance for
the three methods. Especially, it is more apparent that the
performance of our method is much better than that of the
iterative method in the rapidly time-variant channel.

Furthermore, we operate our simulation in the Typical
Urban (TU) channel [36] whose parameters are summarized
in Tab. 3. The performance of convergence, estimation and
detection for different algorithms are shown in Fig. 4, Fig. 5

—e—LSEf =02
—+— ALSf =02
-3 =
10°L | —— OPA[ =02
-.@- LSEf =08
—4= ALS/f 0.8
~J= OPAf =08

4+

0 5 10 15 20 25 30 35 40

Fig. 3. BER versus SNR for LSE, the ALS algorithm and OPA.
Solid curves: f, = 0.2. Dashed curves: f, =0.8.

10" bememem, PO - 3
w E
@ 10°L 3
s —+— ALS,SNR=20dB,f =0.2
o \ 4= ALS SNR=20dB,f 0.8 |
10'4 L L L L L L L L
1 2 3 4 5 6 7 8 9 10
Iteration number
10°
R
107 E T =g ]
R T
f LD S U T S S S SR

la} X

MSE

—k— OPA,SNR=20dB.f =0.2
== OPA,SNR=200B, 0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Iteration number

Fig. 4. Convergence characteristic of the ALS algorithm and
OPA under various normalized Doppler shift values in
the Typical Urban (TU) channel. Solid curves: f,, = 0.2.
Dashed curves: f, =0.8.

Tap Tapdelay (us) Tap gain (dB) Doppler spectrum
0 0 -3 Jakes
1 0.2 0 Jakes
2 0.5 -2 Jakes
3 1.6 -6 Gauss [
4 23 -8 Gauss II
5 5.0 -10 Gauss II

Tab. 3. Typical Urban (TU) channel parameters.

and Fig. 6, respectively. Fig. 4 indicates that the MSE of
the ALS algorithm converges to the optimal point in 5 iter-
ations for f;, = 0.2 and in 8§ iterations for f, = 0.8. Further,
the MSE of OPA converges to the optimal point in 10 it-
erations for f;, = 0.2 and in 14 iterations for f, = 0.8. As
well as the description in Fig. 1, this shows that OPA keeps
worse convergence performance than the ALS algorithm in
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TU channel, leading to high computational complexity. Nev-
ertheless, as shown in Fig. 2, Fig. 5 illustrates that the MSE
performance of OPA in rapidly time-variant channels is still
better than that of the ALS algorithm. In addition, compar-
ing the results in Fig. 6 with those in Fig. 3, it is obvious
that OPA also has lower BER than the ALS algorithm in the
worse channel, i.e., the TU channel.

—e—LSEf =02
——ALS =02
—s— OPAf =0.2
10°F | ——CRB,f =02
-.@-- LSEf =08
—4= ALSf =0.8
10°L | ko= OPASf 0.8

0 5 10 15 20 25 30 35 40
SNR(dB)

Fig. 5. MSE versus SNR for LSE, the ALS algorithm and OPA
in the Typical Urban (TU) channel. Solid curves: f, =
0.2. Dashed curves: f,, = 0.8.

.

—e—LSE, 1 =02

—+—ALS, [ =0.2
-3

10°F | === OPA, f =0.2

-.@-- LSE, [ =0.8

== ALS, f =0.8

—do= OPA, 1 =0.8

I
0 5 10 15 20 25 30 35 40
SNR(dB)

Fig. 6. BER versus SNR for LSE, the ALS algorithm and OPA
in the Typical Urban (TU) channel. Solid curves: f, =
0.2. Dashed curves: f, =0.8.

6. Conclusion

In this paper, we propose a novel algorithm for joint
channel estimation and signal detection, which are consid-
ered a real NLS problem. Then, the MBFGS algorithm is
adopted to solve the problem. Moreover, the CRB is derived

for evaluating the quality of our proposed algorithm. Sim-
ulation results show that our proposed algorithm achieves
better performance than the iterative method in rapidly time-
variant channel.

Acknowledgements

This work was supported by the 111 Project (B08038),
the National Natural Science Foundation of China under
Grant No. 61271299 and the Shenzhen Konggie talent pro-
gram under Grate YFZZ20111013.

Appendix A

LS method can be regarded as the optimal algorithm in
slowly time-variant channels.

First, we will prove that the LS method applied in (8)
can be regarded as the optimal algorithm in slowly time-
variant channels.

Since the BEM modeling error in (4) is very small in
slowly time-variant channels, the interference item ¥ in (8)
can be negligible. Therefore, (8) can be rewritten as

r=Hs+w (28)

With H, the transmitted data s in (28) can be estimated
by maximum likelihood estimator (MLE) which is consid-
ered the optimal estimator [12]. The MLE estimate is ob-
tained by maximizing the likelihood function of the received
data r given transmitted data s, which is given by

p(ris) = p —%(r—Hs)HR_l(r—Hs) )

(29)

For computational convenience, the MLE estimate can
be obtained by the log-likelihood function, which can be ex-
pressed as

1
@0 PRI

Inp(rls) = In %(r —Hs"'R (r—Hs).
(30)

By setting the derivative of the log-likelihood function
with respect to s to zero, we have

(27T)N/2|R|1/2 -

dlnp(rls) _ 1 8r—Hs)R™(r—Hs)

6sl - 2 os
=-tH"R™' (r- Hs) 31)
=0

which leads to the MLE solution for s given by
s=(HYR'H)"'HR 'r
= (HEH)'Hr (32)
=H'r.
As can be seen in the equation above, the solution for
MLE is the same as that for LS estimator. Hence, the LS
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method applied in (8) can be regarded as the optimal algo-
rithm in slowly time-variant channels.

Similarly, the LS method applied in (7) also can be re-
garded as the optimal algorithm in slowly time-variant chan-
nels.
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