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Abstract. The study presents a detailed analysis of a contemporary method 
for fitting and extrapolation of turbine performance maps of automotive 
turbochargers. The complete algorithm is implemented in a MATLABTM 
based application with graphical user interface, the ultimate goal of which is 
to facilitate turbocharger performance data postprocessing. Guidelines are 
given on how to generate extrapolated maps from a fitted model considering 
the output data resolution. As a key validity criterion, fit quality of a sample 
measured turbine map is assessed using statistical and analytical methods. 
The report is concluded by a discussion of possible ways to improve the 
robustness of the algorithm with respect to input data of different origin and 
quality. 

1 Introduction  
The most appropriate turbocharger for a combustion engine is selected by the matching 
process. It must confirm that target engine power and torque can be achieved based on 
thermodynamic properties of applied turbine and compressor. These are described by 
performance maps, which include information about the interrelationship between rotating 
speed, pressure ratio, mass flow rate and efficiency. 

Turbocharger performance maps can be acquired in several ways including (but not 
limited to) hot gas stand measurement and CFD based prediction. In each case, however, the 
product is a set of scattered data, which must be numerically fitted to enable 
inter/extrapolation to any feasible operating point by simulation software (see Figure 1). 

State-of-the-art commercial products typically include working solutions for modelling 
of turbomachinery performance characteristics. GT-SUITETM [1, 2, 3] can be mentioned as 
an example of the most widely used application for engine thermodynamics simulation and 
turbocharger matching (among other). 

The aim of this work is to reproduce the industry-standard turbine map fitting method and 
analyse its properties, so it can be considered for a potential further use in post-processing of 
larger amounts of experimental data. MATLABTM [4] environment has been selected for 
implementation of the algorithm for reasons of its availability and easy handling of input data 
files with help of built-in functions. 
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Fig. 1. An example of pressure ratio, corrected mass flow rate and turbine speed traces produced as part 
of three-cylinder engine thermodynamic cycle simulation in GT-SUITE (TDCF – top dead centre firing, 
TDC – top dead centre, BDC – bottom dead centre). 

2 Implementation of turbine map fitting method 
The common turbine performance model, as described in literature [1, 2], consists of five 
fitting functions for key thermodynamic properties of the machine. These are the optimum 
blade speed ratio (BSR), maximum efficiency, optimum corrected mass flow rate, normalized 
efficiency and normalized mass flow rate. BSR is defined as a ratio between the 
circumferential velocity of a turbine wheel and the isentropic spouting velocity, which would 
be obtained during an ideal expansion of the working gas between the entry and exit pressures 
of the stage. It can be calculated using the formula [5, 6] 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑢𝑢
𝑐𝑐0
= 𝜋𝜋𝜋𝜋 𝑛𝑛

60

√2𝑐𝑐𝑝𝑝𝑇𝑇1_𝑡𝑡𝑡𝑡𝑡𝑡[1−(
𝑝𝑝2

𝑝𝑝1_𝑡𝑡𝑡𝑡𝑡𝑡
)
𝜅𝜅−1
𝜅𝜅 ]

   
(1) 

where u [m/s] is circumferential velocity of the turbine wheel, c0 [m/s] is isentropic spouting 
velocity, D [m] is wheel diameter, n [rpm] is frequency of rotation, cp [J/kg/K] is specific 
heat capacity at constant pressure, T1_tot [K] is inlet total temperature, p1_tot [Pa] is inlet total 
pressure, p2 [Pa] is outlet static pressure and κ [-] is ratio of specific heats. 

2.1 Pre-processing of turbine map 

A typical turbine map is obtained as a product of hot gas stand measurement [5, 7], where 
a complete turbocharger is mounted on the testing device and characterised under steady 
conditions. The result is a set of operating points defined by corrected or reduced rotating 
speed (NT), pressure ratio (PRT), corrected or reduced mass flow rate (WT) and thermo-
mechanical efficiency (EtaTM). Also, they are usually sorted into groups of constant rotating 
speed, which are referred to as speed lines. 

Corrected (or reduced) quantities are used to make the performance map applicable to any 
operating conditions determined by inlet total pressure and temperature. The definition of 
corrected speed is [5, 6] 
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where u [m/s] is circumferential velocity of the turbine wheel, c0 [m/s] is isentropic spouting 
velocity, D [m] is wheel diameter, n [rpm] is frequency of rotation, cp [J/kg/K] is specific 
heat capacity at constant pressure, T1_tot [K] is inlet total temperature, p1_tot [Pa] is inlet total 
pressure, p2 [Pa] is outlet static pressure and κ [-] is ratio of specific heats. 
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a complete turbocharger is mounted on the testing device and characterised under steady 
conditions. The result is a set of operating points defined by corrected or reduced rotating 
speed (NT), pressure ratio (PRT), corrected or reduced mass flow rate (WT) and thermo-
mechanical efficiency (EtaTM). Also, they are usually sorted into groups of constant rotating 
speed, which are referred to as speed lines. 

Corrected (or reduced) quantities are used to make the performance map applicable to any 
operating conditions determined by inlet total pressure and temperature. The definition of 
corrected speed is [5, 6] 

𝑁𝑁𝑁𝑁 = 𝑛𝑛√ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇1_𝑡𝑡𝑡𝑡𝑡𝑡

   (2) 

where Tref [K] is reference temperature (usually 288 K). Reduced speed would be obtained 
by omitting the reference temperature in Equation 2. 

Corrected mass flow rate is defined as [5, 6] 

𝑊𝑊𝑊𝑊 = 𝑚̇𝑚 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝1_𝑡𝑡𝑡𝑡𝑡𝑡 √

𝑇𝑇1_𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

   (3) 

where 𝑚̇𝑚 [kg/s] is mass flow rate, pref [Pa] is reference pressure (usually 101 325 Pa). 
Reduced mass flow rate would be obtained by dropping reference pressure and temperature 
in Equation 3. 

Pressure ratio is determined by the inlet total pressure and outlet static pressure (according 
to a convention [5, 6]) as follows 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑝𝑝1_𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝2

   (4) 

The first step of turbine map fitting process is to identify operating points of maximum 
efficiency within each speed line and save their indices (see Figure 2). Then, blade speed 
ratio is calculated at each operating point according to Equation 1. 

 
Fig. 2. Turbine efficiency map (measured on a gas stand) with highlighted operating points of maximum 
efficiency at each speed line (distinguished by colour). 

2.2 Fitting the optimum blade speed ratio 

Optimum blade speed ratio is linked to turbine operation with maximum efficiency at certain 
level of pressure ratio. This relationship is assumed to be linear [1, 2], so the fitting function 
can be expressed as [10] 

𝐵𝐵𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑞𝑞   (5) 

where BSRopt [-] is the optimum blade speed ratio, k [-] is the slope of the line and q [-] is a 
constant offset. Parameters k and q can be determined using the least squares method [8, 10]. 

3

MATEC Web of Conferences 328, 03010 (2020)	 https://doi.org/10.1051/matecconf/202032803010
XXII. AEaNMiFMaE-2020



 
Fig. 3. Linear regression of optimum BSR relative to PRT. 

As soon as the fitting function for BSRopt is known, normalized blade speed ratio (BSRnorm) 
can be calculated at each operating point of the turbine map. It is defined as [1, 2] 

𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜

   (6) 

where BSRopt is determined at the pressure ratio of the operating point being treated. 

2.3 Fitting the maximum efficiency 

Maximum efficiency points identified in the first step of the algorithm (see chapter 2.1) are 
fitted with respect to corrected speed [1, 2]. The fitting function should be smooth, yet there 
is not enough reference in the literature that would suggest a specific one. Nevertheless, a 
spline curve can be recommended for its stability and easy definition of specific extrapolation 
requirements (the common approach is a constant value [1, 2]). 

 
Fig. 4. Maximum efficiency spline with flat extrapolation. 

With the fitting function for maximum efficiency available, normalized efficiency 
(EtaTMnorm) can be calculated at each operating point of the map. The formula is [1, 2] 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

   (7) 
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where EtaTMmax [-] is determined at the pressure ratio of the operating point being treated. 
Maximum efficiency function is, however, defined with respect to corrected speed, so the 
optimum speed for given pressure ratio must be calculated first. It can be done by merging 
the function for optimum BSR (see Equation 5) and the definition of BSR (see Equation 1). 
The resulting formula is 

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑞𝑞)
√2𝑐𝑐𝑝𝑝𝑇𝑇1_𝑡𝑡𝑡𝑡𝑡𝑡[1−( 1

𝑃𝑃𝑃𝑃𝑃𝑃)
𝜅𝜅−1

𝜅𝜅 ]

𝜋𝜋𝜋𝜋
60

   (8) 

where nopt [rpm] is the optimum rotating frequency at given PRT. 

2.4 Fitting the normalized efficiency 

According to the literature [1, 2], all turbine operating points should lie on a single curve 
when plotted in a diagram of normalized efficiency over normalized blade speed ratio (see 
Figure 5). In GT-SUITE, this curve is divided in two. For BSRnorm < 1, the fitting function is 
exponentiation [1, 2] 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1 − (1 − 𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑏𝑏   (9) 

where exponent b [-] is a fitted parameter. 
For BSRnorm > 1, the fitting function is a parabola [1, 2] 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1 − 𝑐𝑐(𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1)2  (10) 

where coefficient c [-] is a fitted parameter that is also related to the intercept of the function 
with the x-axis. The value of BSRnorm, at which the x-axis is crossed, can be determined using 
an equation 

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 =  1
𝑐𝑐2 + 1  (11) 

where BSRint [-] is the value of normalized BSR (>1) at zero normalized efficiency. 

 
Fig. 5. Normalized efficiency fitted with respect to normalized blade speed ratio. 
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2.5 Fitting the optimum corrected mass flow rate 

A value of optimum corrected mass flow rate is associated to each operating point of 
maximum efficiency at each speed line (see Chapter 2.1). These points are fitted with respect 
to corrected speed and the function is supposed to pass through the origin of the coordinate 
system [1, 2]. A spline curve is a convenient interpolant again (see Chapter 2.3). 

 
Fig. 6. Optimum corrected mass flow rate fitted by a spline passing through the origin of the coordinate 
system with flat extrapolation to high corrected speeds. 

With the fitting function for optimum corrected mass flow rate available, normalized mass 
flow rate (WTnorm) can be calculated at each operating point according to [1, 2] 

𝑊𝑊𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑊𝑊𝑊𝑊
𝑊𝑊𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

  (12) 

where WTopt [kg/s] is optimum corrected mass flow rate at the pressure ratio of the operating 
point being treated. The optimum mass flow rate function is, however, defined with respect 
to corrected speed, so the optimum speed for given pressure ratio must be determined using 
Equation 8 as described in Chapter 2.3. 

2.6 Fitting the normalized mass flow rate 

According to the literature [1, 2], all turbine operating points should lie on a single curve 
when plotted as normalized mass flow rate over normalized blade speed ratio (see Figure 7). 

 
Fig. 7. Normalized mass flow rate fitted with respect to normalized blade speed ratio. 
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Fig. 7. Normalized mass flow rate fitted with respect to normalized blade speed ratio. 

In GT-SUITE, normalized mass flow rate is fitted by exponentiation in the form [1, 2] 

𝑊𝑊𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑚𝑚 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚(1 − 𝑐𝑐𝑚𝑚)  (13) 

where constant cm [-] and exponent m [-] are fitted parameters. 

3 Back-calculation of turbine performance charts 
Once turbine performance model is fitted to the source data, basic properties of the stage can 
be visualized in form of fully extrapolated efficiency and mass flow rate maps. 

3.1 Extrapolated efficiency map 

A turbine efficiency map consists of speed lines, which are made of operating points of 
constant corrected speed. It is convenient to select the same speeds that were identified in the 
source data, so its agreement with the fit is easily observable. 

The value of turbine efficiency (EtaTM) is obtained as a product of normalized efficiency 
(EtaTMnorm) and maximum efficiency (EtaTMmax) for certain pressure ratio (see Equation 7). 
Fitting function for EtaTMmax is, however, defined with respect to optimum corrected speed, 
so it must be calculated using Equation 8 first. EtaTMnorm, on the other hand, is fitted relative 
to normalized blade speed ratio (BSRnorm) according to Equations 9 and 10. Finally, BSRnorm 
is defined by Equation 6 and depends on BSR (see Equation 1) and BSRopt (see Equation 5). 
Pressure ratio (PRT), therefore, remains the only independent variable and enters the process 
as a generated set of equidistant values. 

 
Fig. 8. Extrapolated efficiency map with PRT points defined as an equally spaced set. 

The curves of low speed lines in Figure 8 have notably poorer resolution than the high-
speed ones, which is best visible near the peak efficiency points. One way to improve it would 
be by increasing the number of points constituting each speed line, however it may be 
inconvenient for sharing or using it as an input in engine thermodynamics simulation. 
Therefore, the input PRT coordinates can be derived from a set of equally spaced BSR values 
(see Equation 1) using a formula 
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𝑃𝑃𝑃𝑃𝑃𝑃 = [1 − (𝐵𝐵𝐵𝐵𝐵𝐵−1 𝜋𝜋𝜋𝜋𝜋𝜋
√2𝑐𝑐𝑝𝑝𝑇𝑇1_𝑡𝑡𝑡𝑡𝑡𝑡

)
2
]

𝜅𝜅
1−𝜅𝜅

   (14) 

In Figure 9, the number of points per speed line is the same or lower than in Figure 8. 

 
Fig. 9. Extrapolated efficiency map with PRT points derived from an equally spaced set of BSR. 

3.2 Extrapolated corrected mass flow rate map 

A turbine corrected mass flow rate map consists of speed lines plotted over the pressure ratio 
(see Figure 10). The process of generating the data is analogical to the case of efficiency (see 
Chapter 3.1), only with a different dependent variable. 

 
Fig. 10. Extrapolated mass flow map with PRT points defined as an equally spaced set. 
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The value of corrected mass flow rate (WT) is obtained as a product of normalized mass flow 
rate (WTnorm) and optimum mass flow rate (WTopt) for certain pressure ratio (see Equation 
12). Fitting function for WTopt is, however, defined with respect to optimum corrected speed, 
so it must be calculated using Equation 8 first. WTnorm, on the other hand, is fitted relative to 
normalized blade speed ratio (BSRnorm) according to Equations 9 and 10. Finally, BSRnorm is 
defined by Equation 6 and depends on BSR (see Equation 1) and BSRopt (see Equation 5). 
Pressure ratio (PRT), therefore, remains the only independent variable and enters the process 
as a generated set of equidistant values. 

4 Fit quality assessment 
The quality of the model can be evaluated in terms of difference between the source data and 
fit values obtained for the same set of independent variables (corrected speed and pressure 
ratio). The common way to do that is by means of statistical methods [8, 9], however it is 
worth to perform a visual analysis of characteristic parts of each extrapolated map too. 

4.1 Statistical approach 

In data fitting, the initial step of any statistical analysis is to determine the error between each 
source data point and the model. There are two turbine performance parameters that play the 
major role: efficiency and mass flow rate. The error values must be determined independently 
for each. To the basic statistics belong the minimum, maximum, mean, median, mean squared 
error (MSE) and root-mean-square error (RMSE) [8, 9, 10]. 

Table 1. Statistics of sample turbine map fit quality 

 Efficiency Normalized corrected 
mass flow rate 

Minimum error -5.09 % -1.28 % 

Maximum error 2.85 % 0.5 % 

Mean error -0.42 % -0.28 % 

Median error -0.27 % -0.07 % 

Mean absolute error 0.77 % 0.43 % 

MSE 1.48 0.34 

RMSE 1.22 % 0.58 % 

The fit is not perfectly neutral as both mean and median error are different from zero for 
both efficiency and corrected mass flow rate (see Table 1). Nevertheless, the difference is 
lower than half a percentage point, which is one tenth of the biggest efficiency deviation. 
The distribution of error sizes can also be visualised by means of a histogram [8, 9]. Figure 11 
shows that most of the efficiency error values fall in the interval from -1 % to 1 %, which 
corresponds to approximately three quarters of the total number of data points. Relative 
corrected mass flow rate error is even less scattered with zero occurrence below -2 % and 
above 1 %. 
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Fig. 11. Histograms of error size distribution for efficiency (left) and mass flow rate (right) fits. 

A few data points, on the other hand, fall in the bins of efficiency error bigger than 3 %, 
which makes it worth to visualize what speed line they belong to. This can be done by plotting 
the error values relative to the index of each operating point (see Figure 12). 

 
Fig. 12. Error size vs. data point index for efficiency (left) and mass flow rate (right) fits. 

From the assessment of Figure 12 follows that the biggest error values are mostly 
connected with the lowest speed lines. This is partly due to the shape of low speed lines, 
which is sharper in an efficiency chart (see Figure 9) and steeper in a corrected mass flow 
rate chart (see Figure 10), so the values of dependent variables are sensitive to PRT. Also, 
mass flow rate can be measured directly on a gas stand, which makes the data less noisy. 

4.2 Analytical approach 

Apart from the statistical evaluation, it is worth to visually check the shape of extrapolated 
turbine performance maps too. One way to do that is by examining the maximum efficiency 
curve plotted over the pressure ratio in an extrapolated efficiency map (see Figure 13). 
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Fig. 13. Extrapolated efficiency map with maximum efficiency curve and points. A and B mark 
endpoints of main spline part of maximum efficiency curve (tangential extrapolation dashed). 

In Figure 13, discrepancy can be seen between the location of maximum efficiency points 
derived from the model and those of the source map. The reason for the shift of their PRT 
coordinates is that optimum BSR function is defined as a linear regression (in the least squares 
sense [8, 10]) of source-map operating points of maximum efficiency, so the fit does not 
necessarily pass through all of them (see Figure 3). The PRT coordinate of each maximum 
efficiency point must be determined iteratively using Equation 14, because optimum BSR, as 
one of its inputs, depends on PRT too (see Equation 5). 

Further, areas A and B in Figure 13 mark the points, where maximum efficiency curve 
transitions from the main spline part defined by the source map data to extrapolation regions 
(see Figure 4). One benefit of the flat extrapolation is that outlying source map points are still 
reasonably represented by the turbine performance model (see operating points to the right 
of area B in Figure 13). This is possible, since endpoint efficiencies of the main spline part 
were defined using the peak-efficiency points of the lowest and the highest speed line of the 
source map, so the extrapolated curve must pass through them. 

On the other hand, two sharp break points can be identified on the max. efficiency curve 
in Figure 13 (marked by areas A and B), which is unphysical. One way to cope with that 
would be a tangential linear extrapolation instead of the flat one. The issue is, however, that 
the maximum efficiency curve may no longer pass through the operating points of maximum 
efficiency at the highest and the lowest speed line, which impacts the agreement between the 
fitted model and the source data (see dashed lines in Figure 13). Furthermore, extrapolated 
efficiency may, in some cases, rise above one or fall below zero (where it is not desired). 

In case of corrected mass flow rate, the two areas of extrapolation can be identified in the 
corresponding map too (see Figure 14). The optimum corrected mass flow curve is, however, 
defined for corrected speeds starting at zero (corresponds to PRT = 1), so the area A does not 
mark any break point. Although the extrapolation to high corrected speeds is still flat, the 
slope of optimum corrected mass flow rate is almost zero in this region, so the transition is 
smooth again in the area B in Figure 14. 
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Fig. 14. Extrapolated mass flow map with optimum corrected mass flow rate curve and points. A and 
B mark endpoints of the main spline part of optimum corrected mass flow rate curve. 

5 Robustness check 
The above described methodology proved to be reasonable for modelling of the sample 
turbine stage performance. Now, it should be checked that the same process can be repeated 
for a different data set too. Another common way to obtain turbine performance map is by 
means of dynamometer testing. A turbine stage alone (without a compressor) is mounted on 
the stand, while the power output is measured directly on the turbine shaft. A sample fitted 
turbine dyno map is shown in Figure 15. 

 
Fig. 15. Extrapolated efficiency and mass flow maps for turbine data acquired using a dynamometer. 
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The fitting method failed in determining the maximum efficiency at low corrected speeds, 
where the measured data include sub-optimal operating points only (see Figure 15). 
Therefore, the resulting extrapolated efficiency map includes areas of significant distortion, 
which makes it useless for engine thermodynamics simulation or other modes of use. 

6 Conclusion 
It can be concluded that the fitted model represents the sample gas stand turbine map 
relatively well, however evidence can be found that it is not always the case. Especially in 
situations, when source operating points lie far away from the maximum efficiency area, the 
resulting fit is very poor (see dyno map in Figure 15). 

One way to reduce model distortion would be to manually remove outlying points, which 
can generally help, when source data includes erroneous values. With the dyno map, 
however, complete speed lines would have to be deleted in order to prevent maximum 
efficiency misinterpretation. Not only can it lead to unwanted data loss, but there is no 
guarantee the remaining speed lines include true maximum efficiency points too. 

As an alternative approach, optimization methods could be employed to search for the 
best properties of fitting functions that would yield the lowest overall fit error. This idea, 
however, exceeds the scope of this paper. 
 
This work could be completed thanks to turbocharger performance data provided by Garrett Motion 
Inc. Also, consultations of prof. Ing. Josef Štětina, Ph.D., director of Institute of Automotive 
Engineering at Faculty of Mechanical Engineering of Brno University of Technology, are gratefully 
acknowledged. 

References 
1. A. Pesyridis, W. S-I. W. Salim, R. F. Martinez-Botas, 10th International Conference on 

Turbochargers and Turbocharging, ISBN:9780857096135, p. 203-218 (Woodhead 
Publishing Ltd., Cambridge, 2012) 

2. Gamma Technologies, GT-SUITE Flow Theory Manual, p. 99-102 (2019) 
3. Gamma Technologies, GT-SUITE, https://www.gtisoft.com/, (2020) 
4. MathWorks, MATLAB, https://www.mathworks.com/, (2020) 
5. N. Baines, Fundamentals of Turbocharging, ISBN:0933283148, 1 (Concepts NREC, 

Vermont, 2005) 
6. N. Watson, M. S. Janota, Turbocharging the internal combustion engine, 

ISBN:0333242904, 1 (The Macmillan Press Ltd., London, 1982) 
7. Kratzer Automation, Test benches for turbochargers, https://www.kratzer-

automation.com/testsystems/en/test-bench-solutions/turbocharger/, (2020) 
8. V. N. Tutubalin, Teorie pravděpodobnosti, 1 (SNTL, Prague, 1978) 
9. L. Žák, Popisná statistika, https://mathonline.fme.vutbr.cz/download.aspx?id_file=475, 

(2006) 
10. Z. Karpíšek, Reg. analýza, https://mathonline.fme.vutbr.cz/download.aspx?id_file=524, 

(2006) 

13

MATEC Web of Conferences 328, 03010 (2020)	 https://doi.org/10.1051/matecconf/202032803010
XXII. AEaNMiFMaE-2020


