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1 INTRODUCTION
Based on statistics of the Central Brain Tumor Registry of the United States (CBTRUS),
brain tumor is one of the leading cause of cancer-related deaths in the United States. It is
the second leading cause of cancer-related deaths in children under the age 20 as well as in
males ages 20-39. The most common primary brain tumor, brain tumors that begin and tent
to stay in the brain, is meningioma with 34%, however glioma, a broad term including tumors
arising from the gluey or supportive tissue of the brain (30% of all brain tumors), represents
80% of malignant tumors making it the most common primary brain tumor causing death.
This work is particularly focused on the automatic processing of the volumes with glioma in
low and high grades. Due to the increasing number of patients, the number of acquired data
increase, too. Therefore, there is increasing necessity of automatic algorithms that are able to
process the data automatically. Hence, there have also been increasing interest in developing
such algorithms and, particularly, the automatic brain tumor segmentation task has recently
attracted many computer vision research teams.

In common clinical routines, the evaluation the acquired images is currently performed
manually based on quantitative criteria or measures such as the largest visible diameter in
axial slice [9]. Therefore, highly accurate methods being able to automatically analyze scans of
brain tumor would have an enormous potential for diagnosis and therapy planning. However,
it was shown by Menze et al. [21] that even manual annotation performed by expert raters
showed significant variations in areas where intensity gradients between tumorous structure
and surrounding tissue are smooth or obscured by bias field artifacts or partial volume effect.
Moreover, brain tumor lesions are only defined by relative intensity changes to healthy tissues,
and their shape, size and location are individual for each patient, which makes the use of
common pattern recognition algorithms impossible.

In this work, three different MR sequences, namely T1-weighted image, T2-weighted image,
and FLAIR image. In the brain tumor investigation, T1-weighted images (shortly T1 image)
are usually used in combination with contrast agent fluid, which highlights the blood flow
here. This cause the tumor active part to appear hyper-intense and easily distinguishable
from surrounding tissue. Such image is called “contrast enhanced T1-weighted image” and in
this work the abbreviation T1C will be used. T2-weighted images (shortly T2 images) are,
compared to T1 images, more sensitive to the content of water and, therefore, to the patho-
logy, which, as well as cerebrospinal fluid (CSF), appear hyper-intense here. Fluid-attenuated
inversion recovery (FLAIR) is a sequence that suppresses CSF in brain imaging. This effect
enables to distinguish lesions, which remains hyper-intense as in T2 images, from CSF which
becomes hypo-intense here.



2 RELATED WORK

2.1 Brain Tumor Segmentation
The automated brain tumor segmentation is still a challenging task. One of the reason is
tumor’s unpredictable properties such as size, shape and location unless the tumor develo-
pment in time is investigated and images from previous scanning are available. Considering
only the independent scanning, all of the mentioned properties are unknown. Thus common
pattern recognition techniques relying on such properties and widely used for object detection
and extraction in both medical and real world images cannot be employed. However, other
knowledge such as structure of the healthy human brain or tumor manifestation in particular
MR sequences can be used. This is, on the other hand, the advantage compared to image
object detection, e.g. human or car, where the color and the background scene vary. There
have been an increasing interest in developing such algorithms and, particularly, the automatic
brain tumor segmentation task has recently attracted many computer vision research teams.

Due to variety of brain tumor types and their manifestation in MR images, most state-
of-the-art methods focus on most common tumor types, i.e. glioblastoma, or they a require
specific training database to deal with a specific tumor type. Only few researchers, e.g. Islam
et al. [15], tried to train a developed algorithm on one tumor type and test it on another.
However, the results were not satisfying.

Since different brain tumor segmentation methods rely on different image information, the
following division will be used in this chapter: threshold-based methods, which rely on the
intensity difference between a brain tumor and surrounding tissues, region-based methods,
which search for connected regions of voxels with similar properties, contour-based methods
searching for edges between a brain tumor and surrounding tissues, classification or clustering
methods, which make use of voxel-wise intensity and texture features, and atlas-based methods
using the prior knowledge about the healthy brain. However, the division is not always clear
because proposed methods often have the same nature and combine more of these approaches.
In recent years, most state-of-the-art techniques have been based on atlas guidance [17, 22] and
classification. A variety of classification algorithms have been used for this purpose: Support
Vector Machine (SVM) [30, 35], Neural Networks (NNs) [3, 23], or Random forest (RF) [11,
20, 26]. A lot of NN-based methods started to appear with the increase of the deep learning
popularity [7, 34, 39]. common characteristic of most classification-based algorithms is the
independent classification of a single pixel/voxel.

Tumor detection

Apart from tumor segmentation methods, only several methods for detection of the tumor
presence and its approximate location exist. The goal of these methods is not the accurate
delineation of the tumor boundary, but only fast decision whether the tumor is present together
with its location. Such techniques could be used as an initial estimation of the tumor contour



which is necessary for some segmentation methods. Saha et al. [32] located tumors in 2D MR
images in axial plane using the fast detection of asymmetry by Bhattacharyya coefficient. The
output of the algorithm was the bounding box around the tumor. Farjam et al. [10] used
template-matching technique for this purpose.

2.2 Local Structure Prediction
Medical images show high correlation between the intensities of nearby voxels and the intensity
patterns of different image modalities acquired from the same volume. Patch-based prediction
approaches make use of this local correlation and rely on dictionaries with finite sets of image
patches. They succeed in a wide range of application such as image denoising, reconstruction,
and even the synthesis of image modalities for given applications [14]. Moreover, they were used
successfully for image segmentation, predicting the most likely label of voxels in the center
of a patch [33]. All of these approaches exploit the redundancy of local image information
and similarity of image features in nearby pixels or voxels. For most applications the same
local similarity is present among the image labels, e.g., indicating the extension of underlying
anatomical structure. This structure has already been used in medical imaging but only at
global level, where the shape of the whole structure is considered, e.g. [27, 36].

The first attempt to predict extended 2D patches instead of pixel-wise labels was made
by Zhu et al. in [37] and later in [38], who proposed a recursive segmentation approach with
recognition templates in multiple layers called Hierarchical Image Models (HIM) for image
parsing using structured perceptron learning. A label patch dictionary is defined manually.
Such approach is suitable for approximate delineation of an object in natural image processing
but not for accurate segmentation of medical images.

Kontschieder et al. [16] extended the previous work with structured image labeling using
random forest. They introduced a novel data splitting function based on random pixel position
in a patch, and exploited joint distributions of structured labels. They used image patches of
fixed size of 24 × 24 pixels and label patches of size 11 × 11.

Chen et al. [4] used CRF for shape epitome prediction of a given image patch and called
their model Shape epitome CRF (SeCRF). The shape epitomes are created using affinity
propagation [12] of patches extracted around the image ground truth boundaries. These patch
epitomes are represented by a group of shape templates of smaller size, which are generated
by translation and rotation of a template mask within the patch epitome.

Dollar et al. [8] used the idea from [16] to create an edge detector based on the patch
structure prediction using k-means clustering in the label space to generate an edge dictionary,
and RF to predict the most likely local edge shape. They used label patches of size 16 × 16 to
be assign to larger 32 × 32 image patches with stride of 2. They run the prediction for three
different scales, the original image and a half and double resolution version.



3 GOALS OF THE THESIS
This chapter describes the objectives and goals of the thesis. The main goal is to develop
algorithms for brain tumor detection and segmentation in 2D and 3D single- or multisequence
MRI. The proposed methods have to be fully automated, i.e. they have to be able to detect
and segment brain tumor without a user interaction. Even though the user interaction is
sometimes necessary and even appreciated, e.g. for post-processing correction, the proposed
methods must not be based on any kind of user interaction. The proposed methods should be
primarily focused on dealing with glioma of both low and high grades. The attention during
the algorithms development should be paid to the segmentation accuracy as well as to the
computational demands during the segmentation process.



4 METHODOLOGY
The goal of this chapter is to contribute to the medical image analysis domain, specifically
to the field of brain tumor detection and segmentation in multisequence MR images. Three
proposed methods are described: a fast pathology presence detection approach, which is based
on multi-resolution symmetry analysis, an unsupervised extraction algorithm of glioma, and a
supervised approach of three brain tumor segmentation sub-problems (segmentation of whole
tumor, tumor core, and active tumor).

Most of the segmentation algorithms require pre-processing applied to the input image.
In brain MRI processing, this usually includes spatial co-registration, bias field correction,
intensity normalization, and skull stripping. All data sets used during the evaluation of the
proposed methods had been pre-processed before they were released. Therefore, this work does
not deal with pre-preocessing algorithms.

4.1 Brain tumor presence detection
The method proposed for brain tumor presence detection is a symmetry based algorithm for
the detection of a brain tumor presence in 2D MR slice. It is a modification and extension
of a method that I have already published in [54, 56]. The algorithm uses the fact that brain
tumors break the approximate tissue structure symmetry in the left and right hemisphere,
which is usual for healthy brains.

The symmetry prior requires another pre-processing step: mid-sagittal plane detection.
This has been studied in several works, e.g. [19, 31]. Another approach uses registration of the
brain volume to a reference aligned volume, which may be based on the same methodology
described in the section about pre-processing. The proposed method is not sensitive to small
deviations from perfect alignment and is able to work correctly even with slight rotation.

The proposed method was designed for both axial and coronal planes. It is a supervised
classification algorithm, which uses features extracted from multiresolution asymmetry maps
and, in case of application to particular slices in 3D volume, input slices. The latter type of
features, based on the input image, are not applicable for stand-alone slices since the intensities
in such slices varies due to different measurement parameters and equipment, and the intensity
normalization is not possible. Random forest (RF) [6] is used as a classification algorithm but
another supervised algorithm may be used.

Symmetry analysis

A square block, with the side length of 10 voxels is created. This size used in multiresolution
approach is suitable for the detection of both small and large tumors. The algorithm slides
through both halves symmetrically by this block. The step size is smaller than the block size
to ensure the overlap of particular areas that are compared with its opposite symmetric part.



Normalized histograms with the same range are computed from both parts and compared
by the Bhattacharyya coefficient (BC) [2]. The range of values of BC is ⟨0, 1⟩, where the
smaller the value, the bigger the difference between histograms. For the subsequent purposes,
an Asymmetry coefficient (AC) is computed as 𝐴𝐶 = 1 − 𝐵𝐶. The computed ACs create an
asymmetry map where the higher value expresses the higher probability of the tumor presence
in particular location.

Multiresolution approach. To make the whole process of the symmetry analysis robust,
the image is processed in the same way in several different resolutions with constant block
size. The input image is iteratively sub-sampled by the factor of two. The number of iterations
performed during the symmetry analysis was experimentally set to three.

The output of each iteration is a map of anomalies for a given resolution. This anomaly map
is both sided and, hence, the healthy regions, where the tumor is present at the opposite side,
are also labeled with high probability of a brain anomaly. The product of values corresponding
to a particular pixel is computed leading to the final multiresolution asymmetry map. An
example of such multiresolution asymmetry map is depicted in Fig. 4.1.

Obr. 4.1: Example of a brain tumor multiresolution asymmetry map. The input image is
depicted on the left followed by the multiresolution asymmetry map and corresponding single-
resolution asymmetry maps with increasing image resolution.

Feature extraction

When the asymmetry maps are generated, they are used for extraction of features, which
are then used for binary image classification into two groups of images showing a healthy or
pathological brain. The extracted features are as follows:

• maximum of the multiresolution asymmetry map,
• maximum of each singleresolution asymmetry map,
• number of regions and their size after thresholding the multiresolution map by an abso-

lute value,
• number of regions and their size after thresholding the multiresolution map by a relative

value.
Five different levels of threshold are set for both relative and absolute thresholding leading

to five values of each feature.



Application to 3D volumes

The proposed algorithm may also be applied to particular slices in 3D volumes. In this case,
additional set of features can be extracted. This feature set assumes that the intensities of
the input volume has been normalized. The intensity features are based on the same mul-
tiresolution asymmetry map thresholding, but the information is extracted from the input
slice. For each threshold level, four more features are extracted from the input image after the
application of the mask created by thresholding. The features are as follows:

• average intensity in the whole masked region,
• absolute value of the average intensity difference in the left and right masked region,
• intensity standard deviation in the whole masked region,
• absolute value of the intensity standard deviation difference in the left and right masked

region.
All of these features are computed for both absolute and relative value thresholding.

4.2 Unsupervised brain tumor extraction
Gliomas are represented by high intensities in T2 and FLAIR sequences. However, conside-
ring different measurement parameters and equipments, the intensities in the resulting image
are not known. The common approach is to normalize the intensities by standardization or
histogram matching algorithm. Considering a stand-alone 2D MR slice, such intensity norma-
lization is impossible due to the lack of information about the tumor size and the slice position.
Therefore, machine learning approaches based on the intensity information are not applicable
here. The proposed algorithm avoids the intensity normalization by automatic determination
of the intensity threshold from the most asymmetric brain parts. It is based on the same sy-
mmetry analysis described in Sec. 4.1. Hence, the method requires the same pre-processing as
the method proposed for the supervised brain tumor detection. The method can be applied for
both 2D image and 3D volume. Only FLAIR images are used for 2D image application while
both sequences are used for 3D volume application. I have already described this method in
[48, 50].

Pathology extraction

For the pathology extraction purpose, thresholding of the multi-resolution asymmetry map is
performed by the value of 10% of the maximum asymmetry. This value was set experimentally
and ensures that at least small region is extracted. The result is a both-sided mask that contains
both the tumor on one side and the healthy tissue on the other side.

Since multifocal tumor can appear, the extraction process is not limited to only one region.
All regions created by thresholding are considered. As a result, multifocal tumors located
asymmetrically can be correctly detected.



The whole area of glioma can be well separated using FLAIR, since they appear hyperi-
ntense in this MR sequence. The automatic thresholding can be performed to extract these
pathological areas. The threshold is determined using the Otsu’s method [24] from the points
inside the resulting mask of asymmetry detection but the thresholding process is applied to
the whole image.

Morphological erosion and dilation are applied to the resulting mask to smooth the region
borders and separate regions connected by a thin area. The conjunction of these masks is then
found. Since some incorrect areas could be extracted, only those, which are situated mostly
inside the asymmetric region, are labeled as pathological. Regions with the size smaller than
10% of the largest segment are also eliminated. Since the pathological area may extend beyond
the asymmetry area border, the whole region created by the thresholding is extracted.

Extension into 3D

The same algorithm may be applied to 3D volumes. The multi-resolution asymmetry map is
computed in the exactly same way but in 3D instead of 2D, i.e. cubic blocks are used instead
of square blocks. I have already described this 3D extension in [44, 51].

The extraction process starts in the axial slice where the highest AC was detected and
it is then propagated into the whole 3D volume. Such approach is more accurate than the
extraction directly from the 3D asymmetry map. However, it is slightly slower. For the 3D
extraction purpose, T2 volume is used together with FLAIR to improve the accuracy. Since
brain tumor appears hyper-intense in both T2 and FLAIR images, the same algorithm is
applied to both volumes and their intersection is found.

The resulting mask M of the extraction process is created as M = M𝑇 2
⋂︀ M𝐹 𝐿𝐴𝐼𝑅, where

M𝑇 2 and M𝐹 𝐿𝐴𝐼𝑅 are the thresholding mask of T2-weighted and FLAIR images, respectively.

Propagation into neighbor slices. Once the pathology is extracted from the axial slice
with the highest asymmetry coefficient, it can be propagated into other slices. At first both
3D volumes are thresholded using the particular threshold values determined in the initial
slice with the highest asymmetry. In order to avoid extraction of healthy areas far from the
pathological ones, the propagation of mask estimated in neighbor slice is necessary.

The propagation process starts with both neighbor axial slices and continues in both di-
rections. The result for 𝑛-th slice can be defined as:

M (𝑛) = M𝑇 2 (𝑛)
⋂︁

M𝐹 𝐿𝐴𝐼𝑅 (𝑛)
⋂︁

M𝐷 (𝑛 ± 1) , (4.1)

where M𝐷 (𝑛 ± 1) is the dilated mask from neighbor slice where the sign depends on the
propagation direction.



4.3 Brain tumor segmentation using local structure pre-
diction

In spite of the success of patch-based labeling in medical image annotation, and the highly
repetitive local label structure in many applications, the concept of local structure prediction
as described in Chapter 2.2 has not received attention in the processing of 3D medical image
yet. However, approaches labeling supervoxels rather than voxels has already appeared, e.g.
hierarchical segmentation by weighted aggregation extended into 3D by Akselrod-Ballin et al.
[1] and later by Corso et al. [5], or spatially adaptive random forests introduced by Geremia
et al. [13]. Several structure-based methods has also been used in medical imaging but only
at global level, where the shape of the whole segmented structure is considered, e.g. [27, 36].
Here, the presented work will focus on local structure since global structure is not applicable
for objects with various shapes and locations such as brain tumors.

The proposed method transfers the idea of local structure prediction [8] using patch-based
label dictionaries to the task of dense labels of pathological structures in multisequence 3D
volumes. Different from Dollar, convolutional neural networks are used for predicting label
patches as they are well suited for dealing with local correlation, also in 3D medical image
annotation tasks [18] [28].

The brain tumor segmentation problem consists of three sub-problems: identifying the
whole tumor region in a set of multisequence images, the tumor core region, and the active
tumor region [21]. All three sub-tasks are processed separately, which changes the multi-class
segmentation task into three binary segmentation sub-tasks.

The novelty of this work lies in the principled combination of the deep learning approach
together with local structure prediction in the medical image segmentation task. A paper
describing the proposed method has been accepted for publication [57].

Convolutional neural network (CNN) is used as a classification algorithm as it has the
advantage of preserving the spatial structure of the input, e.g., 2D grid for images. It is a type
of modern Deep learning methods.

Convolutional Neural Network (CNN)

This architecture is designed to take the advantages of a 2D grid input, which is convenient for
image processing. In several recent works [28, 34], 3D filters have been proposed for medical
image analysis. However, it was shown by Prasoon et al. [28] that it is still too demanding to
be efficiently used in today’s computers.

The CNN architecture used in this work is depicted in Fig. 4.2. It consists of two con-
volutional and two mean-pooling layers in alternating order. In both convolutional layers, 24
convolutional filters of kernel size 5 × 5 are used. The input of the network is an image patch
of size 4×𝑑×𝑑 (four MR sequences are present in multisequence volumes) and the output is a
vector of length 𝑁 indicating membership to one of the 𝑁 classes in the label patch dictionary.



Obr. 4.2: Architecture of the CNN for 𝑑 = 24. The input of the network is a multisequence
image patch. The output of the network are 𝑁 probabilities, where 𝑁 denotes the size of a
label patch dictionary.

Local structure prediction

This section describes a novel approach for classification-based medical image segmentation
techniques, which lies in the principled combination of a deep learning approach together with
local structure prediction in the medical image segmentation task. This approach takes the
advantage of the fact that most medical images feature a high similarity in the intensities of
nearby pixels and a strong correlation of intensity profiles across different image modalities.
One way of dealing with – and even exploiting – this correlation is the use of local image
patches. In the same way, there is a high correlation between nearby labels in image annotation,
a feature that is used in the ”local structure prediction” of local label patches.

Let x be the image patch of size 𝑑 × 𝑑 from the image space ℐ. Focusing on 2D patches, a
patch x is represented as x(𝑢, 𝑣, I) where (𝑢, 𝑣) denotes the patch top left corner coordinates in
a multisequence image 𝐼(𝑠, 𝑉 ) where 𝑠 denotes the slice position in a multisequence volume 𝑉 .

Label patches Treating the annotation task for each class individually, a label space ℒ =
{0, 1}, which is given by an expert’s manual segmentation of the pathological structures, is
obtained. The label patch is then a patch p of size 𝑑′ × 𝑑′ from the structured label space 𝒫 ,
i.e. 𝒫 = ℒ𝑑′×𝑑′ . The label size 𝑑′ is equal or smaller than the image patch size 𝑑. The label
patch p is centered on its corresponding image patch x (Fig. 4.3), and it is represented as
p(𝑢 + 𝑚, 𝑣 + 𝑚, 𝐿) where 𝐿(𝑠, 𝑊 ) is a manual segmentation in a slice 𝑠 of a label volume
𝑊 and 𝑚 denotes the margin defined as 𝑚 = 1

2(𝑑 − 𝑑′). Optimal values for 𝑑 and 𝑑′ and,
hence, the ratio 𝑟 = 𝑑′

𝑑
may vary depending on the structure to be segmented and the image

resolution.

Generating the label patch dictionary Label patches p are clustered into 𝑁 groups using
k-means leading to a label patch dictionary of size 𝑁 . Subsequently, the label template t of a
group 𝑛 is identified as the average label patch of a given cluster. In the segmentation process,



Obr. 4.3: Local structured prediction: Image feature patches (with side length 𝑑) are used to
predict the most likely label patch (with side length 𝑑′) in its center. While standard patch
based prediction approaches use 𝑑′ = 1 (voxel), the proposed approach considers all values
with 1 ≤ 𝑑′ ≤ 𝑑.

these smooth label templates t are then used for the segmentation map computation rather
than strict border prediction as used in previous local structure prediction methods [4][16][38].
The structures are learned directly from the training data instead of using predefined groups
as in [38]. An example of ground truth label patches with their representation by a dictionary
of size 𝑁 = 2 (corresponding to common segmentation approach) and 𝑁 = 32 is depicted in
Fig. 4.4.

(a) (b) (c)

Obr. 4.4: Ground truth label patches (a) with corresponding binary (b) and structured (c)
representation.

The size of the label patch dictionary 𝑁 and, hence, the number of classes in the classifi-
cation problem, may differ between problems depending on variability and shape complexity
of the data. Figure 4.5 shows an example of clustering training labels patches into 16 classes.
The left side of the figure depicts the average labels of each cluster, while the right side shows
a subset of train labels assigned to a cluster with a given average patch, i.e. the labels that
would be replaced by the same average label in the original image.



Obr. 4.5: Example of clustering the training labels patches into 16 groups. Left: average labels
estimated for each group. Right: subset of 56 train labels assigned to a group with the average
patch highlighted by a red bounding box in the left image.

Defining the 𝑁-class prediction problem After having obtained a set of 𝑁 clusters, the
binary segmentation problem is transformed into an 𝑁 class prediction task: Each image patch
x is identified in the training set with the group 𝑛 that the corresponding label patch p has
been assigned to during the label patch dictionary generation. In prediction, the label template
t of the predicted group 𝑛 (size 𝑑′ × 𝑑′) is assigned to the location of each image patch and
all overlapping predictions of the neighborhood are averaged. According to the experiments,
a discrete threshold 𝑡ℎ = 0.5 was chosen for final label prediction.

Slice Inference

Image patches from multisequence volumes are mapped into 𝑚 2D input channels of the
network, where 𝑚 denotes the number of sequences. This is similar to RGB image mapping.
During the training phase, patches of a given size are extracted from training volumes. Using
the same approach for testing is inefficient and therefore different approach used in [25] is
employed instead. The whole input multisequence 2D slice is fed to the network architecture,
which leads to a significantly faster convolutional process than applying the same convolution
several times to small patches. This requires proper slice padding to be able to label pixels
close to the slice border.

The output of the network is a map of label scores. However, this label map is smaller than
the input slice due to the presence of pooling layers inside the CNN architecture. Two 2 × 2
pooling layers are present in the proposed architecture, which means that there is only one
value for every 4 × 4 region. Pinheiro and Collobert [25] fed the network by several versions
of input image shifted on 𝑋 and 𝑌 axis and merged the outputs properly. More common



approach is to upscale the label map to the size of the input image. The latter approach is
faster since only one convolution per slice is performed compared to 16 when using the former
approach in case of the proposed CNN architecture. Both of them were tested and compared.

One can see the sequential processing of the input multisequence slice in Fig. 4.6. 4.6(b)
and 4.6(c) depict 24 outputs of the first and the second convolutional layer of the proposed
CNN architecture. 4.6(d) shows the final classification map of the network. Note the average
labels for each group in 4.6(e). One can compare them to the ground truth tumor border in
the input image. The final probability map of the whole tumor area is depicted in 4.6(f).

(a) (b) (c)

(d) (e) (f)

Obr. 4.6: Sequential processing of multisequence slice (a). (b) and (c) show all 24 outputs of
the first and the second convolutional layer of the proposed CNN architecture. (d) depicts the
output of the whole network for 16 groups with the average patch labels depicted in (e). (f)
shows the final probability map of the whole tumor area with outlined brain mask (blue) and
final segmentation (magenta) obtained by thresholding by 𝑡ℎ = 0.5.



5 RESULTS AND DISCUSSION
This chapter describes all tests that were performed for all three algorithms. The description of
the experiments is in the same order as the algorithms description in Chap. 4, i.e. supervised
2D brain tumor presence detection, unsupervised 2D and 3D brain tumor extraction, and
supervised brain tumor segmentation in 3D volumes using local structure prediction. The
Dice score, Precision, Sensitivity and Accuracy were used for the evaluation purpose. The
extraction and segmentation algorithms use the same criteria, while only several of them are
used to evaluate the presence detection algorithm. The overall algorithm performance as well
as the performance for high-grade (HG) and low-grade (LG) gliomas is evaluated. For each
test, the average computing time for the test database is also mentioned. These times do not
include the inhomogeneity correction, skull stripping and image co-registration since all data
sets had been preprocessed before they were released. All experiments were run on 4-core CPU
Intel Xeon E3 3.30GHz without GPU acceleration using Matlab.

All algorithms were tested on publicly available data from the MICCAI 2014 Challenge
on Multimodal Brain Tumor Image Segmentation (BRATS 1). The data set contains 254 real
multisequence volumes of 199 high-grade and 55 low-grade glioma subjects. For brain tumor
presence detection and brain tumor segmentation using local structure prediction, the data
set was divided into three groups: training, validation and testing. The training set consists of
130 high-grade and 33 low-grade glioma subjects, the validation set consists of 18 high-grade
and 7 low-grade glioma subjects, and the testing set consists of 51 high-grade and 15 low-grade
glioma subjects, summing up to 254 multisequence volumes of average size 240×240×155. For
unsupervised brain tumor extraction, all 254 volumes were used for testing since no training
phase is required there.

5.1 Brain tumor presence detection
In this section, the method proposed for detection of particular structures of brain tumor, i.e.
whole tumor, tumor core, and active tumor, is evaluated. This method is based on a novel
approach using multiresolution symmetry analysis described in Sec. 4.1.

Experimental setup

This algorithm was tested for all four MR sequences, i.e. FLAIR, T2, T1 and T1C. Since brain
symmetry exists in two planes, axial and coronal, both of them were considered and tested
separately during the algorithm evaluation. Note that slices with tumor core and active tumor
are also included in the set of slices with whole tumor; therefore the total number of slices is
equal to the sum of whole tumor and healthy slices.

The numbers of pathological slices (with a pathology of size ≥ 100px, i.e. a pathology
of size ≥ 1cm2 considering the 1mm isotropic resolution) and healthy slices (with no tumor

1http://www.braintumorsegmentation.org



region) in axial and coronal planes are summarized in Tables 5.1 and 5.2, respectively. This
table shows the distribution of the data set in training, validation and testing subsets.

Tab. 5.1: Experimental setup of brain tumor presence detection in axial plane.

Whole tumor Tumor core Active tumor Healthy Overall
Train 10572 6741 4910 9820 20392

Validation 1553 1057 708 1639 3192
Test 4335 3099 2442 4268 8603

Overall 16460 10897 8060 15727 32187

Tab. 5.2: Experimental setup of brain tumor presence detection in coronal plane.

Whole tumor Tumor core Active tumor Healthy Overall
Train 9887 4369 1922 11323 21210

Validation 1449 758 307 1883 3332
Test 4176 2353 1079 4859 9035

Overall 15512 7480 3308 18065 33577

The total number of extracted features from stand-alone images was 24 per sequence,
as described in Sec. 4.1. The overall number of features extracted from slices in 3D volume
increased to 64 by employing asymmetry-based intensity features.

Application to the test set

Stand-alone slices. The accuracy of whole tumor, tumor core, and active tumor detection
in axial and coronal slices is shown in Tables 5.3 and 5.4, respectively. In the tables, one can
see that the best accuracy is achieved in FLAIR or T2 images. When all MR sequences are
combined, the accuracy is improved for all detected structures.

Presence detection in 3D volumes. This test used the same experimental setup as the
evaluation of presence detection in stand-alone images. However, image features are extracted
together with the asymmetry features used in stand-alone image, because intensities can be
normalized in whole 3D volumes. The accuracy of whole tumor, tumor core, and active tumor
detection are shown in Tables 5.5 and 5.6, respectively. One can see that the best accuracy
for the whole tumor region as well as for the tumor core region is reached in FLAIR images.
However, active tumor is most accurately detected in T1C slices.



Tab. 5.3: Accuracy of particular brain tumor structures detection in axial slices of different
MR sequences.

Accuracy (in %) Whole tumor Tumor core Active tumor
FLAIR 90 89 83

T2 88 89 83
T1C 83 84 81
T1 81 80 78

Multisequence 90 90 88

Tab. 5.4: Accuracy of particular brain tumor structures detection in coronal slices of different
MR sequences.

Accuracy (in %) Whole tumor Tumor core Active tumor
FLAIR 90 88 86

T2 85 89 86
T1C 80 83 81
T1 76 77 75

Multisequence 91 91 88

Tab. 5.5: Accuracy of particular brain tumor structures detection in axial slices of different
MR sequences.

Accuracy (in %) Whole tumor Tumor core Active tumor
FLAIR 94 92 88

T2 89 90 88
T1C 83 87 89
T1 80 80 78

Multisequence 93 93 92

Discussion

In this part, the supervised method for brain tumor presence detection was tested. It was eva-
luated for two different cases, the detection in stand-alone 2D images and slice-wise detection
in 3D volumes. The former used only features extracted from the asymmetry maps, while the
latter added the asymmetry-based image intensity features. Figure 5.1 shows Precision-recall
curves for axial plane test set for each tumor part detection using different MR sequences



Tab. 5.6: Accuracy of particular brain tumor structures detection in coronal slices of different
MR sequences.

Accuracy (in %) Whole tumor Tumor core Active tumor
FLAIR 93 91 87

T2 86 90 87
T1C 80 87 88
T1 77 80 77

Multisequence 94 93 92

in both stand-alone slices and slices in 3D volume. Recall is equivalent to sensitivity. Green
dashed curves depict isolevel lines of F-measure, which is equivalent to the Dice score. Graphs
for the coronal plane are omitted since they are very similar to the graphs for the axial plane.
As it can be concluded from the results, the intensity features bring important information,
which in most tests improved the detection accuracy, e.g. the performance increased from 90%
to 94% using axial FLAIR slices for whole tumor detection, or from 81% to 88% using coronal
T1C slices for active tumor detection.

According to the results, it can be stated that in stand-alone images all parts can be
automatically detected with the highest accuracy in FLAIR. In 3D volume slices, incorporating
intensity-based features improves the results and active tumor is than detected with highest
accuracy in T1C slices. However, using all MR sequences improves the performance in almost
all detection tasks. It was shown that the algorithm reaches high accuracy in both axial and
coronal planes. Since, according to the best knowledge of the author, there are no methods
for the fast brain tumor presence detection task, it is not possible to compare the results with
state-of-the-art algorithms.

The computing time of 0.11s per slice and sequence, where 90% of the time is consumed
by symmetry analysis and the rest by feature extraction and classification, shows that this
method can be used either for fast decision, whether an image contains a tumor, or in the
segmentation process as a pre-processing step to determine the slices to be segment or analyzed.
Many state-of-the-art methods based on deep learning architectures use slice-wise approach,
and, therefore, this method can also be used in pipelines of such algorithms.

5.2 Unsupervised 2D brain tumor extraction
After the whole tumor presence is detected in 2D, it can be extracted using the novel unsu-
pervised 2D brain tumor extraction method described in Sec. 4.2. This method is designed for
FLAIR images only, therefore, other MR sequences will not be considered here.
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Obr. 5.1: Precision-recall curves for (a) whole tumor, (b) tumor core and (c) active tumor
presence detection in both stand-alone slices (dashed curves) and slices in 3D volume (solid
curves) for the axial plane test set. Circles on each curve represent the actual achieved results.
Green dashed curves depict isolevel lines of F-measure, which is equivalent to the Dice score.

Experimental setup

Since the proposed algorithm is unsupervised, i.e. no training phase is required; it was tested
on the whole set of 254 FLAIR volumes. Axial and coronal slices containing a whole tumor
area of at least 6cm2 were extracted from each volume since the method cannot deal with
smaller pathologies. The overall numbers of axial and coronal slices included in the test are
22213 (18445 of HG and 3768 of LG) and 28078 (23401 of HG and 4669 of LG), respectively.



Application to the test set

The results of the algorithm application to axial and coronal slices are summarized in Tab. 5.7.
The table contains the overall results as well as the results achieved for high- and low-grade
gliomas evaluated by the Dice score, precision and sensitivity.

Tab. 5.7: Segmentation results reporting average and median Dice score, precision and sensiti-
vity. Shown are results for axial and coronal slices. “std” and “mad” denote standard deviation
and median absolute deviance. HG and LG stand for high- and low-grade gliomas, respectively.

Axial Coronal
HG / LG HG / LG

Dice Score (in %)
mean ± std 63±30 63±30 / 59±32 63±29 63±29 / 60±30

median ± mad 77±27 77±27 / 76±30 76±26 78±26 / 70±28
Precision (in %)

mean ± std 64±37 64±37 / 57±39 63±37 65±37 / 58±38
median ± mad 85±35 85±35 / 71±37 81±34 84±34 / 65±36

Sensitivity (in %)
mean ± std 87±31 87±16 / 91±12 87±15 86±15 / 91±12

median ± mad 92±11 91±12 / 96±09 91±11 91±12 / 95±09

In the table, one can see higher sensitivity values than precision. This points to the fact
that the resulting area is usually larger than the true tumor area, in other words, more false
positives than false negatives are present. The sensitivity values show that in average 87% of
positive pixels were found, while the precision values show that in average 64% of positive
labels were truly positive. The average computing time per slice is 0.13 seconds, where 75%
of the time is consumed by the symmetry analysis. Examples of the comparison of a manual
annotation and an automatic extraction in both axial and coronal planes are shown in Fig. 5.2.
Three successful and one unsuccessful (the most right) automatic segmentations are shown
for each plane. The unsuccessful segmentation in axial plane shows the failure of the method
in case of a small pathology. The algorithm was not able to correctly determine the threshold
due to the small amount of tumorous pixels. The unsuccessful segmentation in coronal plane
shows a failure of the method for an image where the intensities of the pathology are very
similar to the intensities of healthy tissues.

Discussion

The purpose of this algorithm was to extract a tumor area (including edema) from a stand-
alone FLAIR image. The results are not comparable to the state-of-the-art methods used
for multisequence 3D brain tumor extraction, which are mostly based on machine learning
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Obr. 5.2: Examples of the brain tumor extraction using the unsupervised algorithm in 2D
(a) axial and (b) coronal FLAIR slices. A comparison of manual annotation (yellow) and
automatic extraction (magenta) is depicted.

techniques using the intensity information. Such approach is possible for 3D volumes where
the intensity normalization can be performed. However, this is not suitable for a stand-alone
axial or coronal slice with unknown information about the tumor size and the slice coordinates.
This method was designed to deal with such images and reached promising results with average
and median Dice scores of 63±30 and 77±27 and computing time of only 0.13 seconds.

5.3 Unsupervised 3D brain tumor extraction
In this section, the method proposed for unsupervised brain tumor locating and extracting is
evaluated. This method is based on a novel unsupervised algorithm combining 3D multireso-
lution symmetry analysis described in Sec. 4.1 and automatic thresholding.

Experimental setup

The 3D unsupervised brain tumor extraction algorithm was also tested on the whole database
of 254 multisequence volumes since it does not require any training phase, and, hence, data
partitioning is not necessary. This algorithm requires only T2 and FLAIR images, therefore



other MR sequences are not considered in these tests. During testing, the accuracy of the au-
tomatic tumor locating using the symmetry analysis is evaluated together with the automatic
whole tumor extraction. The tumor location is determined by the maximum of the multireso-
lution asymmetry map. This point shows the highest probability of the tumor location and,
hence, it is able to detect slices in all three planes where there is the maximum probability of
the tumor presence. If this point lies within the area of a tumor, it is considered as a correct
locating. Since the asymmetry map is symmetrical according to the mid-sagittal plane, i.e.
two maxima exist, either of them is considered. The second test evaluates the accuracy of the
whole tumor region extraction. This is evaluated by the Dice score, precision and sensitivity.

Application to the test set

Brain tumor locating. This test was performed separately for each MR sequence, i.e.
T2 and FLAIR. Results for both MR sequences are summarized in Tab. 5.8. The average
computing time for one sequence is 6.7±0.8 seconds per volume.

Tab. 5.8: Brain tumor locating using asymmetry detection. The table expresses the percentage
of correctly located brain tumors.

Accuracy (in %) Overall HG / LG
T2 90 90 / 90

FLAIR 95 96 / 95
T2+FLAIR 95 95 / 94

As one can see in the table, the proposed algorithm can automatically locate a tumor
and show slices with a tumor within less than 7 seconds with an accuracy of 95% in FLAIR
volumes and 90% in T2 volume of 1mm isotropic resolution. Combination of T2 and FLAIR
volumes, where the time necessary for the asymmetry detection is twice higher, did not bring
any improvement, and, hence, it can be stated that FLAIR volume is more suitable for brain
tumor locating, at least in case of using the symmetry prior and the proposed approach.

An example of the tumor locating algorithm is shown in Fig. 5.3 where slices with the
maximum asymmetry of all three planes are shown. The coordinates of this maximum are
depicted by blue circle. The figure shows four different slices per subject. Two slices are shown
in sagittal plane. The purpose is to show both slices with the maximum asymmetry, i.e. one
slice from the left an one slice from the right hemisphere.

Brain tumor extraction. The performance of the brain tumor extraction algorithm based
on the symmetry analysis is evaluated here by mean and median values of Dice score, precision
and sensitivity. All results are summarized in Tab. 5.9. The overall performance as well as
the performance for high-grade (HG) and low-grade (LG) gliomas is shown. The average



computing time is 13.8±1.3 seconds per volume including the previous symmetry analysis in
both volumes, which reaches about 93% of the computing time. Slightly lower performance
was achieved by applying symmetry analysis only to one volume, e.g. FLAIR. However, the
computing time decreased to 7.7±0.9 seconds in this case.

Tab. 5.9: Brain tumor extraction using asymmetry detection.

Overall HG / LG
Dice Score (in %)

mean ± std 66±21 65±22 / 70±20
median ± mad 74±17 74±17 / 75±15

Precision (in %)
mean ± std 89±22 90±22 / 88±23

median ± mad 98±14 99±14 / 98±15
Sensitivity (in %)

mean ± std 59±21 57±21 / 65±22
median ± mad 64±17 62±17 / 68±17

Examples of the comparison between the automatic extraction and the manual annotation
are given in Fig. 5.3 where manual annotations are depicted by yellow color, and the results of
the automatic extraction process are shown by magenta color. The figure shows four different
slices per subject. Two sagittal slices are shown. The purpose is to show both slices with the
maximum asymmetry, i.e. one slice from the left and one slice from the right hemisphere.

Discussion

In this section, the unsupervised algorithm for fast brain tumor locating and extraction was
tested. The unsupervised approach for the brain tumor locating and delineating was verified
on FLAIR and T2 volumes of 254 subjects. The proposed method used an approach different
from other state-of-the-art algorithms. Compared to them, it is not supervised and, therefore,
it does not require any training phase. It cannot reach the top three state-of-the-art results
reported in [21] with 79%-82% (here: 64%), but it still reached comparative results with other
methods described in that paper. However, the advantage of the proposed algorithm is its
speed since it is not that demanding as other methods. With 13.8 seconds, it is faster than the
fastest method reported in [21], where only 3 methods out of 16 running on CPU were able to
extract brain tumor in less than 8 minutes. Therefore, the proposed algorithm is suitable for
fast preliminary approximate tumor extraction rather than accurate segmentation. The first
part of the algorithm, i.e. brain tumor locating, is suitable for fast brain tumor locating for
pre-analysis of a single-sequence volume since it may pre-analyze a single volume in less than
8 seconds.



Obr. 5.3: Examples of the unsupervised brain tumor extraction based on the multiresolution
symmetry analysis. The results are demonstrated on one FLAIR (upper row) and one T2
(lower row) volume. The images show slices where the maximum asymmetry was detected
with corresponding manual annotation (yellow) and automatic extraction (magenta). Blue
circles point to the voxel with the highest asymmetry. Both sagittal slices with the maximum
asymmetry are shown.

5.4 Brain tumor segmentation using local structure pre-
diction

In this section, the method proposed for segmentation of particular structures of the brain
tumor, i.e. whole tumor, tumor core, and active tumor, is evaluated. This method is based on
an approach, whose novelty lies in the principled combination of the deep approach together
with the local structure prediction in medical image segmentation task. The algorithm was
described in Sec. 4.3.

Experimental setup

The algorithm is designed for a binary segmentation problem and it was applied separately to
three brain tumor segmentation sub-problems: segmentation of whole tumor, tumor core and
active tumor. From each training subject, 1500 random 2D multisequence image patches with
corresponding label patches were extracted summing up to 244 500 training image patches.
To ensure approximate balance of the database, higher probability of patch extraction was
around the pathological area.

As it has been shown in [28], the computational demands of 3D CNN are still out of scope
for today’s computers. Therefore the volume is processed sequentially in 2D in the plane with
the highest resolution, the axial plane here. Image patches from each multisequence volume



are mapped into four 2D input channels of the network. Alternatives to this basic approach
have been proposed: slice-wise 3D segmentation approaches using CNN were proposed used in
[28] and [29]. The former proposed using of a 2D CNN for each orthogonal plane separately.
The later proposed extraction of corresponding patches for a given pixel from each orthogonal
plane and mapping them as separated feature maps. In this work, both of these approaches
were tested and compared to the single slice approach that was chosen here.

The parameters of the algorithm, i.e. the image patch size, the label patch dictionary size,
and the label patch size were optimized separately for each sub-task on the validation set and
the results of the optimization process are described in 5.4. It is followed by the description of
the application to the tests set with examples of the segmentation results that are compared
to manual annotations.

Parameter Optimization

Besides the parameters of the convolutional architecture, there are parameters of the proposed
model: the image patch size 𝑑, the label patch size 𝑑′, and the size of the label patch dictionary
𝑁 . These parameters were tested with a pre-optimized fixed network architecture depicted in
Fig. 4.2, which consisted of two convolutional layers, both with 24 convolutional filters of
kernel size 5 × 5, and two mean-pooling layers in alternating order. The values selected for
subsequent experiments are highlighted in graphs with a red vertical line.

Image patch size. The image patch size 𝑑 is an important parameter since the segmented
structures have different sizes and therefore less or more information is necessary for the label
structure prediction. Figure 5.4 shows the Dice score values for different patch sizes with
their best label patch size. According to the graphs, 𝑑 = 8 was selected for the active part
segmentation and 𝑑 = 24 for the segmentation of tumor core and whole tumor. All three tests
were performed for 𝑁 = 32, which according to the previous tests is sufficiently enough for
all patch sizes. The best results were in all cases achieved for 𝑑′ ≥ 1

2𝑑. The values selected for
subsequent experiments are indicated by a red vertical line.

Size of the label patch dictionary. The size of the label patch dictionary 𝑁 influences
differences between each label template t as well as the differences between belonging image
patches x in each groups 𝑛. Results for several values of 𝑁 are depicted in Fig. 5.4. Generally
the best results were achieved for 𝑁 = 16. The results were evaluated in similar manner as in
the previous test, i.e. the best 𝑑′ is used for each value of 𝑁 . The values selected for subsequent
experiments are indicated by a red vertical line.

Label patch size. The label patch size 𝑑′ influences the size of structure prediction as well
as the number of predictions for each voxel. Figure 5.4 shows the increasing performance with
increasing 𝑑′. The values selected for subsequent experiments are indicated by a red vertical
line.
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Obr. 5.4: Dice score as a function of the image patch size 𝑑 with its best label patch size 𝑑′

and the label patch dictionary size 𝑁 = 32 for whole tumor (blue), tumor core (green) and
active tumor (red).
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Obr. 5.5: Dice score as a function of the label patch dictionary size 𝑁 using the optima of
Fig. 5.4: 𝑑 = 24 for whole tumor (blue), 𝑑 = 24 for tumor core (green), 𝑑 = 8 for active tumor
(red).

2D versus 3D. Both triplanar and 2.5D deep learning approaches for 3D data segmentation
as proposed in [28] and [29], respectively, were tested and compared to the single slice-wise seg-
mentation approach. It was discovered that both approaches even decreased the performance
of the proposed method by 2% and 5%, respectively.

Application to the test set

After the optimization of the parameters using the validation set, the algorithm was tested on
a new previously unseen set of 66 random subjects from BRATS 2014. The performance for
both validation and test set of all three structures is summarized in Tab. 5.10. For the test set,
the achieved average Dice scores are 83% (whole tumor), 75% (tumor core), and 77% (active
tumor). Tables 5.11 and 5.12 summarize precision and sensitivity of the proposed algorithm
for all three segmented structures. As it can be derived from the results in these two tables,
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Obr. 5.6: Dice score as a function of the label patch size 𝑑′ for whole tumor (blue) with 𝑑 = 24,
tumor core (green) with 𝑑 = 24, and active tumor (red) with 𝑑 = 8, with label patch dictionary
size 𝑁 = 16.

the method has higher sensitivity than precision for the whole tumor region, which means that
there are less false negatives than false positives, in other words the resulting area is usually
larger than the true region. In average, 89% of the whole tumor area is labeled as pathological,
while 81% of the resulting area is truly pathological. For tumor core and active tumor, the
situation is opposite. High values of precision show that high percentage of voxels labeled as
tumorous were selected as tumorous by expert too, i.e. 87% for tumor core and 85% for active
tumor in average. However, the values of sensitivity are lower, especially for tumor core in
case of low-grade gliomas. This means that there are less false positives than false negatives.
In other words, the resulting area is smaller than the region selected manually by an expert.

Tab. 5.10: Segmentation results on validation and test data sets, reporting average and median
Dice scores. Shown are the results for all three segmented structures, i.e., whole tumor, tumor
core and active tumor. Scores for active tumor are calculated for high-grade cases only. “std”
and “mad” denote standard deviation and median absolute deviance. HG and LG stand for
high- and low-grade gliomas, respectively.

Dice Score Whole Core Active
(in %) HG / LG HG / LG

Validation set
mean ± std 81±15 80±17 / 85±06 79±13 85±08 / 65±15 81±11

median ± mad 86±06 86±07 / 85±05 85±06 85±03 / 73±10 83±08
Test set

mean ± std 83±13 86±09 / 76±21 75±20 79±14 / 61±29 77±18
median ± mad 88±04 88±03 / 87±05 83±08 82±07 / 72±14 83±09



Tab. 5.11: Segmentation results on validation and test data sets, reporting average and median
precision. Shown are the results for all three segmented structures, i.e., whole tumor, tumor
core and active tumor. Scores for active tumor are calculated for high-grade cases only. “std”
and “mad” denote standard deviation and median absolute deviance. HG and LG stand for
high- and low-grade gliomas, respectively.

Precision Whole Core Active
(in %) HG / LG HG / LG

Validation set
mean ± std 78±16 77±18 / 81±07 92±06 91±07 / 93±03 90±10

median ± mad 84±08 83±08 / 84±08 93±03 93±03 / 92±01 92±04
Test set

mean ± std 81±16 83±11 / 71±25 87±13 88±13 / 86±12 85±18
median ± mad 86±04 87±03 / 82±07 92±04 92±04 / 89±09 91±05

Tab. 5.12: Segmentation results on validation and test data sets, reporting average and median
sensitivity. Shown are the results for all three segmented structures, i.e., whole tumor, tumor
core and active tumor. Scores for active tumor are calculated for high-grade cases only. “std”
and “mad” denote standard deviation and median absolute deviance. HG and LG stand for
high- and low-grade gliomas, respectively..

Sensitivity Whole Core Active
(in %) HG / LG HG / LG

Validation set
mean ± std 87±10 84±11 / 93±04 58±26 66±22 / 35±25 71±17

median ± mad 89±06 88±05 / 95±02 66±17 71±12 / 25±11 73±12
Test set

mean ± std 89±09 89±09 / 89±08 66±24 71±21 / 47±27 72±23
median ± mad 92±03 92±02 / 90±06 71±16 78±11 / 53±17 80±12

Examples of segmentations generated by the proposed method and corresponding manual
segmentations for three segmented structures on representative test cases are shown in Fig. 5.7.

Compute time vs accuracy The possibility of subsampling the volume in order to reduce
the computational demands was tested here. The trade-off between accuracy and computing
time per volume is analyzed in Tab. 5.13 by running several experiments with different reso-
lutions of the CNN output before final prediction of the local structure (first column), i.e.,
subsampling in 𝑥 and 𝑦, as well as different distances between segmented slices (second co-
lumn), i.e., subsampling in 𝑧 direction. All experiments were run on 4-core CPU Intel Xeon E3



3.30GHz. As one can see in the table, the state-of-the-art results can be achieved in an order
of magnitude shorter time than in case of most methods participated in BRATS challenge.
Thanks to the fast implementation of the CNN classification algorithm, all three structures
can be segmented in the whole volume in 13 seconds without using GPU implementation. Pro-
cessing by the CNN is approximately 80% of the overall computing time, while the assignment
final labels using local structure prediction requires only 17%. The rest of the time are other
operations including interpolation.

Tab. 5.13: Trade-off between spatial subsampling, computing time, and segmentation accuracy.
First two columns express different CNN output resolution, i.e., after subsampling in 𝑥 and 𝑦,
and steps between segmented slices, i.e., after subsampling in 𝑧 direction.

CNN output Slice Computing time Dice Score (in%)
resolution step per volume Whole Core Active

1/4 4 13s 83 75 73
1/4 2 22s 84 75 74
1/4 1 74s 84 75 75
1/2 4 24s 83 75 74
1/2 2 41s 83 75 76
1/2 1 142s 84 75 76
1/1 4 47s 83 75 75
1/1 2 80s 83 75 77
1/1 1 280s 83 75 77

Discussion

In this section, it has been shown that exploiting local structure through the use of the label
patch dictionaries improves segmentation performance over the standard approach predicting
voxel wise labels. It has also been shown that local structure prediction can be combined
with, and improves upon, standard prediction methods, such as CNNs. When optimized for
a given segmentation problem it also performs spatial regularization at the local level. On
the reference benchmark set, the proposed approach achieved state-of-the-art performance
even without post-processing through Markov random fields which were part of most best
performing approaches in the tumor segmentation challenge. Moreover, all three structures
can be extracted from the whole volume within only 13 seconds using CPU obtaining state-
of-the-art results providing means, for example, to do online updates when aiming at an
interactive segmentation. The resulting Dice scores are comparable to intra-rater similarity
that had been reported for the three annotation tasks in the BRATS data set [21] with Dice
scores 85% (whole tumor), 75% (tumor core) and 74% (active tumor) and to the best results



Obr. 5.7: Example of consensus expert annotation (yellow) and automatic segmentation
(magenta) applied to the test image data set. Each row shows two cases. From left to right:
segmentation of whole tumor (shown in FLAIR), tumor core (shown in T2) and active tumor
(shown in T1c).

of automated segmentation algorithms with Dice scores of the top three in between 79%–82%
(here: 83%) for the whole tumor segmentation task, 65%–70% (here: 75%) for the segmentation
of the tumor core area, and 58%–61% (here: 77%) for the segmentation of active tumor.



6 CONCLUSION
This thesis introduced three approaches for brain tumor detection and segmentation in 2D or
3D single- and multisequence MRI. The attention was paid to high- and low-grade gliomas.
All three algorithms were tested and evaluated on a large public BRATS challenge database
of 254 3D multisequence subjects. with co-registered and skull-stripped FLAIR, T2, T1 and
T1-contrast enhanced volumes of isotropic resolution 1mm. All data sets included manual an-
notations provided by experts and they were used for the evaluation of the proposed methods.

The first two approaches explored the suitability of using prior brain anatomy knowledge
to detect and extract brain tumors. The first method used this information for supervised
detection of a particular brain tumor structure presence in 2D single- and multisequence images
in both stand-alone slices and slices in 3D volume of planes where the left-right symmetry
exists, i.e. axial and coronal. When applied slice-wise to 3D volumes, more information was
used and higher accuracy was achieved. For stand-alone multisequence slices, where only the
information extracted from asymmetry maps was used, the detection accuracy of each structure
of size ≥1cm2 was around 90%. When applied to the same slices with the use of asymmetry
information together with image intensity information, which is only applicable in 3D volume,
the accuracy increased to 93%. A slice was processed in only 0.11 seconds in average, which
makes it suitable for the use in a pipeline of any brain tumor segmentation techniques.

The second method applied similar methodology to locate a brain tumor in a singlesequence
2D and 3D MRI followed by its extraction from a multisequence MRI in an unsupervised
manner. In 2D MR, the computing time of the whole extraction process was 0.13 seconds with
reached average and median Dice score of 63±30 and 77±27, respectively. In 3D, the proposed
method was able to locate the tumor in less than 8 seconds and extract it in about 13 seconds
with reached average and median Dice score of 66±21 and 74±17, respectively. Compared to
other state-of-the-art algorithms, both proposed methods are not influenced by the accuracy
of the intensity normalization algorithm since they are independent on the intensity range.

The third method, focused on the segmentation of whole tumor, tumor core, and active
tumor, showed that exploiting local structure through the use of the label patch dictionaries
improved segmentation performance over the standard approach predicting voxel-wise labels.
It was shown that local structure prediction can be combined with, and improves upon, stan-
dard prediction methods, such as CNN. When the label patch size is optimized for a given
segmentation task, it is capable of accumulating local evidence for a given label, and also
performs a spatial regularization at the local level. The proposed approach achieved state-of-
the-art performance even without sophisticated post-processing step which are part of most
best performing approaches in brain tumor segmentation. Moreover, all three structures can
be extracted from the whole volume within only 13 seconds using CPU obtaining state-of-the-
art results providing means, for example, to do online updates when aiming at an interactive
segmentation. Most medical image data consist of 3D volumes. Therefore, one of the possible
future directions in the development of the local structure prediction algorithm can be an
exploration of natural 3D implementation instead of slice-wise approach.
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ABSTRACT
This work deals with the brain tumor detection and segmentation in multisequence MR images
with particular focus on high- and low-grade gliomas. Three methods are propose for this
purpose. The first method deals with the presence detection of brain tumor structures in axial
and coronal slices. This method is based on multi-resolution symmetry analysis and it was
tested for T1, T2, T1C and FLAIR images. The second method deals with extraction of the
whole brain tumor region, including tumor core and edema, in FLAIR and T2 images and
is suitable to extract the whole brain tumor region from both 2D and 3D. It also uses the
symmetry analysis approach which is followed by automatic determination of the intensity
threshold from the most asymmetric parts.

The third method is based on local structure prediction and it is able to segment the whole
tumor region as well as tumor core and active tumor. This method takes the advantage of a
fact that most medical images feature a high similarity in intensities of nearby pixels and a
strong correlation of intensity profiles across different image modalities. One way of dealing
with – and even exploiting – this correlation is the use of local image patches. In the same way,
there is a high correlation between nearby labels in image annotation, a feature that has been
used in the “local structure prediction” of local label patches. Convolutional neural network is
chosen as a learning algorithm, as it is known to be suited for dealing with correlation between
features.

All three methods were evaluated on a public data set of 254 multisequence MR volumes
being able to reach comparable results to state-of-the-art methods in much shorter computing
time (order of seconds running on CPU) providing means, for example, to do online updates
when aiming at an interactive segmentation.
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