

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND BIOMECHANICS

HOMOGENIZACE PĚNOVÉ STRUKTURY S UZAVŘENOU PÓROVITOSTÍ POMOCÍ KELVINOVY BUŇKY

HOMOGENIZATION OF CLOSED FOAM STRUCTURES USING KELVIN CELL

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

JOZEF ŠKOVIERA

VEDOUCÍ PRÁCE SUPERVISOR

Ing. PETR SKALKA, Ph.D.

BRNO 2015

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav mechaniky těles, mechatroniky a biomechaniky Akademický rok: 2014/15

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

student(ka): Jozef Škoviera

který/která studuje v bakalářském studijním programu

obor: Základy strojního inženýrství (2341R006)

Ředitel ústavu Vám v souladu se zákonem č. 111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce:

Homogenizace pěnové struktury s uzavřenou pórovitostí pomocí Kelvinovy buňky

v anglickém jazyce:

Homogenization of closed foam structures using Kelvin cell

Stručná charakteristika problematiky úkolu:

Výpočtové modelování pěnových struktur, na diskrétní úrovni, klade velké požadavky na hardware, a je velmi časově náročné. Z uvedených důvodů, které mnohdy brání v realizaci výpočtového modelování pěnových struktur, se diskrétní výpočtové modely převádí na výpočtové modely kontinua s odpovídajícími materiálovými charakteristikami. Tyto charakteristiky získáme homogenizací diskrétní pěnové struktury.

Cíle bakalářské práce:

- Provedení rešeršní studie
- Vytvoření výpočtového modelu Kelvinovy buňky
- Vytvoření výpočtového modelu pěnové struktury s uzavřenou pórovitostí
- Provedení homogenizace pěnové struktury

- Parametrická studie vlivu charakteristických rozměrů Kelvinovy buňky na materiálové charakteristiky

- Zhodnocení dosažených výsledků

Seznam odborné literatury:

- Lorna J. Gibson, Michael F. Ashby: Cellular Solids - Structure and properties, Cambridge University Press, 1997

- C. Barry Carter, M. Grant Norton: Ceramic Materials - Science and Engineering, Springer Science, 2013

- Sia Nemat-Nasser, Muneo Hori: Micromechanics - overal properties of heterogeneous materials, 1998

Vedoucí bakalářské práce: Ing. Petr Skalka, Ph.D.

Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku 2014/15.

S

EKANÁT

1

V Brně dne 21. 11. 2014

V2.

prof. Ing. Jindřich Petruška, CSc. ředitel ústavu

doc. Ing. Jaroslav Katolický, Ph.D. děkan

Abstrakt

Bakalárska práca sa zaoberá vytvorením výpočtového modelu penovej štruktúry na základe Kelvinovej bunky s uzavretou pórovitosťou Prvým cieľom práce je homogenizácia penovej štruktúry pomocou zhodnej deformačnej odozvy u penovej štruktúry a kontinua. Druhým cieľom je následná parametrická štúdia vplyvu charakteristických rozmerov Kelvinovej bunky na materiálové charakteristiky. Úloha bola riešená v programe ANSYS metódou konečných prvkov. Vykreslenie výsledných závislostí bolo riešené pomocou programu MATLAB.

Kľúčové slová

Kelvinova bunka, penová štruktúra, homogenizácia, deformačná odozva, MKP

Abstract

The bachelor's thesis deals with creating calculation model of the foam structure based on Kelvin cell with closed porosity. First aim of this work is homogenization of the foam structure by identical deformation response in foam structure and continuum. Second aim is follow-up parametrical study of influence of characteristic measures of Kelvin cell on material characteristics. Task was solved in ANSYS software by method of final elements. Resultant dependences rendering was done in MATLAB software.

Keywords

Kelvin cell, foam structure, homogenization, strain response, FEA

Bibliografická citácia

ŠKOVIERA, J. *Homogenizace pěnové struktury s uzavřenou pórovitostí pomocí Kelvinovy buňky*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2015. 42 s. Vedoucí bakalářské práce Ing. Petr Skalka, Ph.D..

Čestné prehlásenie

Prehlasujem, že táto práca je mojím pôvodným dielom, spracoval som ju samostatne pod vedením Ing. Petra Skalku, Ph.D. a s použitím literatúry uvedenej v zozname.

V Brne dňa 26. mája 2015

.....

Jozef Škoviera

Poďakovanie

Týmto by som chcel poďakovať predovšetkým Ing. Petrovi Skalkovi, Ph.D. za odborné vedenie a cenné rady, ktoré mi veľmi pomohli. Ďalej by som chcel poďakovať hlavne svojej rodine, ktorá ma podporovala počas celého štúdia.

Obsah

Úvod1	4
1 Problém	5
2 Ciele riešenia	5
3 Rešeršná štúdia1	5
4 Výpočtové modelovanie1	6
4.1 Model materiálu1	6
4.1.1 Materiál penovej štruktúry1	6
4.1.2 Materiál kontinua	6
4.2 Model geometrie	7
4.2.1 Model Kelvinovej bunky a penovej štruktúry1	7
4.2.2 Model kontinua	9
4.3 Model okrajových podmienok	20
4.3.1 Okrajové podmienky penovej štruktúry2	20
4.3.2 Okrajové podmienky kontinua	21
4.4 Model zaťaženia	22
4.4.1 Model zaťaženia penovej štruktúry2	2
4.4.2 Model zaťaženia kontinua2	23
5 Riešenie	23
5.1 Penová štruktúra	23
5.2 Kontinuum	24
6 Prezentácia výsledkov	25
6.1 Aproximácia pri zaťažení vzorku na ťah2	26
6.2 Aproximácia pri zaťažení vzorku na šmyk	60
6.3 Výsledky homogenizácie	51
7 Záver	6
Zoznam použitých informačných zdrojov3	57
Zoznam použitých skratiek, symbolov a veličín3	8
Zoznam obrázkov a tabuliek4	0
Zoznam príloh 4	2

Úvod

V modernej dobe sa snažíme o to, aby všetky výrobky boli čo najekonomickejšie, ale zároveň aby spĺňali určité kritéria (pevnostné, deformačné). Podstatný vplyv na tieto kritéria má použitý materiál.

Relatívne novú skupinu materiálov tvoria porézne materiály. Dôvodom, prečo sa zaoberať týmito materiálmi je ten, že sú ľahké, majú vysokú špecifickú pevnosť a dobré vlastnosti pri pohlcovaní energie [1].

Porézne štruktúry majú vynikajúce vlastnosti z hľadiska použitia, ale vyskytuje sa tu jeden podstatný problém. V dnešnej dobe sa skoro všetko počíta pomocou výpočtovej techniky. Simulovanie celých súčastí zložených z porézneho materiálu je nereálne z hľadiska hardvérovej a softvérovej náročnosti. Problémy s nedostatočnou výpočtovou technikou nastávajú už pri malých vzorkách. Z tohto dôvodu je potrebné tieto výpočty zjednodušiť. Zjednodušenie je možné napr. pomocou submodelu (výpočtový model je vytvorený z poréznej štruktúry a v oblastiach nepodstatných pre výpočet je nahradený kontinuom) alebo pomocou homogenizácie (model poréznej štruktúry je nahradený za model kontinua, ktorý bude vykazovať rovnakú deformačnú odozvu ako porézna štruktúra).

1 Problém

Z výpočtového hľadiska sú porézne štruktúry komplikované, a preto kvôli zjednodušeniu výpočtov je potrebné pre konkrétnu poréznu štruktúru nájsť kontinuum, ktoré bude vykazovať rovnakú deformačnú odozvu.

2 Ciele riešenia

Podľa zadania bakalárskej práce a predchádzajúceho popisu problému sú ciele riešenia formulované nasledovne:

Prevedenie rešeršnej štúdie.

Vytvorenie parametrického výpočtového modelu Kelvinovej bunky s uzavretou pórovitosťou a následné vytvorenie výpočtových modelov penovej štruktúry s uzavretou pórovitosťou.

Prevedenie homogenizácie penovej štruktúry a následná parametrická štúdia vplyvu charakteristických rozmerov Kelvinovej bunky na materiálové charakteristiky.

Zhodnotenie dosiahnutých výsledkov.

3 Rešeršná štúdia

Z dôvodu, že táto práca bola špecifikovaná na homogenizáciu keramických poréznych štruktúr, aj rešeršná časť je uvádzaná len pre keramické porézne štruktúry.

Veľká pozornosť v posledných rokoch bola zaznamenaná na porézne keramické materiály [2]. Porézna keramika je trieda materiálu používaná v aplikáciách priemyselného a inžinierskeho odboru kvôli jedinečným vlastnostiam, ako napríklad relatívne nízka hmotnosť, nízka tepelná vodivosť, odolnosť proti chemickým vplyvom a odolnosť voči vysokým teplotám [3].

Výrobky poréznej keramiky môžu byť klasifikované podľa nasledujúcich charakteristických vlastností [4]:

- chemické zloženie východiskového materiálu: napr. kremičitan, oxid
- pórovitosť: stredná pórovitosť, vysoká pórovitosť a veľmi vysoká pórovitosť
- fyzikálny stav výrobkov: po častiach, plnené, kontinuálne
- vnútorná štruktúra: zrnitá, bunková, vláknová
- žiaruvzdornosť korelovaná na prevádzkovú teplotu: s nízkou teplotou topenia, s vysokou teplotou topenia, žiaruvzdorné a super žiaruvzdorné
- miesta určenia výrobku a oblasť použitia: napr. tepelno-izlolačné (hlavný parameter je tepelná vodivosť)

Všeobecne môžu byť porézne keramiky rozdelené do dvoch hlavných kategórií [5]:

- voštinové keramiky
- keramické peny

Táto bakalárska práca je zameraná konkrétne na keramické peny.

Existujú dva druhy keramických pien [5]:

- keramické peny s otvorenými bunkami (sieťované keramické peny) (viď obr. 3.1a)
- keramické peny s uzavretými bunkami (bublinkové keramické peny) (viď obr. 3.1b)

Obr. 3.1 Trojrozmerné keramické peny a) štruktúra s otvorenými bunkami (sieťované keramické peny) b) štruktúra s uzavretými bunkami (bublinkové keramické peny) [5]

4 Výpočtové modelovanie

4.1 Model materiálu

4.1.1 Materiál penovej štruktúry

V práci bol uvažovaný Hookovský materiál, čo znamená, že materiál bol izotropný a ideálne pružný. Dané vlastnosti materiálu sú uvedené v tab. 4.1.

Materiál	Modul pružnosti v ťahu	Poissonov pomer
penovej	E_p	μ_p
štruktúry	[MPa]	[-]
Keramika	90000	0,3300

Tab. 4.1 Model materiálu penovej štruktúry

4.1.2 Materiál kontinua

Materiál kontinua a jeho charakteristiky nie sú známe. Pri zaťažení vzorku na ťah bol použitý Hookovský materiál (izotropný a ideálne pružný), avšak pri zaťažení vzorku na šmyk už tento materiál nemohol byť použitý z dôvodu, že porézna štruktúra sa nemusí chovať izotropne. Namiesto toho bol použitý ortotropný a ideálne pružný materiál (používaný modul pružnosti v ťahu pre kontinuum E_k a Poissonov pomer pre kontinuum μ_k v tomto type materiálu už bude známy zo zaťaženia vzorku na ťah a hľadaný bude modul pružnosti v šmyku pre kontinuum G_k).

4.2 Model geometrie

4.2.1 Model Kelvinovej bunky a penovej štruktúry

Model bunky bol zostavený z plôch (viď obr. 4.1). Táto bunka pre vytvorenie modelov poréznych štruktúr nie je vhodná, pretože pri nakopírovaní by chýbali plochy medzi jednotlivými bunkami. Z tohto dôvodu bolo nutné vymodelovať komponentu, ktorá obsahovala aj tieto dodatočné plochy (viď obr. 4.2), avšak naďalej v tejto práci bude písané o bunke, pretože tá je základným prvkom (komponenta je len upravená bunka).

Obr. 4.1 Model Kelvinovej bunky s uzavretou pórovitosťou

Obr. 4.2 Model komponenty vytvorenej z Kelvinovej bunky s uzavretou pórovitosťou

Bunka a následne aj komponenta bola vytvorená parametricky v závislosti na jednom parametri, ktorým bola dĺžka hrany bunky *a*.

Veľkosti buniek boli volené na základe experimentálneho merania [6]. Na základe týchto rozmerov buniek boli dopočítané dĺžky hrán buniek. Veľkosti buniek a dĺžky hrán buniek sú uvedené v tab. 4.2.

Poradové číslo	Veľkosť bunky	Dĺžka hrany bunky
	ν	а
	[mm]	[mm]
1.	0,2500	0,0875
2.	0,5000	0,1750
3.	0,7500	0,2625

Tab. 4.2 Veľkosti buniek a dĺžky hrán buniek

Penové štruktúry boli vytvárané v rôznych veľkostiach štvorca, kde hrana štvorca mala 2, 4, 6, 8, 10, 16, 20, 26 a 30 buniek. Ukážka modelu penovej štruktúry je na obr. 4.4. Tieto štruktúry boli vytvorené a následne počítané kvôli zachyteniu prípadného vplyvu okrajových podmienok malých štruktúr na výsledné charakteristiky. Pre zjednodušenie a zrýchlenie výpočtov bola využitá rovinná deformácia, a preto hrúbka penovej štruktúry bola volená na jednu bunku (viď obr. 4.4).

Obr. 4.4 Model penovej štruktúry 4x4

Jednotlivé plochy boli nasieťované ako škrupiny. Sieť bola vytvorená prvkom SHELL281. Na jednu hranu boli pridelené tri prvky. Odskúšané bolo aj delenie hrany na viac prvkov, ale rozdiel vo výsledkoch bol zanedbateľný. Z dôvodu výpočtovej náročnosti bol volený menší počet prvkov. Z dôvodov symetrie nemohli byť všetky plochy sieťované rovnakou hrúbkou škrupiny. Na obr. 4.5 sú farebne znázornené rôzne hrúbky týchto škrupín.

Obr. 4.5 Diskretizácia modelu penovej štruktúry 4x4

Hrúbky stien škrupín penových štruktúr boli taktiež volené na základe experimentálneho merania [6]. Tieto hrúbky stien škrupín sú uvedené v tab. 4.3.

Poradové číslo	Hrúbka steny škrupiny	Polovičná hrúbka steny škrupiny					
	h	h/2					
	[mm]	[mm]					
1.	0,0200	0,0100					
2.	0,0500	0,0250					
3.	0,0800	0,0400					

Tab. 4.3 Hrúbky stien škrupín penovej štruktúry

4.2.2 Model kontinua

Model kontinua (viď obr. 4.6) bol zostavený ako kváder, ktorého rozmery zodpovedajú najväčším rozmerom penovej štruktúry. To znamená, že napr. v prípade penovej štruktúry 4x4 bola hrana kvádra modelovaná ako veľkosť štyroch buniek. Hrúbka kontinua zodpovedá veľkosti jednej bunky.

Obr. 4.6 Model kontinua pre štruktúru 4x4 a zároveň diskretizácia modelu kontinua štruktúry 4x4 pri zaťažení vzorku na ťah

Obr. 4.7 Diskretizácia modelu kontinua štruktúry 4x4 pri zaťažení vzorku na šmyk

Model kontinua pri zaťažení na ťah a zaťažení na šmyk bol rovnaký (viď obr.4.6). Jediný rozdiel bol v diskretizácii kontinua.

Diskretizácia kontinua pri zaťažení vzorku na ťah

Sieť bola vytvorená prvkom SOLID186. Pri zaťažení vzorku na ťah boli odskúšané diskretizácie na viac prvkov. Výsledné posuvy týchto diskretizácií vychádzali skoro rovnako v porovnaní s diskretizáciou na jeden prvok (ich rozdiel bol zanedbateľný). Z dôvodu výpočtovej náročnosti bola zvolená diskretizácia na jeden prvok (viď obr. 4.6).

Diskretizácia kontinua pri zaťažení vzorku na šmyk

Sieť bola taktiež vytvorená prvkom SOLID186. Diskretizácia na jeden prvok v prípade zaťaženia vzorku na šmyk nie je možná. V tomto prípade bola diskretizácia zjemňovaná. Chovanie penovej štruktúry vystihuje diskretizácia, kde jednu bunku nahradíme jedným elementom. Ukážka je uvedená na obr. 4.7.

4.3 Model okrajových podmienok

4.3.1 Okrajové podmienky penovej štruktúry

Okrajové podmienky vytvorených modelov penovej štruktúry rešpektovali daný typ zaťaženia vzorku na ťah resp. šmyk. Tieto okrajové podmienky vyplývajú z dvoch dôvodov. Prvým dôvodom je, že bolo nutné simulovať uchytenie vzorku. Druhým dôvodom je, že vytvorené penové štruktúry sú len úzkym pásom skúšaného vzorku (kvôli využitiu rovinnej deformácie), a preto do modelu okrajových podmienok boli vložené aj podmienky symetrie.

Zaťaženie vzorku na ťah

Okrajové podmienky sú farebne znázornené na obr. 4.8. Na spodnej ploche (fialovej) je simulované uchytenie. Vrchná plocha (červená) je zaťažená na ťah, a preto bol na tejto ploche použitý coupling v smere osi Y (coupling zviaže všetky uzly napr. na ploche aby pri zaťažení vykazovali rovnaký deformačný posuv). Plocha v strede štruktúry (čierna) je zaväzbená kvôli tomu, aby štruktúra bola naozaj zaťažená iba ťahom. Pre zužovanie celej štruktúry bolo potrebné, aby na bočných plochách (zelených) bol použitý coupling v osi X. Tento coupling zamedzuje vznik krčku a tým aj vnášaniu šmykových napätí (bez tohto couplingu by štruktúra nebola zaťažená iba na ťah). Predná a zadná plocha (hnedé) sú zaväzbené kvôli symetrii.

Obr. 4.8 Model okrajových podmienok penovej štruktúry 4x4 pri zaťažení vzorku na ťah

Zaťaženie vzorku na šmyk

Okrajové podmienky sú farebne znázornené na obr. 4.9. Na spodnej ploche (fialovej) je simulované uchytenie. Vrchná plocha (červená) je zaťažená na šmyk. Z tohto dôvodu bol na tejto ploche použitý coupling v smere osi X a Y. Predná a zadná plocha (hnedé) sú zaväzbené kvôli symetrii.

Obr. 4.9 Model okrajových podmienok penovej štruktúry 4x4 pri zaťažení vzorku na šmyk

4.3.2 Okrajové podmienky kontinua

Kontinuum bolo taktiež opatrené okrajovými podmienkami, pretože vzorky boli taktiež zaťažované na ťah resp. šmyk.

Zaťaženie vzorku na ťah

Okrajové podmienky pri zaťažení vzorku na ťah sú pre kontinuum rovnaké ako pri penovej štruktúre zaťaženej na ťah (obr. 4.8), až na prednú a zadnú plochu (hnedé) (viď obr. 4.10). Na týchto plochách stačí predpísať iba zamedzenie posuvu v osi Z, pretože prvok ktorý je použitý (SOLID186) má iba translačné stupne voľnosti.

Obr. 4.10 Model okrajových podmienok kontinua 4x4 pri zaťažení vzorku na ťah

Zaťaženie vzorku na šmyk

Pri zaťažení vzorku na šmyk platia pre kontinuum tie isté okrajové podmienky ako u penovej štruktúry zaťaženej na šmyk (obr. 4.9), až na prednú a zadnú plochu (hnedé) (viď obr. 4.11). Na týchto plochách platí, že stačí predpísať iba zamedzenie posuvu v osi Z, pretože použitý prvok (SOLID186) má iba translačné stupne voľnosti.

Obr. 4.11 Model okrajových podmienok kontinua 4x4 pri zaťažení vzorku na šmyk

4.4 Model zaťaženia

4.4.1 Model zaťaženia penovej štruktúry

Zaťaženie vzorku na ťah

Penová štruktúra bola zaťažená silou pôsobiacou na vrchnej ploche (červená plocha, na ktorej bol použitý coupling v osi Y, viď obr. 4.8). Táto sila pôsobila v smere osi Y (viď obr. 4.12).

Zaťaženie vzorku na šmyk

Penová štruktúra bola zaťažená silou pôsobiacou na vrchnej ploche, (červená plocha, na ktorej bol použitý coupling v osi X a Y, viď. obr. 4.9). V tomto prípade sila pôsobila v smere osi X (viď obr. 4.13).

4.4.2 Model zaťaženia kontinua

Zaťaženie vzorku na ťah

Zaťaženie vzorku kontinua na ťah zodpovedalo zaťaženiu vzorku penovej štruktúry na ťah (obr. 4.12). Kontinuum bolo zaťažené silou pôsobiacou na vrchnej ploche (červená plocha na ktorej bol použitý coupling v osi Y, viď obr. 4.10). Zaťažujúca sila pôsobila v smere osi Y. Zaťaženie vzorku kontinua na ťah je znázornené na obr. 4.14.

Obr. 4.14 Model zaťaženia vzorku kontinua 4x4 na ťah

Obr. 4.15 Model zaťaženia vzorku kontinua 4x4 na šmyk

Zaťaženie vzorku na šmyk

Zaťaženie vzorku kontinua na šmyk zodpovedá zaťaženiu vzorku penovej štruktúry na šmyk (obr. 4.13). Zaťažujúca sila bola umiestnená na vrchnú plochu (červená plocha, na ktorej bol použitý coupling v osi X a Y, viď obr. 4.11). Zaťažujúca sila pôsobí v smere osi X. Zaťaženie vzorku kontinua na šmyk je znázornené na obr. 4.15.

5 Riešenie

5.1 Penová štruktúra

Uvedený vzorok, na ktorom sa robili experimentálne merania [6], praskal už pri nižších zaťaženiach, čo znamená, že nebolo potrebné použiť riešenie s veľkými deformáciami. Z tohto dôvodu bolo použité lineárne riešenie s malými deformáciami.

5.2 Kontinuum

Kontinuum nemalo zadaný materiál, pretože práve na kontinuu bola robená homogenizácia. Kontinuum bolo nastavené na lineárne riešenie s malými deformáciami.

Kontinuum bolo dopočítavané pomocou cyklov. Princípy sú znázornené na obr. 5.1 a obr. 5.2.

Obr. 5.1Postup riešenia kontinua pri zaťažení vzorku na ťah

Posuvy kontinua boli prevedené na chyby v jednotlivých smeroch posuvov vztiahnuté k posuvom penovej štruktúry. Chyby boli počítané pomocou vzťahov (5.1) a (5.2). Všetky kombinácie boli následne vyhodnocované pomocou kritéria súčtu chýb, viď vzťah (5.3).

$$err_x = \left| u_{xk} - u_{xp} \right| \tag{5.1}$$

$$err_y = \left| u_{yk} - u_{yp} \right| \tag{5.2}$$

kde:		
err_x, err_y	[mm]	chyba posuvu medzi penovou štruktúrou a kontinuom v smere
-		osi x resp. v smere osi y
u_{xk}, u_{yk}	[mm]	posuv kontinua v smere osi x resp. v osi y
u_{xp}, u_{yp}	[mm]	posuv penovej štruktúry v smere osi x resp. v osi y

$$err_c = err_x + err_y$$
 (5.3)

kde: *err_c*

[mm] súčet chýb posuvov medzi penovou štruktúrou a kontinuom

Kombinácie modulu pružnosti v ťahu pre kontinuum E_k a Poissonov pomer pre kontinuum μ_k boli následne zoradené na základe najmenšieho súčtu chýb posuvov medzi penovou štruktúrou a kontinuom. Kombinácia E_k a μ_k u kontinua s najmenším súčtom chýb bola prehlásená za riešenie.

Obr. 5.2 Postup riešenia kontinua pri zaťažení vzorku na šmyk

Posuv kontinua pri zaťažení vzorku na šmyk už nebol vyhodnocovaný pomocou súčtu chýb (stačilo zistiť iba posuv v osi X), pretože pri zaťažení vzorku na šmyk sa vyhodnocovala iba jedna charakteristika a tou bol modul pružnosti v šmyku pre kontinuum G_k . Dopočítané boli iba chyby posuvov medzi penovou štruktúrou a kontinuom v osi X, viď vzťah (5.1). Po zoradení chýb posuvu bolo za riešenie prehlásené G_k u kontinua s najmenšou chybou.

6 Prezentácia výsledkov

Rôzne veľkosti štvorcových penových štruktúr vykazovali charakteristiky, ktoré boli odlišné. Z toho plynie, že okrajové podmienky pri rôznej veľkosti penovej štruktúry majú vplyv na výsledky charakteristík, a preto bolo nutné nájsť ustálené hodnoty týchto charakteristík. Modelovanie penových štruktúr, ktoré boli väčšie ako 30 buniek nebolo možné z dôvodu nedostatočnej výpočtovej techniky. Z tohto dôvodu bolo nutné priebehy charakteristík aproximovať. Pre aproximovanie bol použitý nasledujúci obecný vzťah (6.1), kde za Z boli postupne dosadzované rôzne charakteristiky (E_k , μ_k a G_k).

$$Z = C_1 + \frac{C_2}{p}$$
(6.1)

kde:		
Ζ	[-]	obecný vzťah, za ktorý boli dosadzované rôzne charakteristiky a tým nadobudol jednotku
<i>C</i> ₁ , <i>C</i> ₂	[-]	konštanty obecného vzťahu Z , ktoré nadobúdajú jednotku v závislosti na dosadzovaných charakteristikách
p	[-]	počet buniek na hranu štvorcovej penovej štruktúry

K aproximácii bolo potrebné zvoliť dve štvorcové štruktúry rôznych rozmerov, ktoré by najlepšie opisovali celý priebeh charakteristík. Po rôznych odskúšaných kombináciách bola kombinácia štvorcových štruktúr o veľkostiach 4 a 26 buniek na hranu najpresnejšia.

6.1 Aproximácia pri zaťažení vzorku na ťah

Aproximovanie pri zaťažení vzorku na ťah bolo odskúšané na najpoddajnejšej štruktúre (štruktúra s veľkosťou bunky 0,75 mm a hrúbkou steny škrupiny 0,02 mm) a na najtuhšej štruktúre (štruktúra s veľkosťou bunky 0,25 mm a hrúbkou steny škrupiny 0,08 mm). Chyby v tab. 6.2 a tab. 6.4 sú zaokrúhľované (môžu sa líšiť posledné číslice).

51 5 5 5 1	<u> </u>	
Počet buniek	Posuv penovej	Posuv penovej
	štruktúry v osi x	štruktúry v osi y
p	u_{xp}	u_{yp}
[-]	[mm]	[mm]
2	0,22215184	0,87633226
4	0,22498970	0,88924031
6	0,22597676	0,89364163
8	0,22648297	0,89586542
10	0,22679055	0,89720603
16	0,22725093	0,89922367
20	0,22740496	0,89989645
26	0,22755322	0,90052613
30	0,22761646	0,90080461

Tab. 6.1 Výsledky najpoddajnejšej penovej štruktúry pri zaťažení vzorku na ťah

Obr. 6.1 Posuv najpoddajnejšej penovej štruktúry 4x4 v osi x pri zaťažení vzorku na ťah

Obr. 6.2 Posuv najpoddajnejšej penovej štruktúry 4x4 v osi y pri zaťažení vzorku na ťah

Počet	Posuv	Posuv	Modul	Poissonov	Chyba v	Chyba v	Súčet
buniek	kontinua	kontinua	pružnosti	pomer	smere osi x	smere osi y	chýb
	v osi x	v osi y	v ťahu				
p	u_{xk}	u_{yk}	E_k	μ_k	err_x	err_y	err_{c}
[-]	[mm]	[mm]	[MPa]	[-]	[mm]	[mm]	[mm]
2	0,22171052	0,87628443	2727	0,336	0,00044133	0,00004783	0,00048916
4	0,22501101	0,88932923	2687	0,336	0,00002130	0,00008892	0,00011022
6	0,22610493	0,89365282	2674	0,336	0,00012817	0,00001119	0,00013936
8	0,22661341	0,89566253	2668	0,336	0,00013044	0,00020289	0,00033333
10	0,22695367	0,89700737	2664	0,336	0,00016312	0,00019866	0,00036178
16	0,22746598	0,89903222	2658	0,336	0,00021505	0,00019145	0,00040650
20	0,22763727	0,89970920	2656	0,336	0,00023231	0,00018725	0,00041957
26	0,22780881	0,90038720	2654	0,336	0,00025559	0,00013893	0,00039451
30	0,22789468	0,90072659	2653	0,336	0,00027822	0,00007803	0,00035625

Tab. 6.2Výsledky kontinua pre najpoddajnejšiu penovú štruktúru pri zaťažení vzorku na ťah

Obr. 6.3 Posuv kontinua pre najpoddajnejšiu penovú štruktúru 4x4 v osi x pri zaťažení vzorku na ťah

Obr. 6.4 Posuv kontinua pre najpoddajnejšiu penovú štruktúru 4x4 v osi y pri zaťažení vzorku na ťah

Obr. 6.5 Aproximácia modulu pružnosti v ťahu E_k na počte buniek p pre najpoddajnejšiu štruktúru

Obr. 6.6 *Aproximácia Poissonovho pomeru* μ_k *na počte buniek p pre najpoddajnejšiu štruktúru*

Pri najpoddajnejšej štruktúre vyšlo, že závislosť Poissonovho pomeru na počte buniek je konštantná (viď obr. 6.6). Je to spôsobené presnosťou Poissonovho pomeru, ktorá by musela byť minimálne v desaťtisícinách, aby bol pozorovateľný klesajúci efekt. Zvyšovanie presnosti nie je potrebné, pretože klesanie tejto charakteristiky by bolo veľmi malé. Z tohto dôvodu je presnosť Poissonovho pomeru v tisícinách dostačujúca.

Počet buniek	Posuv penovej štruktúry v osi x	Posuv penovej štruktúry v osi y
p [-]	u_{xp} [mm]	u_{yp} [mm]
2	0,03859726	0,18204253
4	0,03827329	0,18294034
6	0,03817188	0,18325292
8	0,03812023	0,18341123
10	0,03809051	0,18350764
16	0,03804603	0,18365421
20	0,03803057	0,18370106
26	0,03801586	0,18374437
30	0,03800993	0,18376441

Tab. 6.3 Výsledky najtuhšej penovej štruktúry pri zaťažení vzorku na ťah

Obr. 6.7 Posuv najtuhšej penovej štruktúry 4x4 v osi x pri zaťažení vzorku na ťah

Obr. 6.8 Posuv najtuhšej penovej štruktúry 4x4 v osi y pri zaťažení vzorku na ťah

Počet	Posuv	Posuv	Modul	Poissonov	Chyba v	Chyba v	Súčet
buniek	kontinua	kontinua	pružnosti	pomer	smere osi x	smere osi y	chýb
	v osi x	v osi y	v ťahu				
p	u_{xk}	u_{yk}	E_k	μ_k	err_x	err_y	err_{c}
[-]	[mm]	[mm]	[MPa]	[-]	[mm]	[mm]	[mm]
2	0,03863842	0,18204143	40450	0,298	0,00004117	0,00000110	0,00004227
4	0,03827459	0,18293955	40330	0,295	0,00000130	0,00000079	0,00000209
6	0,03815607	0,18325296	40287	0,294	0,00001581	0,0000003	0,00001585
8	0,03818925	0,18341230	40252	0,294	0,00006902	0,00000107	0,00007009
10	0,03802522	0,18350736	40257	0,293	0,00006529	0,0000028	0,00006557
16	0,03805547	0,18365334	40225	0,293	0,00000944	0,0000086	0,00001030
20	0,03806493	0,18369901	40215	0,293	0,00003436	0,00000205	0,00003641
26	0,03807440	0,18374470	40205	0,293	0,00005854	0,0000033	0,00005887
30	0,03807819	0,18376298	40201	0,293	0,00006825	0,00000142	0,00006967

Tab. 6.4 Výsledky kontinua pre najtuhšiu penovú štruktúru pri zaťažení vzorku na ťah

Obr. 6.9 Posuv kontinua pre najtuhšiu penovú štruktúru 4x4 v osi x pri zaťažení vzorku na ťah

Obr. 6.10 Posuv kontinua pre najtuhšiu penovú štruktúru 4x4 v osi y pri zaťažení vzorku na ťah

Obr. 6.11 Aproximácia modulu pružnosti v ťahu E_k na počte buniek p pre najtuhšiu štruktúru

Obr. 6.12 *Aproximácia Poissonovho pomeru* μ_k *na počte buniek p pre najtuhšiu štruktúru*

Aproximáciou najpoddajnejšej a najtuhšej štruktúry bolo dokázané, že závislosť charakteristík naozaj vystihuje vzťah (6.1) pre štvorcové štruktúry o veľkostiach 4 a 26 buniek na hranu. Z tohto dôvodu boli pre ostatné štruktúry modelované už len tieto dve veľkosti štruktúr.

6.2 Aproximácia pri zaťažení vzorku na šmyk

Aproximovanie pri zaťažení vzorku na šmyk bolo odskúšané na základnej štruktúre (štruktúra s veľkosťou bunky 0,50 mm a hrúbkou steny škrupiny 0,05 mm). Jednalo sa o zjednodušené aproximovanie, kde bol skontrolovaný jeden bod ležiaci medzi štvorcovými štruktúrami o veľkostiach 4 a 26 buniek na hranu.

Počet buniek	Posuv penovej
	štruktúry v osi x
p	u_{xp}
[-]	[mm]
4	1,33057274
16	1,29991487
26	1,29738815

Tab. 6.5 Výsledky základnej penovej štruktúry pri zaťažení vzorku na šmyk

Tab. 6.6 Výsledky kontinua pre základnú penovú štruktúru pri zaťažení vzorku na šmyk

	Posuv	Modul pružnosti	Chyba v smere
Počet buniek	kontinua	v šmyku	osi x
	v osi x		
p	u_{xk}	G_k	err_x
[-]	[mm]	[MPa]	[mm]
4	1,33064746	4438	0,00007472
16	1,29985018	4682	0,00006469
26	1,29734644	4703	0,00004171

Obr. 6.13 Posuv základnej penovej štruktúry 4x4 v osi x pri zaťažení vzorku na šmyk

Obr. 6.14 Posuv kontinua pre základnú penovú štruktúru 4x4 v osi x pri zaťažení vzorku na šmyk

Obr. 6.15 Aproximácia modulu pružnosti v šmyku Gk na počte buniek p pre základnú štruktúru

Aproximáciou základnej štruktúry bolo dokázané, že závislosť charakteristiky naozaj vystihuje vzťah (6.1) pre štvorcové štruktúry o veľkostiach 4 a 26 buniek na hranu. Z tohto dôvodu boli pre ostatné štruktúry modelované už len tieto dve veľkosti štruktúr.

6.3 Výsledky homogenizácie

Po následnej aproximácií výsledkov pre každú variantu veľkosti bunky a hrúbku steny škrupiny podľa vzťahu (6.1) boli do nasledujúcej tabuľky zapísané ustálené hodnoty charakteristík (viď tab. 6.7). Ustálené hodnoty charakteristík symbolizuje vo vzťahu (6.1) konštanta C_1 v prípade, že štruktúra má nekonečný počet buniek na hranu, viď vzťah (6.2).

$$Z = \lim_{p \to \infty} \left(C_1 + \frac{C_2}{p} \right) = C_1 \tag{6.2}$$

	Hrúbka	Modul	Poissonov	Modul	
Veľkosť bunky	steny škrupiny	pružnosti	pomer	pružnosti	
		v ťahu		v šmyku	
ν	h	E_k	μ_k	G_k	
[mm]	[mm]	[MPa]	[-]	[MPa]	
	0,0200	8256,1818	0,32881818	3689,0000	
0,2500	0,0500	23100,6364	0,30863636	10723,0909	
	0,0800	40182,2727	0,29263636	18620,6364	
	0,0200	4004,4545	0,33381818	1727,0000	
0,5000	0,0500	10505,4545	0,32581818	4751,1818	
	0,0800	17810,6364	0,31563636	8225,2727	
	0,0200	2648,0000	0,33600000	1124,4545	
0,7500	0,0500	6804,5455	0,33081818	3008,0909	
	0,0800	11275,7273	0,32481818	5116,4545	

Tab. 6.7 Ustálené hodnoty charakteristík

Pre vykreslenie výsledných závislostí bolo nutné určiť matematický predpis, viď vzťah (6.3). Tento vzťah bol zostavený na základe súčinu dvoch parabol. Každá charakteristika (E_k , μ_k , G_k) bola dopočítavaná pre deväť rôznych štruktúr v závislosti na veľkosti bunky v a hrúbke steny škrupiny h. Z toho plynie, že pre každú charakteristiku je možné zostaviť deväť rovníc. Tieto rovnice boli obecne zapísané pomocou maticového tvaru, viď vzťah (6.4) a vzťah (6.5). Následnou matematickou úpravou bol dosiahnutý vzťah (6.6) pre dopočítanie konštant $B_1 - B_9$.

$$f = B_1 + B_2 \cdot y + B_3 \cdot y^2 + B_4 \cdot x + B_5 \cdot x \cdot y + B_6 \cdot x \cdot y^2 + B_7 \cdot x^2 + B_8 \cdot x^2 \cdot y + B_9 \cdot x^2 \cdot y^2$$
(6.3)

kde:

f	[-]	obecný vzťah zostavený zo súčinu dvoch parabol, za ktorý boli
		dosadzované rôzne ustálené charakteristiky a tým nadobudol
		jednotku
$B_1 - B_9$	[-]	konštanty obecného vzťahu f, ktoré nadobúdajú jednotku v
		závislosti na dosadzovaných charakteristikách a premenných
x	[-]	prvá obecná premenná, za ktorú bola dosadzovaná veľkosť
		bunky v a tým premenná nadobudla jednotku [mm]
у	[-]	druhá obecná premenná, za ktorú bola dosadzovaná hrúbka
-		steny škrupiny h a tým premenná nadobudla jednotku [mm]

$$\boldsymbol{A} \cdot \boldsymbol{\vec{q}} = \boldsymbol{\vec{b}} \tag{6.4}$$

kde:		
A	[-]	obecná matica kombinácií súčinov prvej a druhej premennej podľa vzťahu (6.3)
$ec{q}$	[-]	obecný vektor neznámych (konštanty $B_1 - B_9$)
\vec{b}	[-]	obecný vektor pravých strán (dosadená charakteristika pre sústa-
		vu rovníc $1-9$)

[1 1 1 1 1 1 1 1 1 1 1 1 1 1	y ₁ y ₂ y ₃ y ₄ y ₅ y ₆ y ₇	$\begin{array}{c} y_{1}^{2} \\ y_{2}^{2} \\ y_{3}^{2} \\ y_{4}^{2} \\ y_{5}^{2} \\ y_{6}^{2} \\ y_{7}^{2} \end{array}$	x_1 x_2 x_3 x_4 x_5 x_6 x_7	$x_1 \cdot y_1$ $x_2 \cdot y_2$ $x_3 \cdot y_3$ $x_4 \cdot y_4$ $x_5 \cdot y_5$ $x_6 \cdot y_6$ $x_7 \cdot y_7$	$ x_1 \cdot y_1^2 \\ x_2 \cdot y_2^2 \\ x_3 \cdot y_3^2 \\ x_4 \cdot y_4^2 \\ x_5 \cdot y_5^2 \\ x_6 \cdot y_6^2 \\ x_7 \cdot y_7^2 $	$ x_1^2 \\ x_2^2 \\ x_3^2 \\ x_4^2 \\ x_5^2 \\ x_6^2 \\ x_7^2 $	$x_{1}^{2} \cdot y_{1}$ $x_{2}^{2} \cdot y_{2}$ $x_{3}^{2} \cdot y_{3}$ $x_{4}^{2} \cdot y_{4}$ $x_{5}^{2} \cdot y_{5}$ $x_{6}^{2} \cdot y_{6}$ $x_{7}^{2} \cdot y_{7}$	$\begin{array}{c} x_1^2 \cdot y_1^2 \\ x_2^2 \cdot y_2^2 \\ x_3^2 \cdot y_3^2 \\ x_4^2 \cdot y_4^2 \\ x_5^2 \cdot y_5^2 \\ x_6^2 \cdot y_6^2 \\ x_7^2 \cdot y_7^2 \end{array}$	$\begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \\ B_6 \\ B_7 \end{bmatrix}$	$ \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \end{bmatrix} $	(6.5)
1 1 1	У У7 У8 У9	y_{7}^{2} y_{8}^{2} y_{9}^{2}	x_7 x_8 x_9	$x_7 \cdot y_7$ $x_8 \cdot y_8$ $x_9 \cdot y_9$	$x_7 \cdot y_7^2$ $x_8 \cdot y_8^2$ $x_9 \cdot y_9^2$	x_7^2 x_8^2 x_9^2	$x_7^2 \cdot y_7$ $x_8^2 \cdot y_8$ $x_9^2 \cdot y_9$	$ \begin{array}{c} x_{7}^{2} \cdot y_{7}^{2} \\ x_{8}^{2} \cdot y_{8}^{2} \\ x_{9}^{2} \cdot y_{9}^{2} \end{array} $	B_7 B_8 B_9	$\begin{bmatrix} f_7 \\ f_8 \\ f_9 \end{bmatrix}$	

- kde: $x_1 x_9$
- $\begin{array}{l} y_1 y_9 \\ f_1 f_9 \end{array}$

[-]

[-]

[-]

prvá obecná premenná pre sústavu rovníc 1-9druhá obecná premenná pre sústavu rovníc 1-9zložky obecného vektora pravých strán (dosadená charakteristika pre sústavu rovníc 1-9)

$\begin{bmatrix} B_1\\ B_2 \end{bmatrix}$		[1 1	y ₁ y ₂	${y_1}^2 {y_2}^2$	x ₁ x ₂	$x_1 \cdot y_1 \\ x_2 \cdot y_2$	$\begin{array}{c} x_1 \cdot {y_1}^2 \\ x_2 \cdot {y_2}^2 \end{array}$	$x_1^2 x_2^2$	$x_1^2 \cdot y_1$ $x_2^2 \cdot y_2$	$\begin{array}{c} x_1^2 \cdot y_1^2 \\ x_2^2 \cdot y_2^2 \end{array}^{-1}$	$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$	
B_3		1	y_3	y_3^2	x ₃ x.	$x_3 \cdot y_3$	$x_3 \cdot y_3^2$ $x_4 \cdot y_4^2$	x_3^2	$x_3^2 \cdot y_3$ $x_4^2 \cdot y_4$	$x_3^2 \cdot y_3^2$ $x_2^2 \cdot y_2^2$	f_3	
B_4 B_5	=	1	y_4 y_5	y_4 y_5^2	x_4 x_5	$x_4 y_4$ $x_5 \cdot y_5$	x_4 y_4 $x_5 \cdot y_5^2$	x_{4}^{2}	x_4 y_4 $x_5^2 \cdot y_5$	$x_4 y_4 x_5^2 \cdot y_5^2$	$\cdot \int_{5}^{J_4}$	(6.6)
B_6 B_7		1	y_6	y_{6}^{2}	x_6	$x_6 \cdot y_6$	$x_{6} \cdot y_{6}^{2}$	x_{6}^{2}	$x_{6}^{2} \cdot y_{6}$	$x_{6}^{2} \cdot y_{6}^{2}$	$\left f_{6} \right _{f}$	
B_8		1	y_7 v_9	y_7^2 v_9^2	x_7	$x_7 \cdot y_7$ $x_9 \cdot y_9$	$x_7 \cdot y_7^2$ $x_9 \cdot y_9^2$	x_7^2	$x_7^2 \cdot y_7$ $x_9^2 \cdot y_9$	$\begin{array}{c} x_7^2 \cdot y_7^2 \\ x_9^2 \cdot y_9^2 \end{array}$	$\begin{vmatrix} f_7 \\ f_8 \end{vmatrix}$	
LB_{9}		\lfloor_1	у ₉	y_9^2	x ₉	$x_9 \cdot y_9$	$x_9 \cdot y_9^2$	x_9^2	$x_9^2 \cdot y_9$	$\begin{bmatrix} x_{8} & y_{8} \\ x_{9}^{2} \cdot y_{9}^{2} \end{bmatrix}$	$\lfloor f_9 \rfloor$	

Po vypočítaní konštant boli zostavené výsledné závislosti pre modul pružnosti v ťahu E_k (viď obr. 6.16), Poissonov pomer μ_k (viď obr. 6.17) a modul pružnosti v šmyku G_k (viď obr. 6.18) v závislosti na veľkosti bunky v a hrúbke steny škrupiny h. V týchto obrázkoch boli znázornené štruktúry, ktoré sa homogenizovali (čierne body) a taktiež aj testovacia štruktúra (červený bod). Červený bod v obr. 6.16 a obr. 6.17 je pod plochou a preto ho nie je vidno celý. Tento skúšobný vzorok bol dopočítaný pomocou vzťahu (6.3) a následne pre overenie aj pomocou metódy konečných prvkov. Tieto výpočty sú uvedené v tab. 6.8.

Tab.	6.8	Výsledky	testovacej	štruktúry
------	-----	----------	------------	-----------

Veľkosť Bunky	Hrúbka steny	Vypoč	ítané pomoco	u MKP	Vypočítan	é pomocou vz	zťahu (6.3)
	škrupiny	Modul	Poissonov	Modul	Modul	Poissonov	Modul
		pružnosti	pomer	pružnosti	pružnosti	pomer	pružnosti
		v ťahu		v šmyku	v ťahu		v šmyku
v	h	E_k	μ_k	G_k	E_k	μ_k	G_k
[mm]	[mm]	[MPa]	[-]	[MPa]	[MPa]	[-]	[MPa]
0,4000	0,0350	9089,2727	0,32781818	4080,6464	9758,9427	0,32635227	4416,4859

Obr. 6.16 Závislosť modulu pružnosti v ťahu E_k na veľkosti bunky v a hrúbke steny škrupiny h

Obr. 6.17 Závislosť Poissonovho pomeru μ_k na veľkosti bunky v a hrúbke steny škrupiny h

Obr. 6.18 Závislosť modulu pružnosti v ťahu G_k na veľkosti bunky v a hrúbke steny škrupiny h

7 Záver

V práci bol vytvorený výpočtový model Kelvinovej bunky s uzavretou pórovitosťou a následne aj upravený výpočtový model Kelvinovej bunky s uzavretou pórovitosťou (komponenta). Z tohto upraveného výpočtového modelu boli následne vytvorené výpočtové modely penových štruktúr na ktorých boli určované deformačné odozvy pri zaťažení na ťah resp. šmyk. Popri výpočtových modeloch penových štruktúr boli taktiež vytvorené aj výpočtové modeli kontinua. Tieto výpočtové modely penových štruktúr. Následne boli počítané deformačné odozvy. Materiálové charakteristiky boli určené na základe zhodných deformačných posuvoch.

Rôzne veľkosti penových štruktúr a kontinuí ukázali, že okrajové podmienky majú vplyv na výsledné charakteristiky. Z tohto dôvodu boli dohľadané ustálené hodnoty charakteristík (viď tab. 6.7). Tieto hodnoty boli dohľadané aproximáciou pomocou vzťahu (6.1). Aproximáciu nameraných hodnôt charakteristík najlepšie vystihovali štruktúry s veľkosťami 4 a 26 buniek na hranu. Z tohto dôvodu pre rozličné veľkosti buniek a hrúbky stien škrupín boli vytvárané už len výpočtové modeli o týchto veľkostiach. Za ustálenú hodnotu charakteristiky bola uvažovaná hodnota aproximácie pre nekonečný počet buniek na hranu, viď vzťah (6.2).

Pomocou vzťahu (6.6) boli dopočítané neznáme konštanty, ktoré boli následne dosadené do vzťahu (6.3). Na základe vzťahu (6.3) boli vykreslené výsledné závislosti (viď obr. 6.16, obr. 6.17 a obr. 6.18).

Z prvej výslednej závislosti (viď obr. 6.16) je zrejmé, že pri zmenšujúcej sa veľkosti bunky modul pružnosti v ťahu E_k rastie. Pri hrúbke steny škrupiny je to presne naopak. So zmenšujúcou sa hrúbkou steny škrupiny klesá modul pružnosti v ťahu E_k .

Pri druhej výslednej závislosti (viď obr. 6.17) je vidieť, že pri zmenšujúcej sa veľkosti bunky Poissonov pomer μ_k klesá a naopak pri zmenšujúcej sa hrúbke steny škrupiny Poissonov pomer μ_k rastie.

Pri poslednej závislosti (viď obr. 6.18) je vidieť, že pri zmenšujúcej sa veľkosti bunky modul pružnosti v šmyku G_k rastie a naopak pri zmenšujúcej sa hrúbke steny škrupiny modul pružnosti v šmyku G_k klesá.

Presnosť výsledných charakteristík bola kontrolovaná pomocou testovacej štruktúry (viď tab. 6.8 a červené body v obr. 6.16, obr. 6.17 a obr. 6.18). Táto štruktúra ukázala, že vzťah (6.3) je nedostačujúci a pre väčšiu presnosť by bolo potrebných viac bodov na preloženie zložitejšou funkciou.

Zoznam použitých informačných zdrojov

- [1] XU, Zhimin, Xueling FAN, Weixu ZHANG a T.J. WANG. Numerical analysis of anisotropic elasto-plastic deformation of porous materials with arbitrarily shaped pores. International Journal of Mechanical Sciences [online]. 2015, 96-97: 121-131 [cit. 2015-05-26]. DOI: 10.1016/j.ijmecsci.2015.03.018. ISSN 00207403. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0020740315001320
- [2] TALOU, M.H. a M.A. CAMERUCCI. Processing of porous mullite ceramics using novel routes by starch consolidation casting. Journal of the European Ceramic Society [online]. 2015, **35**(3): 1021-1030 [cit. 2015-05-26]. DOI: 10.1016/j.jeurceramsoc.2014.10.011. ISSN 09552219. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0955221914005469
- [3] PIA, Giorgio, Ludovica CASNEDI, Matteo IONTA a Ulrico SANNA. On the elastic deformation properties of porous ceramic materials obtained by pore-forming agent *International*[online]. method. *Ceramics* 2015. : -[cit. 2015-05-26]. DOI: 10.1016/j.ceramint.2015.05.057. ISSN 02728842. Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0272884215009864
- [4] GUZMAN, I. Ya. Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review). Glass and Ceramics [online]. 2003, 60(9/10): 280-283 [cit. 2015-05-26]. DOI: 10.1023/B:GLAC.0000008227.85944.64. ISSN 0361-7610. Dostupné z: http://link.springer.com/10.1023/B:GLAC.0000008227.85944.64
- [5] LIU, Peisheng a Guo-Feng CHEN. 2014. Porous materials: processing and applications. 1st edition. Oxford: Butterworth-Heinemann. ISBN 978-0-12-407788-1.
- [6] BERTOLLA, L., I. DLOUHÝ a A.R. BOCCACCINI. Preparation and characterization of Bioglass®-based scaffolds reinforced by poly-vinyl alcohol/microfibrillated cellulose composite coating. Journal of the European Ceramic Society [online]. 2014, 34(14): 3379-3387 [cit. 2015-05-26]. DOI: 10.1016/j.jeurceramsoc.2014.04.003. ISSN 09552219. Dostupné z:

http://linkinghub.elsevier.com/retrieve/pii/S0955221914001915

Zoznam použitých skratiek, symbolov a veličín

Zoznam skratiek

FEA	konečno prvková analýza
МКР	metóda konečných prvkov
ROTX	rotácia v smere osi X
ROTY	rotácia v smere osi Y
UX	posuv v smere osi X
UY	posuv v smere osi Y
UZ	posuv v smere osi Z

Zoznam použitých symbolov a veličín

$B_1 - B_9$	[-]	konštanty obecného vzťahu (6.3)
C_1, C_2	[-]	konštanty obecného vzťahu (6.1)
E_k	[MPa]	modul pružnosti v ťahu pre kontinuum
E_p	[MPa]	modul pružnosti v ťahu pre penovú štruktúru
G_k	[MPa]	modul pružnosti v šmyku pre kontinuum
\vec{b}	[-]	obecný vektor pravých strán
<i>err</i> _c	[mm]	súčet chýb posuvov medzi penovou štruktúrou a kontinuom
err_x	[mm]	chyba posuvu medzi penovou štruktúrou a kontinuom v smere osi x
err_y	[mm]	chyba posuvu medzi penovou štruktúrou a kontinuom v smere osi y
$f_1 - f_9$	[-]	zložky obecného vektora pravých strán pre sústavu rovníc $1-9$
$ec{q}$	[-]	obecný vektor neznámych
u_{xk}	[mm]	posuv kontinua v smere osi x
u_{xp}	[mm]	posuv penovej štruktúry v smere osi x
u_{yk}	[mm]	posuv kontinua v smere osi y
u_{yp}	[mm]	posuv penovej štruktúry v smere osi y
$x_1 - x_9$	[-]	prvá obecná premenná zo vzťahu (6.3) pre sústavu rovníc $1-9$
$y_1 - y_9$	[-]	druhá obecná premenná zo vzťahu (6.3) pre sústavu rovníc $1-9$
μ_k	[-]	Poissonov pomer pre kontinuum
μ_p	[-]	Poissonov pomer pre penovú štruktúru
Ζ	[-]	obecný vzťah pre aproximáciu
а	[mm]	dĺžka hrany bunky

f	[-]	obecný vzťah pre vykreslenie výstupných závislostí
h	[mm]	hrúbka steny škrupiny
p	[-]	počet buniek na hranu štvorcovej penovej štruktúry
v	[mm]	veľkosť bunky
x	[-]	prvá obecná premenná zo vzťahu (6.3)
y	[-]	druhá obecná premenná zo vzťahu (6.3)
A	[-]	obecná matica kombinácií súčinov prvej a druhej premennej podľa vzťahu (6.3)

Zoznam obrázkov a tabuliek

Zoznam obrázkov

Obr. 3.1 Trojrozmerné keramické peny	16
Obr. 4.1 Model Kelvinovej bunky s uzavretou pórovitosťou	17
Obr. 4.2 Model komponenty vytvorenej z Kelvinovej bunky s uzavretou pórovitosťou	17
Obr. 4.3 Parameter bunky ukázaný na vymodelovanej komponente	17
Obr. 4.4 Model penovej štruktúry 4x4	18
Obr. 4.5 Diskretizácia modelu penovej štruktúry 4x4	18
Obr. 4.6 Model kontinua pre štruktúru 4x4 a zároveň diskretizácia modelu kontinua štruktú	íry
4x4 pri zaťažení vzorku na ťah	19
Obr. 4.7 Diskretizácia modelu kontinua štruktúry 4x4 pri zaťažení vzorku na šmyk	19
Obr. 4.8 Model okrajových podmienok penovej štruktúry 4x4 pri zaťažení vzorku na ťah	20
Obr. 4.9 Model okrajových podmienok penovej štruktúry 4x4 pri zaťažení vzorku na šmyk.	21
Obr. 4.10 Model okrajových podmienok kontinua 4x4 pri zaťažení vzorku na ťah	21
Obr. 4.11 Model okrajových podmienok kontinua 4x4 pri zaťažení vzorku na šmyk	22
Obr. 4.12Model zaťaženia vzorku penovej štruktúry 4x4 na ťah	22
Obr. 4.13 Model zaťaženia vzorku penovej štruktúry 4x4 na šmyk	22
Obr. 4.14 Model zaťaženia vzorku kontinua 4x4 na ťah	23
Obr. 4.15 Model zaťaženia vzorku kontinua 4x4 na šmyk	23
Obr. 5.1Postup riešenia kontinua pri zaťažení vzorku na ťah	24
Obr. 5.2 Postup riešenia kontinua pri zaťažení vzorku na šmvk	25
Obr. 6.1 Posuv najpoddajnejšej penovej štruktúry 4x4 v osi x pri zaťažovaní vzorku na ťah.	26
Obr. 6.2 Posuv najpoddajnejšej penovej štruktúry 4x4 v osi v pri zaťažovaní vzorku na ťah.	26
Obr. 6.3 Posuv kontinua pre najpoddajnejšiu penovú štruktúru 4x4 v osi x pri zaťažení vzor	·ku
na ťah	27
Obr. 6.4 Posuv kontinua pre najpoddajnejšiu penovú štruktúru 4x4 v osi v pri zaťažení vzor	·ku
na ťah	27
Obr. 6.5 Aproximácia modulu pružnosti v ťahu E_k na počte buniek p pre najpoddajnejš	šiu
štruktúru	27
Obr. 6.6 Aproximácia Poissonovho pomeru μ_k na počte buniek p pre najpoddajnejš	šiu
štruktúru	28
Obr. 6.7 Posuv najtuhšej penovej štruktúry 4x4 v osi x pri zaťažovaní vzorku na ťah	28
Obr. 6.8 Posuv najtuhšej penovej štruktúry 4x4 v osi v pri zaťažovaní vzorku na ťah	28
Obr. 6.9 Posuv kontinua pre najtuhšiu penovú štruktúru 4x4 v osi x pri zaťažení vzorku	na
ťah	29
Obr. 6.10 Posuv kontinua pre najtuhšju penovú štruktúru 4x4 v osi v pri zaťažení vzorku	na
ťah	29
Obr. 6.11 Aproximácia modulu pružnosti v ťahu E_{L} na počte buniek p pre naituh	šiu
ξ such that ξ is the second seco	29
Obr. 6 12 Aproximácia Poissonovho pomeru μ_{1} na počte buniek <i>n</i> pre najtuhšiu štruktúru	30
Obr. 6 13 Posuv základnej penovej štruktúry 4x4 v osi x pri zaťažovaní vzorku na šmvk	31
Obr. 6.14 Posuv kontinua pre základnú penovú štruktúru 4x4 v osi x pri zaťažení vzorku	na
šmyk	31
Obr. 6.15 Aproximácia modulu pružnosti v šmyku Grana počte buniek n pre základ	lnú
štruktúru	31
Obr. 6.16 Závislosť modulu pružnosti v ťahu F_{1} na veľkosti bunku n a brúbke ste	-nv
δk h	лту 3Д
эктиршу п	54

Obr.	6.17	Závislosť	Poissono	vho po	mer	u μ_k	, 1	na	veľkosti	bunky	v	a	hrúbke	steny
škrup	iny h.										••••			34
Obr.	6.18	Závislosť	modulu j	pružnos	ti v	ťahu	G_k	na	veľkosti	bunky	v	а	hrúbke	steny
škrup	iny h .													35

Zoznam tabuliek

Tab. 4.1 Model materiálu penovej štruktúry	. 16
Tab. 4.2 Veľkosti buniek a dĺžky hrán buniek	. 17
Tab. 4.3 Hrúbky stien škrupín penovej štruktúry	. 19
Tab. 6.1 Výsledky najpoddajnejšej penovej štruktúry pri zaťažení vzorku na ťah	. 26
Tab. 6.2 Výsledky kontinua pre najpoddajnejšiu penovú štruktúru pri zaťažení vzorku	na
ťah	. 27
Tab. 6.3 Výsledky najtuhšej penovej štruktúry pri zaťažení vzorku na ťah	. 28
Tab. 6.4 Výsledky kontinua pre najtuhšiu penovú štruktúru pri zaťažení vzorku na ťah	. 29
Tab. 6.5 Výsledky základnej penovej štruktúry pri zaťažení vzorku na šmyk	. 30
Tab. 6.6 Výsledky kontinua pre základnú penovú štruktúru pri zaťažení vzorku na šmyk	. 30
Tab. 6.7 Ustálené hodnoty charakteristík	. 32
Tab. 6.8 Výsledky testovacej štruktúry	. 33

Zoznam príloh

Prílohy na CD:

[Príloha 1]

Elektronická verzia bakalárskej práce