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Abstract. The study describes dual-X controlled current 
conveyor (DXCCCII) as a versatile active block and its 
application to inductance simulators for testing. Moreover, 
the high pass filter application using with DXCCCII based 
inductance simulator and oscillator with flexible tunable 
oscillation frequency have been presented and simulated to 
confirm the theoretical validity. The proposed circuit which 
has a simple circuit design requires the low-voltage and 
the DXCCCII can also be tuned in the wide range by the 
biasing current. The proposed DXCCCII provides a good 
linearity, high output impedance at Z terminals, and 
a reasonable current and voltage transfer gain accuracy. 
The proposed DXCCCII and its applications have been 
simulated using the CMOS 0.18 µm technology. 
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1. Introduction 
The second-generation current conveyor (CCII) 

which is the different versions of the current conveyors has 
achieved to be a functionally usable and accomplished 
building block for the realization of the analog circuits. 
Owing to having a variable gain-bandwidth product, high 
slew rate, wide dynamic range, higher bandwidth and good 
linearity, these structures have recently become attractive 
[1]. 

The current controlled conveyor (CCCII) which is 
an electronically tunable type of the CCII has been used in 
many electronic circuit applications as a part of oscillators, 
inductance simulators, active resistors, filters and multipli-
ers [2-4]. Parasitic resistance seen at the port X of the CCII 
is fundamentally seen as a drawback in the analog circuit 
design. Parasitic resistance can be easily tuned by the bi-
asing current. This resistance providing to obtain numerous 
tunable functions is used to advantage in current controlled 
conveyors. Furthermore, it provides to reduce the use of 
passive components in the design. 

An active building block combining the main advan-
tages of CCII and inverting second-generation current con-
veyor (ICCII) is dual-X second generation current con-
veyor (DXCCII). The dual-X structure of the DXCCII 
lately popularized by circuit designers helps reducing the 
number of components used in the same applications. Al-
though the tunability of the DXCCII can be feasible with 
MOSFET operating triode region, an extra MOS manu-
facturing process is required for tuning [5]. On the other 
hand, there are a lot of applications realized using DXCCII 
such as inductance simulators, oscillators and filters, etc. 
Some of these circuits suffer from using passive resistors 
[6-10]. 

In this work, dual-X controlled current conveyor 
(DXCCCII) is presented as an active block for tunable 
applications. The proposed circuit is a new controllable 
version of the conventional DXCCII. Parasitic resistances 
of the conveyors, seen at ports X, are controlled by biasing 
current. However, the proposed circuit does not require 
external passive or active elements except for DXCCCII to 
be controlled. The adjustable range of the DXCCIIs is 
restricted for generally utilized the gate voltage of the 
MOS transistor as a control argument. The control voltage 
is limited by supply voltage. The current as a control 
argument provides facility to tune wider range [2], [11]. 
Therefore, the current control is more useful than the volt-
age control for low voltage and low power circuits. Also, 
DXCCCII operates at low voltage as ±0.75 V. Considering 
these advantages, the inductance simulators, adjustable 
oscillator and tunable high pass filter circuits are presented 
as applications in this work employing the only active 
elements and the grounded capacitors. The obvious ad-
vantage of the proposed oscillator is using less active and 
passive elements. Also, the grounded and floating active 
resistors are presented as other applications. Finally, 
PSpice simulation results are given to validate the theory. 

2. Proposed Dual-X Controlled 
Current Conveyor 
The DXCCCII is implemented by using floating gate 

MOS transistors (FGMOS). The symbol and the equivalent 



RADIOENGINEERING, VOL. 23, NO. 4, DECEMBER 2014 1131 

circuit of an n-type FGMOS transistor with two inputs are 
shown in Fig. 1. There are several simulation models for 
the FGMOS transistors in [12-14]. In this proposed circuit, 
the model is based on connecting capacitors in parallel 
with the resistors as given in [12]. 
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Fig. 1. The n-type FGMOS transistor with three inputs:  

a) symbol, b) equivalent circuit. 

As shown in Fig. 1, FG1 and FG2 are the input gate 
terminals of the FGMOS transistor. The input capacitances 
are CFG1 and CFG2 and the input gates are coupled to the 
floating gate of the FGMOS transistor. CFGD, CFGS and 
CFGB are the parasitic capacitances between the drain, 
source, bulk and gate, respectively. Input gate voltages and 
drain, source and bulk voltages affect an effective floating 
gate voltage in proportion to the value of the capacitances. 
When the relation among the capacitances are assumed that 
CFGD + CFGS + CFGB << CFG1 + CFG2, the total capacitance CT 
is approximately equal to CFG1 + CFG2. VFG is the effective 
floating gate voltage and it can be defined as 

 
 T

2FGFG21FG FG1
FG

  +

C

VCVC
V  .  (1) 

The drain current of the FGMOS in saturation region 
can be calculated as 

  2THSFG
n

D 2
VVV

k
I    (2) 

where VS is the source voltage, VFG is the effective floating 
gate voltage, VTH is the threshold voltage and ID is the drain 
current of the FGMOS transistor. In addition, kn known as 
the transconductance parameter is μn .Cox.(W/L) where W/L 
is the aspect ratio of the FGMOS transistor. 

The block diagram of the dual-X second generation 
controlled current conveyor as a versatile active element is 
demonstrated in Fig. 2. The proposed circuit has six termi-
nals and principle of the operation is similar to the conven-
tional DXCCII [15]. Y and Z terminals of the DXCCCII 
have high impedances. 

 
Fig. 2. The symbolic representation of the DXCCCII. 

The impedances of the X terminals exhibit a resis-
tance behavior known as a parasitic resistance and its value 
can be tuned by bias current I0 of the DXCCCII. The ma-
trix equations of the DXCCCII can be characterized in the 
following form: 
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The effective floating gate voltages of M1 and M2 
transistors are VFG1 and VFG2. A loop equation written from 
floating gate of M2 to floating gate of M1 transistor can be 
expressed as  

 01FG1FGS2FGS2FG  VVVV .  (4) 

If it is supposed that CFG1 = CFG2 = CFG, the total ca-
pacitance CT is equal to 2CFG. The gate-source voltages in 
(5) can be given as VFG1 = (1/2)VY and VFG2 = (1/2)VXp. If 
the related equation is arranged, it can be written as below. 
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The drain currents of the transistors M1 and M2 can be 
defined as 
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ID1 and ID2 are the drain currents of the transistors M1 and 
M2, respectively. The expression belonging to the differ-
ence voltage of the terminals Xp and Y can be defined as 
VXYp = VXp – VY. 

The relationship between input voltages is given 
below. 
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where I0 is the biasing current of the differential pair struc-
tures. The current IXp shown in Fig. 3 can be calculated as 
shown in (8) 
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From (8), it is assumed that 2I0 >> kn(W/L)(VXYp)/2 
for small input voltages. Using this approximation, the 
output current of the differential pair IXp is obtained as 

 
02)/(

2

1

2

1
ILWkVI nXYX pp

 .  (9) 



1132 S. A. TEKİN, H. ERCAN, M. ALÇI, A VERSATILE ACTIVE BLOCK: DXCCCII AND TUNABLE APPLICATIONS 

I0 M1

Xp
Y

Xn Zn

VDD

Vss

Zp
M2 M3 M4

M5 M6

M14

M13

M12

M9 M10

M11
M7

M8

M15

M16

M17

M18

M19

M20

M21

M22

MA1

MA2

MB1

MB2

 
Fig. 3. The circuit structure of the DXCCCII. 

 
From (9), parasitic resistance at terminal Xp of the 

circuit will be expressed as 
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As shown in (10), the parasitic resistance of the pro-
posed circuit is easily controlled by biasing current. It is 
obvious that the electronic adjustability of this resistance is 
provided by the useful structure. Similarly, the other para-
sitic resistance at terminal Xn can be described as 
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In addition, it can be seen that the values of RXp and 
RXn depend on the aspect ratios of MA and MB transistors, 
respectively. If it is desired, each intrinsic resistance value 
can be changed by the aspect ratio of these transistors or 
the FGMOS transistors. 

The non-ideal model of the DXCCCII is shown in 
Fig. 4. The real DXCCCII has parasitic resistors and ca-
pacitors at the terminal y and z to the ground, and a serial 
resistor at the terminal x. 
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Fig. 4. The non-ideal model of the DXCCCII. 

3. Simulation Results 
The proposed DXCCCII is simulated using the 

schematic implementation shown in Fig. 3 with low supply 
voltages ± 0.75 V. The simulations are based on 0.18 µm 
level 7 TSMC CMOS process parameters. The dimensions 
of the transistors used in the DXCCCII implementation are 
demonstrated in Tab. 1. CFG1 and CFG2 is selected as 
0.02 pF. These capacitances have been known as parasitic 
capacitances selected for each simulation model of the 
FGMOS transistor. 
 

Transistor W/L 

M1 – M4 1.1/0.36

M17,M18, M21,M22,MA1,MA2,MB1,MB2 3.6/0.36

M5 – M14 3.6/0.36

M15,M16,M19,M20 7.2/0.36

Tab. 1. The aspect ratio of the MOS transistors. 

Figure 5 shows the changing of the input voltage VY 
versus voltages VXn and VXp for the proposed DXCCCII. 
The curve exhibits a linear characterization approximately 
between -400 mV and +380 mV. Also, the voltage transfer 
gain of the DXCCCII is equal to 0.985. 

The changing of the input currents IXn and IXp versus 
output current IZ for the DXCCCII is depicted in Fig. 6. 
The curve exhibits a highly linear characterization between 
-60 µA and +60 µA. The current transfer gain of the 
DXCCCII is equal to 0.99. Considering these findings, this 
value is highly acceptable and good enough.  

Also, the proposed circuit is observed that how the 
voltage and current ranges depend on the bias current I0. 
Voltage and current ranges have been almost decreased as 
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±200 mV and ±2 µA, respectively. In addition, the voltage 
and current errors are investigated for the changing biasing 
current. The findings have proved that voltage and current 
errors are equal to 0.97 and 0.98, respectively. The chang-
ing of I0 versus RX has been illustrated in Fig. 7. 

Parasitic resistances of the DXCCCII can be 
approximately tuned between 6.5 kΩ and 400 kΩ by 
biasing current. 
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Fig. 5. The voltage transfer curve for the DXCCCII. 
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Fig. 6. The current transfer curve for the DXCCCII. 
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Fig. 7. The parasitic resistance of the proposed DXCCCII for 

different biasing currents. 

The current gains between terminals X and terminals 
Z are almost 1. The transfer of current is linear from X to Z 
node. Figure 8 displays the frequency response for the 
voltage transfer gains and current transfer gains of the 
DXCCCII. At the same time, Fig. 8 shows the frequency 
responses of current transfer gains IZp/IXp, IZn/IXn and 
voltage gain VXp/VY, the 3 dB cut-off frequencies are 
290 MHz, 908 MHz and 265 MHz, respectively. It is in-
vestigated that the bandwidth of the voltage and current 
gains are depended on the bias current. When the biasing 
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Fig. 8. The frequency response of the voltage transfer gains 

and current transfer gains of the proposed DXCCCII. 
 

Parameters DXCCII [14] DXCCII [16] Proposed DXCCCII 
Supply voltage ±2.5V ±1.5V ±0.75V 

Input voltage range −360 mV, +400mV −500 mV, +600mV −400 mV, +380mV 
Input voltage / Supply voltage (%) 15,2 36 52 

Input current range (IX) 
−60 µA, +60 µA 

From Fig. 5 in Ref. [16] 
−70 µA, +90 µA 

From Fig. 5 in Ref. [16] 
±60µA 

Output current range (IZ) −90 µA, +110 µA −100 µA,+125 µA ±60µA 
Voltage transfer gain  0.95 0.95 0.985 
Current transfer gain  0.97 0.98 0.99 

-3 dB bandwidth (IZp/IXp, IZn/IXn) - 10.35 GHz 290 MHz, 908 MHz 
-3 dB bandwidth (VXp/VY, VXn/VY) 580 MHz 1.05 GHz 265 MHz, 350 MHz 

RX (adjustable range) (I0=0.1µA-70µA) - - 400 kΩ-6.5 kΩ 
Y input resistance - - 10 GΩ 
Z output resistance 0.18 GΩ 5.83 GΩ 9.2 GΩ 

Parasitic capacitance (Cy) - - 0.02 pF 
Parasitic capacitance (Cz) - - 0.017 pF 

Power dissipation - - 200 µW 
Tunability No No Yes 

Technology / Number of transistors 0.35 µm CMOS / 20 0.35 µm CMOS / 48 0.18 µm CMOS / 20 
* for I0 = 35 µA    

Tab. 2. The parametric characteristics of the DXCCCII. 
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current is increased from 0.1 µA to 70 µA, the bandwidth 
of the voltage and current gains has approximately varied 
from 8.5 MHz to 800 MHz and 13 MHz to 3 GHz, respec-
tively. As shown in Fig. 3, while terminal Xn is composed 
of gate and drain of the transistor M4, terminal Y is con-
nected to the another gate of the transistor M4. Therefore, 
taking into consideration Fig. 1, it can be easily seen that 
frequency performance only depends on the input capaci-
tances CFG1 and CFG2, in addition, the frequency behavior 
of the voltage gain VXn/VY is rather reasonable. Phase dif-
ference for gain values below 350 MHz can be accepted 
zero. Also, the proposed circuit consumes 200 µW for 
I0 = 35 µA. 

The performance parameters of the proposed circuit 
are depicted in Tab. 2. The proposed circuit offers some 
advantages. For instance, low-voltage power supply has 
been required about ±750 mV. Likewise, the circuit which 
has a simple circuit design consumes power about 200 µW. 
The main feature of the DXCCCII is that the intrinsic re-
sistance can be usefully tuned in the wide range by biasing 
current. Also, the output (port Z) and input (port Y) of the 
DXCCCII has very high resistance and the proposed circuit 
has reasonable number of transistors. Voltage and current 
transfer gain of the proposed circuit is more adorable than 
the other references in Tab. 2 

4. Tunable Applications of the 
DXCCCII 
In order to reveal the performance and the usability of 

the DXCCCII, application examples such as active induc-
tors and tunable oscillator have been introduced using 
PSpice simulations. 

4.1 The Grounded Active Inductor 

The proposed circuits for accomplishing grounded in-
ductors are shown in Fig. 9. All of the circuits are con-
structed with two DXCCCII and one grounded capacitor. It 
is obviously known that a circuit with grounded capacitors 
has appreciable advantages in analog integrated circuit 
implementations. 
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                     (a)                                                        (b)  

Fig. 9. Inductance simulators realized using DXCCCII:  
a) positive, b) negative. 

The circuits can simulate diverse combinations of the 
inductances as shown in Fig. 9. These circuits can operate 

as positive and negative inductances. The previously pre-
sented grounded inductance simulators suffer from some 
disadvantages such as passive component mismatch, use of 
capacitor that connected in series to the port X of the cur-
rent conveyor, and eventually operating in lower fre-
quency, use of two or more passive elements [10], [17-20]. 
Whereas, these drawbacks have partly been overcame by 
the proposed circuit which has only two grounded capaci-
tors and two DXCCCIIs. The equivalent inductance value 
of the both positive and negative simulators is given by the 
following equation 

 
121 CRR

i

v
L XX

in

in
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  (12) 

where RX1 and RX2 are the parasitic resistances of the first 
and second DXCCCII, respectively. Considering both the 
voltage and the current tracking errors of the DXCCCII, 
βp = 1 – εVp and βn = 1 – εVn define the voltage tracking 
errors from Y terminal to Xp and Xn terminals; αp = 1 – εIp 

and αn = 1 – εIn define the current tracking errors from Xp 
and Xn terminals to Zp and Zn terminals, respectively. βp, βn 
and αp, αn are the voltage and the current transfer gains ; 
εVp, εVn  and εIp, εIn  are the voltage and the current transfer 
errors of the DXCCCII, respectively. Taking into consid-
eration both the voltage and current tracking errors of the 
DXCCCII, the input current of the inductance simulator as 
shown in Fig. 9 can be calculated as, 
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where βp1, βn1 and αp1, αn1 are the voltage and current trans-
fer gains of the first current conveyor (DXCCCII 1), re-
spectively, and, βp2, βn2 and αp2, αn2 are the voltage and 
current transfer gains of the second current conveyor 
(DXCCCII 2). 

Considering tracking errors of the DXCCCII, positive 
and negative inductance of the simulator can be described 
respectively as 
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The frequency response of the impedance value for 
the inductance simulator is displayed in Fig. 10. The graph 
is drawn by using different biasing currents. The capaci-
tance value of the C1 shown in Fig. 9 is equal to 15 pF. 
When the graph is investigated, it can be seen that the 
curve exhibits approximately a linear behavior between 
100 kHz–7 MHz, 100 kHz–8.5 MHz and 100 kHz–
10 MHz for I0 = 20, 30, 40 µA, respectively. 

To prove the theoretical validity of the inductance 
simulator given in Fig. 9, the classical high pass filter 
shown in Fig. 11 was employed as an application. 
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Fig. 10. The impedance values of the simulators for different 

biasing currents. 
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Fig. 11. The classical high pass filter. 

Frequency response of the filter is illustrated in 
Fig. 12. The passive elements are selected as R = 4 kΩ, 
C = 35 pF, and C1= 15 pF, which results in a 3dB frequen-
cies of 267 kHz, 390 kHz, 530 kHz for I0 = 20, 30, 40 µA, 
respectively. In addition, the 3dB frequencies of the high 
pass filter is theoretically calculated as 277 kHz, 405 kHz 
and 569 kHz. The reason of the difference between the 
calculated and simulated values is the voltage and current 
tracking errors of the DXCCCII. 
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Fig. 12. Frequency responses of the filter. 

4.2 Tunable Oscillator 

As another application, the tunable oscillator circuit 
using only two DXCCCII shown in Fig. 13 has been pre-
sented. Also, it consists of two grounded capacitors. 

Characteristic equation and oscillation frequency of 
the tunable oscillator shown in Fig. 13 can be obtained 
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Fig. 13. The tunable oscillator circuit. 

doing routine circuit analysis following characteristic 
equations. 
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where RX1 and RX2 are the parasitic resistances of the first 
and second DXCCCII, respectively. As shown in (15.a), 
oscillation condition of the oscillator is always provided 
when the non-ideal effects are ignored. Considering track-
ing errors of the DXCCCII, characteristic equation and 
oscillation frequency of the tunable oscillator can be de-
scribed respectively as 

 

,0
4

))((

2

)(

3221

221121

31

1112









CCRR

s
CR

s

XX

npnppn

X

npp





 

  (16.a) 

 
3221

221121
0 4

))((

CCRR XX

npnppn 



 .  (16.b) 

Oscillation waveform of the oscillator is displayed in 
Fig. 14. In order to obtain the frequency responses of the 
oscillator, C2 and C3 are set to 1 pF and 3 pF, respectively. 
The biasing currents for the DXCCCIIs I01 and I02 are equal 
to 1 μA and 40 μA, respectively. 
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Fig. 14. Voltage waveforms of the oscillator in time domain. 
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Fig. 15 shows that the calculated results have a good 
agreement with the simulated results. This figure depicts 
that the oscillation frequency of the oscillator can be tuned 
by I02. The oscillation frequency of the oscillator can be 
varied from 1.83 MHz to 4.79 MHz if the biasing current is 
tuned from 10 μA to 70 μA. 
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Fig. 15. Oscillation frequency versus biasing current of the 

second DXCCCII. 
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Fig. 16. The non-ideal model of the oscillator. 

The non-ideal model of the oscillator is shown in 
Fig. 16. The real DXCCCII has parasitic resistors and 
capacitors at the terminal y and z to the ground, and a serial 
resistor at the terminal x. Rzp1, Rzp2, Rzn1, Czp1, Czp2, Czn1 can 
be defined as the parasitic resistors and capacitors of the z 
terminals of DXCCII 1 and DXCCII 2 in Fig. 16. Ry1, Ry2, 
Cy1, Cy2 are the parasitic resistors and capacitors at the y 
terminals of DXCCII 1 and DXCCII 2. Because of 
C3 >> Cy1 + Czp1 + Czp2 and C2 >> Cy2 + Czn1, the effect of 
the parasitic capacitances to the total capacitances can be 
neglected. Considering non-ideal effects of the DXCCCII, 
oscillation frequency and condition of the tunable oscillator 
can be expressed respectively as 

3221323221
0

111

CCRRRCCRRCCRR XXBBAXX

 ,(17.a) 

 CO: 0
1

3132

23 


CRCCRR

CRCR

XBA

BA .  (17.b) 

where RA = Ry1 // Rzp1 // Rzp2 and RB = Ry2 // Rzn1. It can be 
seen that values of the RA and RB are approximately GΩs. 
Thus, the effects of the parasitic resistance to the frequency 
are highly poor. In (17.b), the condition of oscillation is 
given as the formulation including non-ideal effects. 

Comparison between various oscillators using active 
element is shown in Tab. 3. Some circuits have no elec-
tronical tunability as shown in Tab. 3. Also, the proposed 
circuit has low power consumption compared to these 
circuits due to the fact that DXCCCII used in the proposed 
oscillator has simple structure and low supply voltage. The 
obvious advantage of the proposed oscillator is using less 
active and passive elements. 

 
 

Ref Supply voltage Active element 
Number of 

active / passive
elements 

FO range 
(MHz) 

THD (%) Technology 
Electronical 
tunability 

Power 
consumption

(mW) 

21 ± 2.5 V CCCDTA 2 / 2 0.1 – 5 1.14 BJT Yes 12.1 

22 ± 5 V ECCII -, CCII 3 / 5 0.26 – 1.25 0.2 – 1.5 BJT Yes N/A 

23 ± 1.25 V CDTA 3 / 3 0.4 – 0.8 10 CMOS Yes 2.87 

24 ± 1.25 V DDCC, OTA 2 / 3 1.69 1.75 CMOS No 1.86 

25 ± 2 V OTA 4 / 4 0.2 – 21.5 1 CMOS Yes 1.52 

26 ± 1.25 V DX-MOCCII, MOS 2 / 5 1.59 3.5 CMOS No N/A 

27 ± 2.5 V DVCC 1 / 5 0.096 3.76 CMOS No N/A 

28 ± 2.5 V OTA, CDTA 2 / 4 0.053 1.17 CMOS No N/A 

29 ± 1.5 V MCCCDTA 1 / 6 0.076 0.13 BJT No N/A 

30 ± 5 V CCII 2 / 2 0.035 3 BJT No N/A 

Prop. ± 0.75 V DXCCCII 2 / 2 1.83 – 4.79 2.4 – 4.4 CMOS Yes 0.28 

Tab. 3. Comparison between various oscillators. 
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4.3 The Grounded and Floating Active 
Resistors 

DXCCCII based grounded positive and negative 
active resistor structures have been displayed in Fig. 17. 
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Fig. 17. DXCCCII based grounded resistors a) positive resistor, 
b) negative resistor. 

From (10) and (11), it can be seen that RXn is equal to 
RXp. So, all parasitic resistances can be represented as RX. 
The resistance value of the DXCCCII based grounded 
resistors will be expressed as, 

 
XR

i

v
R 

1

1
1

.  (18) 

Floating positive and negative active resistor structure 
based on DXCCCII have been depicted in Fig. 18. This 
figure demonstrates two types of an active resistor de-
signed by using only two DXCCCIIs. The proposed active 
resistors might be tuned by the biasing currents. So, the 
resistance value of the resistors is calculated as, 
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where all biasing currents are equal to I0 and i2 = -i1.  
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Fig. 18. DXCCCII based floating resistors a) positive resistor, 
b) negative resistor. 

The I-V characteristics of the proposed resistors are 
shown in Fig. 19. The behaviors of the resistors are fairly 
linear between -400 mV and +400 mV. Additionally, the 
estimation of the proposed circuit’s dynamic-range is cal-
culated as 
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/

n L/Wk

I
vv 




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


 .  (20) 

The dynamic range highly depends on the biasing 
current as shown in (20). Thus, the dynamic range will be 
expanded for the high values of the biasing current. Con-
sidering both the voltage and the current tracking errors of 

the DXCCCII, the resistance values of the floating active 
resistors can be calculated as 
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Fig. 19. The I-V characteristics of the floating positive and 

negative active resistor. 

5. Conclusion 
In this paper, dual-X controlled current conveyor 

(DXCCCII) as a versatile active block is presented and its 
applications to pure inductance simulators has been tested. 
Also, high pass filter application using DXCCCII based 
inductance simulator has been simulated to prove the theo-
retical validity. In addition, DXCCCII based oscillator with 
flexible tunable oscillation frequency and active resistors 
are presented as other applications. Only grounded 
capacitor and DXCCCII have been employed in the all de-
signed applications. The adjustment capability of the pro-
posed circuits is the functional feature in electronic circuit 
designs. In this context, the proposed circuits are rather 
convenient for IC realizations. The proposed circuits have 
been simulated using a PSpice simulation program, and its 
simulation results were compared with the theoretical 
approaches and the other DXCCIIs. Theoretical analyses of 
these circuits were achieved, and the performances of the 
proposed circuits have been verified by the simulation 
results. For the proposed DXCCCII, the parasitic resistance 
value can be tuned from 6.5 kΩ to 400 kΩ if the biasing 
current is changed from 0.1 μA to 70 μA with a good 
coherence between the theoretical and simulation results. 
Besides this good coherence, the proposed circuit is re-
quired a low voltage as well as ±0.75 V. As a consequence, 
we believe that it is absolutely an admirable design because 
of having low power dissipation.  
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