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Staphylococcus aureus and its antibiotic-resistant strains are the cause
of soft tissue infections representing some severe life-threatening in-
fections. Thesesituations have caused great concern for its treatment
worldwide. Thus, the need to introduce new antibiotics or an al-
ternative to antibiotics markedly increasing. Antimicrobial peptides
(AMPs) have been shown to have various properties and uses in the
biological system since their discovery. This review is based on the
increasing concern for S. aureus, its resistant strains, the associated
infections, pathogenicity, and the mechanism of resistance to antibi-
otics. Lastly, the overall significance of AMPs against S. aureus showed
that they can be ideal candidates as an alternative to antibiotics with
high potential for future therapeutics.

Keywords

Antimicrobial peptides; Antibiotics; Antibiotic-resistance; Staphylococcus aureus

1. Introduction

Bacterial infection by antibiotic-resistant bacteria has
been a serious global public health concern in the last decades.
Usually, antibiotics exhibit good activity against bacterial in-
fections and all of them come along with side effects. How-
ever, the emergence of antibiotic-resistant strains with time
has further worsened the condition with increasing pressure
on the clinical setting [1]. These have increased the mor-
bidity and mortality rate and prolonged hospital stay [2-4].
These antibiotic-resistant strains are the leading cause of hos-
pital and community-acquired infections. The overuse, mis-
use of antibiotics, and an incomplete course of antibiotics are
among the main reasons for antibiotic resistance [5-7]. Fur-
ther, the ability of the bacteria to evolve and gain resistance to
antibiotics via various modalities like reduced permeability,
efflux via pumps, alterations of the target enzyme, horizontal
gene transfer, and ability to produce enzymes which degrade
the antibiotic, has made the situation more critical [8]. Thus,
this scenario has pushed the researcher and clinical settings to
develop new antibiotics or generate some new alternatives to
antibiotics.

The bacterial strains that are normally acquired even in-
side the intensive care units (ICU) are Acinetobacter bauman-
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nii (19.5%), Enterococcus spp. (10.6%), Staphylococcus aureus
(10.7%), Pseudomonas aeruginosa (15.6%), Stenotrophomonas
maltophilia (11.5%), and Klebsiella pneumoniae (9.7%) [9] and
the infections caused by these antibiotic-resistant bacteria
are hard to cure. According to the World Health Organiza-
tion (WHO) report of 2017 regarding antibiotic resistance,
they listed resistant bacteria based on three priority levels as
critical, medium, and high. Where S. aureus, vancomycin-
resistant S. aureus (VRSA) and methicillin-resistant S. aureus
(MRSA) were listed as a high priority [1]. However, in 2019,
the Centre for Disease Control and Prevention (CDC) listed
bacteria and fungi as urgent, serious, and concerning. Ac-
cording to their report, MRSA is listed as a serious threat
[10]. Moreover, the current uprising of multi-drug resis-
tant strains has made the situation even more critical which
calls for modalities to overcome bacterial antibiotic resistance
[12, 13]. Thus the interest to develop new antibiotics with
proper use is highly increasing. In this respect, the develop-
ment of an alternative to antibiotics is inevitable. The ap-
plication of nanoparticles, combined therapy (conjugate for-
mations), plant extracts, algal metabolites, and antimicrobial
peptides are some of the common alternatives.

Antimicrobial peptides (AMPs) are amphipathic and
their natural occurrence provides innate immunity via non-
specific and effective defensive activity against invading
pathogens. Further, their ability to enter bacteria, mostly sol-
uble in water or aqueous buffer or organic solvent, possibil-
ity to modify and their ability to form a secondary structure
like beta sheets and helices, has made them a promising can-
didate alternative to antibiotics [4, 14, 15]. AMPs showed
prominent activity against fungi and bacteria with decreased
resistance compared to antibiotics. AMPs also display an-
ticancer activity. They have limitations including stability,
non-specific interaction, high production costs, lack of in-
formation regarding their mechanism of action, and some-
times high toxicity [16]. Despite these drawbacks, AMPs are
also clinically tested and approved for their appearance in the
world of medicines.
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Fig. 1. The timeline based on the first reports of the emergence of S. aureus resistant strains since 1900s.

2. Staphylococcus aureus and its resistant strains

The Staphylococcus aureus and its related resistant taxo-
nomic classes can sustain harsh conditions like human skin.
Fig. 1 gives a clear view of the timeline for the emergence of
S. aureus resistant strains. They are opportunistic pathogens
which can cause opportunistic infections. They are the cause
of both community and healthcare-associated bloodstream
infections. They cause infections via various production of
secreted and multiple cell surface virulence factors. Further,
S. aureus endovascular pathogenesis is the result of the cu-
mulative effects of different virulence factors [17]. The pres-
ence of protein A (Spa) on the S. aureus surface acts as a viru-
lence factor that prevents the immune system from perform-
ing phagocytosis [18, 19]. Moreover, they are associated with
soft tissue infections like surgical site infections, folliculitis,
cutaneous abscesses, boils, carbuncles, impetigo, scalded skin
syndrome, purulent cellulitis, and furuncles. They are also
responsible for life-threatening infections like sepsis, bac-
teremia, pneumonia, toxic shock syndrome, osteomyelitis,
pseudomembranous enteritis, and endocarditis [20].
reus can colonize in the region of lesion of atopic dermati-
tis patients as well as patients with chronic infections (up to
93% approximately) like chronic leg ulcers. However, S. au-
reus also plays a role in sepsis in burn patients leading to death
[21].

S. au-

2.1 Methicillin-Resistant Staphylococcus aureus

MRSA, a significant nosocomial pathogen with versatile
nature associated with postsurgical wound infections in hos-
pitals. The first case was in the United Kingdom in the year
1961 [22]. Reports by the WHO showed that out of most
cases of MRSA infection, 64% of people die in comparison to
people with non-MRSA infections [23]. They may be trans-
mitted via physical contact but rarely by air. The infection by
MRSA has increased morbidity, hospital stays, mortality, and
overall cost. Reports showed that S. aureus contains atleast 11
major types (I-XI) of the staphylococcal cassette chromosome

mec (SCCmec) mobile elements that are responsible for the
emergence of MRSA [24]. Therefore, the overall frequencies
of the healthcare-associated (HA) and community-associated
(CA) MRSA infection and their ability to gain antibiotic re-
sistance have increased [25]. Furthermore, the presence of
a hypervariable region in the spa gene (X;.) and SSCmec ele-
ments often used for MRSA typing [24].

The first case of a CA-MRSA infection was reported in
the USA in the year 1980. Moreover, significant epidemio-
logical changes in the CA-MRSA had been observed in the
past decade [26]. Infections caused by CA-MRSA are usu-
ally skin infections but rarely necrotising pneumonia with a
high tendency to infect young individuals living in the com-
munity. Patients with necrotizing pneumonia often seem to
have influenza-like sickness or influenza virus infections with
the symptoms of multiple cavity lung infiltrates leads to a
mortality rate of more than 50% [27]. They also cause severe
infections like Waterhouse-Friderichsen syndrome, necro-
tising fasciitis, and sepsis. CA-MRSA has a distinct pattern
of resistance containing SCCmec IV or V or VI with resis-
tance toward fewer categories of antibiotics [28-30]. Reports
also showed that most CA-MRSA produces a bi-component
cytolytic toxin for neutrophils encoded by [ukSF-PV genes
(31, 32].

The isolates of CA-MRSA mostly contain a phage-
encoded Panton-Valentine leukocidin (PVL). PVL is a toxin
thatis associated with severe infections like necrotising pneu-
monia and also skin infections [33]. It causes necrosis of ep-
ithelial cells and human leukocytes lysis. They also produce
an a-hemolysin, pore-forming toxin, that destroys a wide
range of host cells [34]. Further, these CA-MRSA’s are also
gaining resistance towards other antibiotics, and the problem
to treat them is also becoming urgent clinical issues.

However, other dangerous isolates are the HA-MRSA that
can survive in the hospital environment due to their mul-
tidrug resistance ability. The HA-MRSA can colonize in pa-
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tients who have been admitted to the hospital and underwent
medical treatments therein or were recently discharged from
the hospital. Even more than six months, the carrier state can
persist in these patients. Thus, the patient infections caused
by MRSA within the healthcare system or in hospitals are
known as healthcare-associated MRSA infections [35]. Al-
beit, the bacterial peptides group named the phenol soluble
modulins (PSM) which causes inflammation, skin infection,
and neutrophil cytolysis, is found mainly in CA-MRAS. PSM
showed lower expression in HA-MRSA isolates [36]. HA-
MRSAs are resistant to a greater number of antibiotic cate-
gories due to the presence of SCCmec I, 11, and III. These ele-
ments facilitate the survival of these pathogens in the health-
care system [37]. Further, the horizontal gene transfer of
SSCmec 11 among S. aureus is not feasible due to the larger
size of the mobile element. Thus, the possible spread of HA-
MRSA in the community is through healthcare workers be-
ing the carriers which come in contact with the community
[38-40]. Thus, more precaution measures are needed to be
taken by the healthcare workers.

2.2 Vancomycin resistant Staphylococcus aureus

Antibiotic resistance in S. aureus against vancomycin be-
ing the last resort antibiotic against infections caused by
gram-positive bacteria is also a major concern [4]. Accord-
ing to the Clinical and Laboratory Standard Institute de-
pending on the susceptibility to vancomycin, S. aureus is
classified into 3 groups including VRSA with MIC > 16
ug/mL, vancomycin-susceptible S. aureus (VSSA) with MIC
< 2 pg/mL, and vancomycin-intermediate S. aureus (VISA)
with MIC 4-8 ug/mL [41].

The VISA was discovered in 1997 in Japan. However, ret-
rospective studies regarding vancomycin susceptibility were
observed around 1987 in the USA. They are partially resis-
tant to vancomycin due to polygenic factors. It includes a se-
ries of mutations in genes which encode molecules that are
related to cell envelope biosynthesis, cell wall thickness in-
crement, altered surface protein profile, changes in growth
characteristics, and other factors [42-45]. Though it is ac-
cepted that VISA occurred due to the accumulation of a series
of gene mutations, only a few are important like genes en-
coding two-component regulatory systems (GraSR, WalKR,
and VraSR) [46-51]. However, the detailed molecular mech-
anism of VISA resistance is yet needed to be explored by re-
searchers. The VISA infections are related to persistent in-
fections, hospitalization, prolonged vancomycin treatment
or failure, and lack in clinical settings. Moreover, the het-
erogeneous VISA (hVISA) is the S. aureus population with
vancomycin MIC ranges from < 2 to > 4 pg/mL. It has
been hypothesized that when these hVISA’s are constantly
under prolonged treatment with glycopeptides, they acquire
homogenous resistance to vancomycin [52, 53].

Vancomycin-resistant enterococci (VRE) were identified
in Europe which was found endemic in ICUs soon after its
discovery [54, 55]. The resistance mediated by transposon
Tn1546 present in a conjugative plasmid caused an increased
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risk in the spread of vancomycin resistance to universally sus-
ceptible microorganisms including S. aureus [56-59]. Fur-
ther, it was confirmed that in a mixed infected mouse, the
van elements were transferred to MRSA from Enterococcus
faecalis but it did not spread hence causing a lesser concern
[60]. However, there are cases of co-colonization and co-
infection of VRE and MRSA, which are common in patients
with prolonged hospital stay as well as stay in ICU [61, 62].
The first VRSA isolate was reported in 2002 from Michigan,
USA [63, 64]. In numerous cases, isolates of both VRE and
VRSA were obtained together from the same patients [65].
It has also been reported that vancomycin acts as a selec-
tive pressure for its resistance imparted by vanA gene clus-
ters. The majority of hospital-associated infections caused
by VRSA isolates belong to clonal complex 5 (CC5) lineages
[66, 67]. Therefore, the misuse of vancomycin for treatment
has to stop. Whereas, the development of alternatives is in-
creasingly required.

3. Mechanism of resistance and possible
threats

The resistance towards different antibiotics in S. aureus has
emerged due to various mechanisms such as acquiring mo-
bile genetic elements via horizontal gene transfer, increasing
the expression of efflux pumps and mutations altering target
binding sites [68]. Fig. 2 provides the overall mechanisms of
antibiotic resistance in S. aureus.

3.1 Medhanisms of antibiotic resistance in MRSA

The first reported penicillin-resistant S. aureus was de-
scribed in 1942, in the USA [69]. The production of §3-
lactamase caused penicillin-resistance in S. aureus. Typically,
BlaZ, a serine [3-lactamase which forms an acyl-enzyme in-
termediate is produced in S. aureus. It is essentially the same
enzyme as the transpeptidase of PBP2 with the difference in
their kinetics of deacylation [70]. The transposon Tn552
or similar elements carry the blaZ gene. This gene is ei-
ther integrated into the chromosome or located in the plas-
mid like pI524 [68]. The expression of blaZ is inducible as it
is controlled by the BlaR sensor and Blal repressor proteins
[70, 71]. This lipoprotein enzyme is partly localized on the
outer cytoplasmic membrane to protect PBP2s (penicillin-
binding protein 2). However, some is also released to the
surrounding vicinity which inhibits the activity of penicillin.

MRSA strains contain a large mobile genetic element
named SCCmec containing the mecA gene responsible for re-
sistance. Thus, resistance to methicillin and oxacillin is me-
diated via the acquisition of this mecA gene (encodes PBP2a).
PBP2a is not interacting with drugs due to the presence of the
active site serine (i.e., of the transpeptidase) in a deep pocket
[72, 73]. According to reports, CA-MRSA carries a small
SCCmec with higher virulence but lower resistance to mul-
tiple antibiotics [74, 75]. The mecA gene is expressed upon
exposure to a drug that is under the regulation of MecIR reg-
ulatory protein [72]. However, in the presence of Blal and
BlaR, the activity of mecA gene expression was seen to be
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Fig. 2. The S. aureus and its mechanisms of resistance to antibiotics.

repressed. Thus, the presence of Mec and Bla regulator can
cause a variation in the PBP2a expression.

Further, the non-synonymous or nonsense mutation in
mecA can usually cause a change in the amino acid sequence
of PBP2a resulting in ceftaroline resistance [76, 77]. It was
observed that when passaged in ceftaroline the COL strain
showed a mutation in PBP2, PBP4, and gdpP with a high level
of resistance towards it [79]. It was later reported the wild
type MRSA also showed ceftaroline resistance [78]. Hence,
prolonged treatment with ceftaroline can lead to the emer-
gence of resistance to this antibiotic.

MRSA infections like endocarditis and bacteremia were
treated with daptomycin, an alternative to vancomycin which
was approved in 2003 in the USA. However, certain. aureus
strains showed some changes like enhanced membrane fluid-
ity, lower daptomycin surface binding, changes in the cyto-
plasmic membrane, increase net positive charge, and reduced
susceptibility to daptomycin-induced depolarization [80].
When the gene mprF encoding for the lysyl-phosphatidyl
glycerol synthetase got mutated, it increased the outer mem-
brane positive charge and reduced the susceptibility to dap-
tomycin [81]. The inactivation of the asp23 gene causes de-
crease in daptomycin susceptibility [82]. Thus, these alter-
ations in S. aureus strains facilitated the acquisition of resis-
tance to daptomycin.

Furthermore, MRSA also acquired resistance to oxazolidi-
none via a mutation in the 23S rRNA, to chloramphenicol-
florfenicol resistance (cfr) gene, and optrA gene (influx or
efflux of drugs) [83, 84]. Aminoglycoside modifying en-
zymes like bidomain AAC(6’)le-APH(2')la acetyltransferase
and phosphotransferase, APH(3/)Illa phosphotransferase,

€ Drug,

and ANT(4')Ia nucleotidyltransferase, typically induce resis-
tance to aminoglycosides in MRSA [85]. The presence of two
efflux pumps TetA(K) and TetA(L) along with TetO/M de-
terminants present in Tn916 and Tn1545 conjugative trans-
posons located in chromosome, confers tetracycline resis-
tance in MRSA. Further, the mutation in rps/ (ribosomal pro-
tein S10) gene also lead to tetracycline resistance in MRSA
[68, 86]. Resistance to fluoroquinolones is mediated by muta-
tion in the quinolone resistance determining region (topoiso-
merase mutants) and the presence of antibiotic efflux pumps
(MdeA, QacA, QacB, NorA, NorB, and NorC) in S. aureus
[87-90]. MRSA is also resistant to pleuromutilins by tar-
get modification (mutation in ribosomal protein or ¢fr gene),
efflux pump, and ribosomal protection (vga genes) [91, 92].
Moreover, mupirocin resistance in MRSA was conferred
by ileS-2, mupA, and mupB genes [93, 94]. Thus, it is of
paramount importance and utmost need to develop new an-
tibiotics or alternatives to treat MRSA infections that are re-
sistant to almost all classes of antibiotics.

3.2 Medhanisms of antibiotic resistance in VRSA and VISA

Vancomycin was antibiotic of choice for the treatment of
MRSA in the late 1980s. However, vancomycin resistance
emerged in the same year in VRE. Later, it was followed by
reports of vancomycin resistance in S. aureus.

The mechanism of action of vancomycin is to bind the
D-Ala-D-Ala dipeptide of lipid II. This binding prevents
the transpeptidation and transglycosylation in gram-positive
bacteria [95]. In S. aureus, the cell wall is underneath the
polysaccharide capsule layer that allows host-pathogen inter-
actions and helps to maintain cell integrity [96]. It consists of
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N-acetylmuramic acid cross-linked to N-acetylglucosamine
by stem pentapeptides (UDP-Mur-NAc-L-Ala-D-iso-GIn-L-
Lys-D-Ala-D-Ala) and glycine bridges. Each precursor is
synthesized in the cytoplasm of the cells and transported to
the cell wall division septum for assembly [97]. Vancomycin
resistance in VRSA is due to the presence of the vanA operon.
It is present in the Tn3 family of the mobile transposable ele-
ment named Tn1546. The latter is a part of both conjugative
and non-conjugative plasmids originally present in VRE [98].
These conjugative plasmids or transposons were transferred
to S. aureus from VRE by horizontal gene transfer thereby es-
tablishing VRSA.

The vanA operon-mediated resistance depends on two
main events. The first is the synthesis of the D-Ala-D-Lactate
peptidoglycan precursor that does not bind to vancomycin.
The second, the hydrolysis of the dipeptide precursor (D-Ala-
D-Ala) that binds to vancomycin [99]. The vanA operon is
composed of a minimum of 7 genes (vanRSHAXYZ). It in-
cludes two promoters for each ORF (open reading frames).
Whereas the regulatory apparatus is encoded with the help
of vanS (membrane-bound histidine kinase) as well as vanR
(cytoplasmic transcriptional regulator) representing the two-
component system that regulates the transcriptional activa-
tion of all vanHAXYZ genes [100]. The VanS (sensor kinase)
is anchored to the cytoplasmic membrane with the help of
two transmembrane segments. This anchoring helps to pre-
dict the sensory domain. It also binds to vancomycin with the
help of its ligand-recognition domain and ATP-dependent
autophosphorylation (i.e., present on the highly conserved
region of histidine residues) [101]. The transfer of the phos-
phoryl group to the VanR (the response regulator) facili-
tates its dimerization, increasing its DNA binding affinity,
and leads to transcriptional activation of both promoters in
the vanA gene cluster. Besides the regulatory genes, the vanA
gene cluster also includes the vanH gene which encodes for
the dehydrogenase that reduces pyruvate to D-Lactate; vanX
encodes for a D,D-dipeptidase that hydrolyzes the dipep-
tide D-Ala-D-Ala, preventing its incorporation in LIPID II
precursors; whereas, vanA which encodes for the ligase is
responsible for the synthesis of the dipeptide D-Ala-D-Lac
dipeptide. The vanY gene encodes for D,D-carboxypeptidase
which helps to eliminate the natural peptidoglycan precur-
sors. The role of the vanZ gene in antibiotic resistance is not
known yet but it is usually referred to have an accessory func-
tion [102]. Thus, the replacement of D-Ala-D-Ala by D-Ala-
D-Lactate helps to prevent vancomycin binding and confers
resistance to this antibiotic.

In the case of VISA, isolates gain resistance by obtain-
ing multiple mutations in chromosomal genes due to treat-
ment failure by vancomycin or during prolonged antibiotic
treatment. This affects cell homeostasis and cell wall biosyn-
thesis like reduction in crosslinking providing false D-Ala-
D-Ala for binding and increase thickness [52, 103]. Due to
these mutations, the hVISA and VISA are gaining increased
resistance. The VISA strain Mu50 showed a mutation in
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MsrR which is responsible for the addition of secondary
wall teichoic acid and wall polymer capsular polysaccharide
to peptidoglycan. Another mutation affects the VraSR, a
two-component signal transduction system (TCSTS). This
mutation not only caused the constitutive expression of the
VraR (response regulator) but also increased the expression
of more than 40 genes which are related to cell wall biosyn-
thesis and its stimulation. Thus, these mutations give rise to
hVISA features of this strain.

Similarly, mutations in graR (response regulator of GraSR
TCSTS) and RNA polymerase B subunit led to the VISA phe-
notype. This characteristic VISA phenotype emerges upon
exposure to vancomycin. Furthermore, the mutation in slel
and fdh2 reduced autolytic activity, creating a strain with in-
distinguishable Mu50 phenotype [104]. In strain Mu3, muta-
tions in rpoB, walK, rpoC, cmk, and other genes were the key
reason for the emergence of VISA strains [105]. Similarly,
in the ST239 VISA strain a mutation in WalKR (a TCSTS)
was crucial for some VISA strains [106]. Due to mutations in
these TCSTS, dtl, and rpoc, the VISA strain also displayed re-
sistance to daptomycin as they are also the pathway that over-
laps with daptomycin resistance in other strains [107]. Thus,
the mutation due to prolonged and failed treatment as well
as gene acquisition are the reason for the appearance of these
resistant strains. Thus, the burning need for new antibiotics
or alternatives to antibiotics is inevitable.

4. Antimicrobial peptides against
Staphylococcus aureus

Alexander Fleming first discovered the lysozyme, an en-
zyme which displayed antimicrobial activity which was ob-
tained from the human nasal mucus and tears in1922 [108].
Lysozymes are antimicrobial enzymes with AMPs like prop-
erties that are widely present in animals. However, in 1939,
the first reported antimicrobial peptides named Gramicidin
A, B, and C, was used for clinical purposes [109]. AMPs usu-
ally consist of 10-50 amino acid residues with characteristics
like net positive charge, presence of secondary structure, and
amphipathic nature. They are part of the host defense of al-
most all living organisms. They not only help in killing mi-
crobes but also control the host physiological functions [110].
In the past decade, the number of studies increasing our un-
derstanding of the antibacterial activity of AMPs has consid-
erably increased. We have used parameters like antimicro-
bial peptides against Staphylococcus aureus, antibacterial, and
antimicrobial to place a search in the Web of Science por-
tal. The results showed the total number of articles was 1467
from the beginning of 2000. There is a steady increase in in-
terest in this field of AMPs until 2020, as shown in Fig. 3. Itis
well known that a wide variety of AMPs are present in each
species [111], and it is beyond the scope of any review to give
an overview of all of these peptides. Thus, a complete direc-
tory of the AMPs is not possible. As such, we also did not in-
tend to do so in this review. However, information about the
S. aureus, associated infections, and mechanisms of resistance
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Fig. 3. Statistical chart showing the increase number of articles on AMPs against S. aureus from year 2000 until 2020.

to highlight the key targets and threats associated is presented
herein. Further, the key functions of AMPs and their recent
activity are demonstrated that elevate their importance and
level of consideration for their study, development, and clin-
ical value.

4.1 AMPs and host innate immune system

Initially, the innate immune system provides the first line
of defense against pathogenic invasion and colonization. It
consists of physical and chemical defense attributes. The
genes encode for host defense peptides as part of the host bi-
ological defense; these peptides are also known as antimicro-
bial peptides [112, 113]. Studies consistently revealed that in
response to infections, cationic peptides (like defensins) were
produced by phagocytic cells [114]. A human liver-specific
peptide isknown as hepcidin. Hepcidin is a cysteine-rich pep-
tide that makes its similar to defensins. They have an iron-
regulatory activity as well as antimicrobial activity [115]. Re-
ports showed that AMPs from higher organisms have broad-
spectrum activities against microorganisms [116]. The ex-
pression of genes that encode for the AMPs in mammals
is not tissue-specific but occurs throughout the body. Al-
though, reports showed that a combination of host defense
molecules is produced at a single site by the expression of
multiple AMP due to the coordinated transcriptional regu-
lation of AMP genes [117, 118].

Cathelicidins and defensins are the most abundant human
AMPs. The a-defensin family consists of two peptides (HD-
5((Human «-defensin-5) and HD-6) found within the small
intestine (in paneth cells) and four peptides (HNP (Human
Neutrophil Peptide) 1-4) in neutrophils. However, the ac-

tive forms of HNP1-4 peptides can be part of the oxygen-
independent antibacterial mechanism of neutrophils. More-
over, the 3-defensins are found throughout the body (in en-
dothelial cells) at various sites. The human [3-defensin 1
(hBD1) is expressed constitutively at a low level. Moreover,
the hBD2-4 depend on inducing factors including cytokines
and microbes [112, 113, 119]. Cathelicidins are cationic
AMPs that are also part of innate immunity exhibiting a
broad-spectrum antimicrobial activity [120]. The expres-
sion of LL-37, a cathelicidin peptide, also depends on in-
duced factors like cytokines and bacteria. They have antibac-
terial activity and play a role in the host innate immune sys-
tem [121, 122]. The mCRAMP a murine ortholog of LL-
37, coordinates and modulates the host innate immune sys-
tem in in vivo studies against bacterial invasion and helps in
survival but shows weak inhibitory effects against bacteria in
vitro [123, 124].

4.2 AMPs as immune regulators

The importance of the host-derived peptides is not only
restricted to antimicrobial activity during microbial inva-
sion or phagocytosis. However, they can also cross-talk
with adaptive and innate immunity. It was reported that -
defensin has numerous roles in maintaining intact mucosal
barriers, innate immunity, and adaptive immunity. They act
as a chemotactic agent that modulate the cytokines response
of human lymphocytes and monocytes [125]. Further study
using anti-infective peptides like Innate Defense Regulator-
1 (IDR-1), in response to microbial products (lipopolysac-
charide), showed a reduction in inflammation in vivo. It is
due to the lower production of the pro-inflammatory cy-
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tokines. Thus, the anti-infective peptide promotes the re-
cruitment of monocytes and enhances monocyte chemokines
level [126]. The AMPs also have a plethora of activities like
immune-modulatory activity (induction or inhibition of pro-
inflammatory cytokines, chemotaxis of various leukocytes,
enhanced wound healing, anti-inflammatory properties, and
chemokine productions), regulate epithelial cell differentia-
tion, anti-angiogenesis or angiogenesis, vasculogenesis, anti-
obesity, and modulation of host cell gene expression or mast
cell degranulation [127-133].

4.3 Experimental approach and clinical trials

Numerous approaches like computational design ap-
proaches, site-directed mutagenesis, template-assisted
methodologies, mechanism-based strategies, and synthetic
libraries are in use to design AMPs. Although the strategies
are different conceptually, the aim is identical. All these
strategies attempt to develop de novo designed synthetic
peptides or modify the naturally occurring peptides for
improved antibacterial activity [134].  Furthermore, to
understand AMPs activity at different pH values, solubility,
structure, composition, molecular weight, charge, am-
phiphilicity, and other parameters, different biophysical and
biochemical methods are used [135, 136]. According to the
secondary structures, peptides are divided into four groups
named as [3-sheets peptides, a-helical peptides, extended
peptides and loops containing peptides [137, 138]. Further,
to understand the 3D-structure of the AMP, the peptide
sequence is used for molecular dynamics simulation [4, 15].
The MD simulation helps to predict the possible structure
of the peptide in the given time period in an artificial
environment created in silico.

Following the characterization, the biological activity of
the peptides needs to be evaluated. The antibacterial activ-
ities of the peptides against the bacterial strains are evalu-
ated by determining the minimal inhibitory concentrations,
and minimum bactericidal concentration, growth curve anal-
ysis, disk diffusion assay, live dead cell assay and other assays
[140, 141]. However, after obtaining the information about
the activity, an in depth understanding of the mechanism of
action (which can vary between peptides) is required.

The actual mechanism of action of most AMPs is still not
known in detail. The most general mechanism of action is
the cytoplasmic membrane pore formation that includes a
carpet-like model, barrel-stave model, and toroidal model.
The carpet-like model is based on the AMPs concentration.
When the AMPs concentration is high, they become accu-
mulated on the cell surface and dissolve in the cell mem-
brane [142]. In the barrel-stave model, the formation of the
membrane-spanning pores occurs due to the direct interac-
tion of AMPs into the target membrane [143]. Lastly, in
the toroidal model, a curvature is induced in the membrane
due to membrane-spanning pores by AMPs with intercalated
lipids [144]. Additionally, other mechanisms by which pep-
tides act are charged lipid clustering, electroporation, mem-
brane thinning or thickening, inhibition of protein synthe-

Volume 4, Number1, 2021

sis machinery, non-bilayer intermediates, modulation of an-
ion carriers, inhibition of cell wall component biosynthesis,
nucleic acid targeting, and non-lytic membrane depolariza-
tion [145-151]. The interactions of most cationic AMPs are
with the bacterial cell surface. It occurs due to the negatively
charged components embedded in lipid bilayers [152, 153].
Thus, the mechanism of action and activity of AMPs is influ-
enced by amino acids chain length, overall charge of the pep-
tide, structural conformation, amino acid composition, hy-
drophobicity, and amphipathicity [139]. These mechanisms
are studied using different biophysical techniques like circular
dichroism, FTIR spectroscopy, NMR, and other techniques
and by performing various biological assays like cellular leak-
age assay, cell dyes, time-course of killing assay, and other
assays [4, 15, 140, 141]. Lastly, the toxicity of the AMPs is de-
termined to understand its safety for better treatments using
different assays like the MTT assay, hemolytic assay, micro-
scopic analysis, in vivo model study, serum stability, and other
relevant toxicity assays [4, 15, 141, 154].

Therefore, to study the newly developed or designed
AMPs against S. aureus and its resistant strains, the above-
mentioned experimental approaches, as illustrated in Fig. 4,
must be performed with or without further amendments to
understand the structure and biological activities of these
AMPs and their possible biological applications.

The infections caused by the S. aureus strain (i.e. not the
resistant strains) can be treated by vancomycin, the last re-
sort antibiotic against gram-positive bacteria. However, van-
comycin can cause severe renal toxicity when used at ex-
tremely high concentrations. The toxicity also depends on
the length of the treatments [157, 158]. Therefore, the infec-
tion by these resistant strains is becoming more difficult to
treat. Moreover, the situation of community-acquired infec-
tions is steadily increasing. Thus, this situation had an impact
on the clinical settings. Hence, new antibiotics or alterna-
tives like AMPs are becoming highly necessary, however they
must undergo clinical trials to explore their clinical activity.
In our recent study, we designed the PBDM (Probiotic Bac-
teriocin Derived and Modified) peptides from a bacteriocin
(m2163) present in Lactobacillus casei and synthesized it. Fur-
ther, in silico, in vitro, and in vivo studies were performed with
these peptides. These studies showed that the peptides were
effective against MRSA, VRSA, and wild type S. aureus in vitro
[15]. Thus, the shorter length forms of AMPs with modi-
fied sequences can be derived from other larger peptides dis-
playing good antibacterial activity. Moreover, the list of pep-
tides depicted in Table 1 shows the growing importance of
the AMPs and its variations against S. aureus strains in 2020.

The innate immune system associated AMPs are good
candidates for the development of the alternatives to antibi-
otics. However, they exert some cytotoxicity towards normal
host cells that limits their inclusion as therapeutics. Thus,
to overcome this hurdle, increased AMPs efficacy, stabil-
ity, and reduced toxicity, strategies like structural analogs
or modifications as well as combinations with conventional



Selection of origin
of antimicrobial
peptides

£

v

:

(=9

=9

-]
g

=i "

v - Modifications,
'E - Synthesis &

5 Charactenzatlon
=

In vitro Cyto-
toxicity assay

Antibacterial
assay

In vivo model
(0]
Clinical samples

Clinical trials

Fig. 4. Experimental strategy to study AMPs.

antibiotics or nanoparticles can be used as shown in Fig. 5
[155]. Zharkova et al., reported in their study that antibiotics
with intercellular targets (e.g., rifampicin and gentamicin)
and AMPs which are highly membrane-active (e.g., hBD-3
and protegrin 1) showed synergistic effects due to increased
bioavailability [159]. Jelinkova et al., showed that the combi-
nation of Hecate peptide with vancomycin improved the ef-
ficacy of the components after forming the conjugate and re-
duced the overall toxicity. It allowed the treatment of VRSA,
MRSA, and the non-resistant S. aureus [141]. In another
study, we used the combination strategy by combining the
HSER peptide (derived from retinoic acid receptor respon-
der protein 2) with carbon quantum dots (CQDs) and tested
this combination against resistant strains of S. aureus and E.
coli. The results revealed that the HSER-CQDs were more
effective at a lower concentration in comparison to the indi-
vidual components. The HSER-CQDs was found to be non-
toxic and hemocompatible [4]. Therefore, these combinato-
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rial strategies help to overcome resistance, reduce dosage, en-
hance the selectivity of the compound, and reduce side effects
[160-162]. AMPs can also be used for targeted delivery or can
be encapsulated within some nano-capsule to reduce their
toxicity, proper release, and increase stability [156]. Thus,
AMPs are molecules which can be modified in various ways
to improve their activity for therapeutic purposes based on
clinical demands.

4.4 AMPs against S. aureus and the present status of AMPs

Moreover, the studies on in vivo infection models helped
to understand the efficacy of the AMPs for treating infections
in the mammalian systems. At the beginning of this section,
we discuss PBDM peptides. An in vivo study with VRSA in-
fected BALB/c mice model showed that these PBDM peptides
were able to treat VRSA infection and cure them without vis-
ible side effects [15]. Another study by Fan Yu, et al., showed
anew concept of entrapping bacteria instead of killing by us-
ing an HDMP (human defensin-6-mimic peptide). HDMP

Volume 4, Number1, 2021



Table 1. Summary of antimicrobial peptides and their variable activities against S. aureus in 2020.

Antimicrobial peptides Origin S. aureus and its variants MIC value Ref.
Enterocin EF35 Enterococcus faecalis ECF35 Staphylococcus aureus < 125 pg/mL [164]
Enterocin TJUQ1 Enterococcus faecium TJUQ1 S. aureus 46.50 £ 1.81 pg/mL [165]
CMP-Van-Lipo (Collagen mimetic peptide Synthetic Methicillin Resistant S. aureus van concentration (4 to 10 [166]
tethered vancomycin liposomes) pg/mL)
HF-18 Hagfish intestinal peptide Drug resistant S. aureus 4 ug/mL [167]
HSER-CQDs Retinoic acid receptor responder Vancomycin Resistant S. aureus 25 pg/mL [4]
protein 2 and Carbon quantum
dots
Fr.A2 and Fr.B1 Camel milk and cow milk S. aureus 130000 pg/mL [168]
Backbone cyclized KR-12 dimers Mammalian defense peptide S. aureus 1.25 uM [169]
LL-37
Short cationic dialkyl lipopeptides Synthetic Methicillin susceptible S. aureus ~ 4000-16000pg/mL and [170]
(C10)2-KKKK-NH2and (C12)2-KKKK-NH2 (MSSA), MRSA 8000-32000 pg/mL
TC26 Cyprinus carpio (C-terminal of S. aureus 10 uM [171]
tissue factor pathway inhibitor 1)
Alafosfalin; 8 ug/mL; [172]
di-alanyl fosfalin; . 16 pg/mL;
. Phosphonopeptides S. aureus, MRSA and MSSA
B-chloro-L-alanyl-p-chloro-L-alanine; 2-4 pg/mlL;
Fosfomycin 16 pg/mL
Melittin (MEL); Bee venom; 5 uM; [173]
MEL in presence of pyrrolidinium- based Synthetic S aureus 2-200 uM
ionic liquids
Fermentaion of Kenaf seed protein produces Kenaf seed protein S. aureus 4000 pg/mL [174]
bioactive peptides
Myticusin-beta Mytilus coruscus S. aureus NA [175]
AMP-CBP-FAM Synthetic S. aureus >0.25 pg/mL [176]
Melittin; . . MRSA, entertoxin producer S. 7.2 pg/mL, 0.7 pg/mL and [177]
Apis mellifera
aureus SEC and SED 3.6 pg/mL;
Apitoxin 6.7 pg/mL, 7.2 ug/mL and
5.4 pg/mL
S7 (the most effective peptide) Triplet-tryptophan-pivot S. aureus and MRSA 4and 2 pM [178]
peptides; Synthetic
Bacteriocins (Bac22 and Bac4463) capped Lactobacillus strains; Synthetic S. aureus 2 and 8 pg/mL [179]
silver nanoparticle
Teixobactin Eleftheria terrae Susceptible S. aureus and MRSA 1 pg/mL [180]
Indole-triazole-peptide conjugate (compound Synthetic S. aureus 10-16 pg/mL [181]
9 series)
Acetylated and non-acetylated QAK Antheraea mylitta; Synthetic S. aureus 7.5 and 60 pg/mL [182]
Intestinalin Clostridium intestinale (LysC); S. aureus 6 ug/mL [183]
Synthetic
GAMO19 (G19) and GIBIM-P5S9K (G17) Synthetic MRSA 0.7 and 0.2 pM [184]
peptide encapsulated on
poly-lactic-glycolic-acid (PLGA)
Analog of BSI-9 (compound 9-13;15) BSI-9; Synthetic S. aureus 1-8 ug/mL [185]
TC19 Human thrombocidin-1-derived S. aureus Lethal concentration (3.75 [186]
peptide uM in PT buffer; 7.5-15
uM in PBS buffer; 15-30
uM in 50% plasma)
A1-A6; B1-B6 Synthetic and modified version of MRSA 1-8 ug/mL; 0.5-8 pg/mL [187]
Al and Bl
Melittin Purchased from Mimotopes MRSA and MSSA 0.5-8 ug/mL; 0.5-2 pg/mL  [188, 189]

Peptide company (Mulgrave,

Australia)
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Table 1. Continued.

Antimicrobial peptides Origin S. aureus and its variants MIC value Ref.
Short self assembling cationic antimicrobial Synthetic S. aureus 27,15.6,29, and 3.9 pg/mL [190]
peptide mimetic library based on 3,5
diaminobenzoic acid scaffold (C2, C4, C6 and
C7)
RCP (Polypeptide enrich extract) Skin of Rana chensinensis S. aureus 157.8 pg/mL [191]
ID13; DLP4 DLP4 (an insect defensin) S. aureus 4 pg/mL; 16 ug/mL [192]
C=3.0+0.2 nmol [193]
Pep-cur complex Octaarginine (P) and cumin (C) S. aureus

P =5.2+0.1 nmol

PBDM1 and PBDM2 Lactobacillus casei ATCC 334 S. aureus, MRSA and VRSA 10-15 pg/mL; 10 pg/mL [15]
(bacteriocin m2163)
OVTpi2 Ovotransferrin hydrolysate (egg) S. aureus 32 pg/mL [194]
C12-KTKCKfKLKC-NHg and Synthetic S. aureus and MRSA 3.90-31.25 pg/mL [195]
C14-KTKCKfKLKC-NH2> lipopeptide
Compound 14 Amphiphilic sofalcone derivatives S. aureus 1.56 pg/mL [196]
1-17; Synthetic
Adepamycin Adenanthera pavonina seeds S. aureus 1.8 uM [197]
(sequence of plant trypsin
inhibitor)
caP4 Curcuma pseudomontana L. S. aureus 8 pg/mL [198]
(Zingiberaceae)
Bac8c; Bovine (improved from Bac2A) S. aureus and MRSA 2 and 8 pg/mL; [199]
Lipoic acid (LA) Bac8c 1 and 4 pg/mL
Polydopamine/hydroxyapatite/nisin Synthetic S. aureus 30 pg/mL [200]
(PDA/HAP/Nisin)

Natural peptide; S3K; G2K-S3K Didymocentrus krausi (MK049518) S. aureus 12.5 pg/mL; [154]

3.13-6.25 pg/mlL;

3.13-6.25 pg/mL
P6.2 Synthetic S. aureus 12.72 uyM [201]
ent A- col E1 Enterocin A and Colicin E1; S. aureus 10 pg/mL [202]

Synthetic

Chemical interaction

N\
I

Antimicrobial
Peptide

Surface interaction
LJ Nanoparticle
May cause change in
conformation of the

peptide

or
linked by cross linker *

Peptide-antibiotic

conjugate

Fig. 5. Combinatorial strategies using AMPs.

inhibits bacterial invasion by trapping bacteria using its self-
assembled fibrous network. This mechanism was appar-
ent with both S. aureus- and MRSA-infected BALB/c mouse
model. However, HDMP is active only against gram-positive
bacteria but not against gram-negative bacteria [163]. Thus,

10

os

Peptide-Nanoparticle
conjugate

these in vivo studies helped to understand the activity of this
peptide in the live system. These in vivo studies will help
to determine the future of these peptides whether it will be
heading towards the clinical studies or towards the need to
generate modified peptides or to use these peptides as conju-
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gates or entrap them in a capsule to reduce their toxicity and
targeted delivery.

Although a great deal of research is focused on AMPs,
only a very small number of AMPs is in clinical use when
compared to conventional antibiotics. Some of the peptides
that are undergoing clinical trials are Pexiganan (MRSA,)
LTX-109 (against nasal colonies of MRSA/MSSA), MU1140
(MRSA), NP432 (MRSA), and AP138 (MRSA implant infec-
tions). Most of them are undergoing preclinical evaluation
excluding Pexiganan which is undergoing Phase III clinical
testing whereas LTX-109 is under clinical phase I/Il. Even
if the whole process of clinical trials takes more than 8 years
(Phase I 1.5 years; Phase I 2 years; Phase III 3 years; introduc-
tion to the market 1.5 years; Phase IIIb/IV- for further clinical
use and re-confirmations of its use) to eventually bring a drug
into the market for proper medical use [203]. Therefore, it
is necessary to launch a greater number of clinical trials to
bring out the potential of AMPs in the world of therapeutics
against the ever growing bacterial infections especially with
antibiotic resistant bacteria.

5. Concluding remarks

The infections caused by the MRSA and VRSA strains
have become a serious health issue due to their resistance
to antibiotics. Thus, the treatments against these strains are
prolonged and/or can end up in a failure. The discussion
about their mechanisms of antibiotic resistance will not only
help the researchers to target specific genes and proteins for
the development of new therapeutics but it will also help
them to further investigate the unsolved tasks for a better un-
derstanding of the pathogenesis.

Though many efforts are aimed at producing new antibi-
otics, the choice of an alternative to antibiotics can also be
an interesting approach. There are reports of resistance to-
wards AMPs which can lead to the development of future
resistance to host AMPs. However, this can be overcome
by synthetically modified peptides [156, 204]. Apart from
this, the limitation of its high cost of production, degrada-
tion by proteases, toxicity, and their unknown pharmacoki-
netics can also be a problem [205]. However, these can be
solved by the use of relatively shorter peptides that will reduce
the overall production costs. The use of different drug deliv-
ery systems can reduce their toxicity, maintain proper release,
and improve stability. They can also be used in combination
with antibiotics for better activity and can overcome resis-
tance. Thus, combination strategies for therapy will become
the modality of choice to overcome antibiotic resistance. De-
spite their limitation, the growing interest in AMPs as an al-
ternative to antibiotics against S. aureus will improve its sta-
tus in the future for developing new therapeutics. It will be
an interesting subject of research to explore these AMPs as
an alternative to antibiotics not only against the S. aureus but
also against other pathogens.
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