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Abstract: This paper shows the topology design of a simple second-order oscillator based on two
three-port current conveyors, two resistors, and two grounded capacitors, as well as its modification
to a voltage-controlled oscillator (VCO). In comparison with many previous works, the following
useful conceptual novelties and improvements were made in this study. Both resistors presented in
the topology can be employed to tune of the oscillation frequency by the simultaneous driving of two
optocouplers with resistive output stage. The current gain of the current conveyor ensures the control
of the oscillation condition. The proposed solution offers advantages (in comparison with many
standard so-called single-resistance-controllable types) of improved dependence of the frequency
of oscillation (FO) on a driving force (extended tuning of the FO), constant ratio of amplitudes of
generated waveforms when the FO is tuned, low complexity (taking into account auxiliary circuitry
for optocouplers), and comfortable tuning of the FO by a single control voltage. The oscillator
produces waveforms with tunable frequency having a constant 45-degree phase shift between them.
The relative sensitivities of the proposed solution achieve typical values for these second-order
systems (—0.5). Experimental verification confirmed the expected behavior in the operational band
between 1 and 10 MHz tuned by a DC voltage from 1.7 to 5 V. This indicates a significant reduction
of the driving force ratio (3:1 in our case) in comparison with standard tuning approaches required
for a ratio of 10:1 for FO adjustment. Output amplitudes reached 100 and 150 mV in the observed
tunability range with distortion ranging between 0.7 and 3.3%.

Keywords: current conveyors; frequency control; optocoupler; oscillator; single-resistance-controlled
oscillator; SRCO; tuning; VCO

1. Introduction

Many recent papers have introduced interesting topologies of oscillators based on various active
elements performing so-called single-resistance control of the frequency of oscillation (FO) and
single-resistance control of the condition of oscillation (CO) [1]. However, single-resistance-controllable
oscillators (SRCOs) [1] have many drawbacks resulting from their natural operation. The overall
performance of the oscillator is influenced by adjusting the single integrator. It results in the
dependence of the amplitude of one generated signal on the FO and the nonlinear dependence
of the FO on the driving resistance value [1]. In some cases, phase shift between generated waves is
also influenced because of the fundamental principle of operation. In recent approaches, as little as two
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resistors can be suitable for FO control (see Table 1); however, there is an issue with the independency
of the CO when the inequality of values occurs. This issue is not solved in many works utilizing various
active elements [2]. A comparison of known solutions (references [3-19]) with similar complexity (two
active devices from the family of the simplest current conveyors [2] and their modifications) is given
in Table 1.

We may formulate the following conclusions based on the analysis of items in Table 1:

(a) already known solutions lack constant (not varying) amplitudes when the FO is tuned (especially
SRCO solutions [3-12]) or this issue was not analyzed,

(b) many solutions [3-12,15] where the first resistor serves as the FO control and the second as the
CO control are not minimal (an additional resistor with a fixed value is included in the CO and
FO relations simultaneously),

(c) the majority of already known solutions provide only inversely proportional square root
dependence of the FO on the driving force (value of the single resistor, FO~R~'/2), which
limits the tunability to be quite narrow,

(d) solutions combining control by value of passive element (or its replacement) and active parameter
(for the CO control, for example) are not studied (only Reference [14] discusses the adjustment of
the CO by an active parameter; however, the FO is also tuned by an active parameter (Rx)),

(e) solutions implementing two parameters for FO tuning (completely uncoupled from the CO) in
order to extend tunability are not proposed (with the exception of Reference [14], where this
operation was not verified),

(f) the simple implementation of necessary systems for amplitude gain control circuit (AGC) for
amplitude stabilization utilizing electronically (voltage) controlled CO by a specific active
parameter is not considered in the majority of solutions summarized in Table 1. Therefore, many
topologies have very uncomfortable CO (with a typical form of C; = Cp or Ry = Ry, and their
presence is also found in the FO as product of R1R; and C;C», see for example solutions in [17,18]).
An additional active or passive parameter suitable for the adjustment of CO (not included in the
FO relation) should be included, but it cannot be revealed (in these simple solutions having 2 R,
2 C) without the analysis of general (not equal to unity) terminal transfer relations of the active
elements (current conveyors).

In particular, the last problem (f) of the simplest published solutions (two active devices, 2 R,
2 C) merits attention because there is significant room for improvement in these previously published
solutions, especially concerning specific types of SRCO oscillators.

Some innovative approaches to the FO tunability can be found in topologies where resistor values
cannot be used for the FO and the CO adjustment due to the unsuitable form of the characteristic
equation. This method supposes the replacement of the negative capacitor (s) with an electronically
controllable equivalent for the purposes of FO tunability [16]. However, the complete solution requires
additional active devices (one or two) and additional passive elements (two or three). Therefore, such
a solution is not minimal and the remaining drawbacks mentioned above still stand (dependence of
generated amplitudes on the FO tuning and limited inversely proportional square root dependence of
the FO on equivalent capacitance value—not analyzed in Reference [16]).
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Table 1. Comparison of solutions of the simplest resistance-controllable oscillators and single-resistance-controllable oscillator (SRCO) types based on two active

elements with three-port current conveyors and grounded capacitors.
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[3] (1995) 2/5 chf_ 1 R grounded ~R"V2  _R-1/2 0.042 N/A N/A N/A grmll fde d - N/A N/A M N/A
[4] (1996) 2/5 (égl: 1 R grounded ~R"1/2 N/A N/A N/A N/A N/A groifded - N/A N/A S Yes 2
[5](199%)  2/5 CFOA 1Rgrounded  ~R-12  -R-V2 0460(985)! N/A N/A N/A grmll fde | ; N/A N/A M N/A
[6](1997)  2/5 CFOA 1Rgrounded ~ ~R-1/2  ~R-172 6.00 <1 N/A N/A groifde | ; N/A N/A M N/A
[71(1998)  2/5 CFOA 1Rgrounded  ~R-1/2  ~R-1/2 N/A N/A  N/A N/A gm}lfde 4 - N/A N/A N/A N/A
[8] (1998) 2/5 CFOA 1Rgrounded  ~R1/2  N/A 0.260 N/A N/A N/A groifde 4 - N/A N/A M N/A
[9] (1999)  2/6(5) ggﬁ 2 R grounded -k~ N/A 0.153 N/A N/A N/A gmi fde 4 N/A 90 S N/A
[10] 2005)  2/6 (EFC(I)I;) 1R grounded b b 0.189 15 N/A N/A 1Rfloatng - N/A N/A S N/A
[11] (2006)  2/5 CFOA 1 gr fgg&;‘f o Lr-2 g2 0.037 <31 N/A N/A c - N/A N/A M N/A
[12] (2009) 2/5 CFOA 1Rgrounded  ~R1/2  ~R71/2 290 (609) ! 1.6 N/A N/A groifde d N/A N/A M N/A
[13] (2010)  2/4 CFOA d ~R"1/2  N/A N/A N/A N/A N/A d - N/A N/A M N/A
[14](2010)  2/2  CCCIT+/- 2Ry ~R-1  ~R71/2 1.80 <7 35 N/A - B N/A N/A S N/A
[15] (2011) 2/5 CFOA 1 R grounded ~R~1/2 N/A 1.320 <3 N/A N/A 1R floating - N/A N/A M N/A
[16] 2011)  2/4 CFOA 1Ceq grounded  ~Ceq~1/2  N/A 0.146 < N/A N/A 2Rfloating* - N/A 90 s N/A
[17](012)  2/4 DO—C(Ié(I?CII, 2 Rgﬂgiﬁg‘i (;’“d Rl ~R-12 0.182 <17  N/A N/A ex ; No 90 S N/A
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[18] (2014) 2/4 CFOA 2 R floating ~R~1 N/A  0.065 (1.33) 11 <0.8 086 N/A * - Yes 90 B N/A
[19] @011)  2/6 ccme 2 Rgfiziﬁg‘i ;“d Rl N/A 143 03 N/A N/A » ; N/A N/A M Yes
Figure 1 2/4 ECCC(I:III_+ 2 Rg?giﬁgi;“d ~R-1 ~R"1 1032500V <33 5700V 45 - B Yes 45 M Yes

Notes: CCI+/——current conveyor of the first (negative/positive output) generation; ICCII—inverting current conveyor of the second generation; DO-(I)CCIl—dual output (I)CCII;
CCCII+/——current controlled CCII+/—; ECCII+/——electronically controllable CCII+/—; CFOA—current feedback amplifier. Active parameters: Rx—internal resistance of terminal X
(current conveyor); B—adjustable current gain between X and Z terminal of ECCIL @ Antiparallel diodes; ® complicated matching condition (resistor ratio) for tuning; © several various
solutions presented in Reference [11], not all of them have easily uncoupled CO and FO; ¢ complex relations for FO and CO, some of them have uncoupled FO and CO independently
controllable by grounded resistors; ¢ sometimes uncomfortable condition for CO (equality /matching of two capacitors/resistors required, no further parameter available for driving
of CO), independence of generated levels (amplitudes) on FO confirmed analytically; * problematic FO tuning and CO adjusting by matching of two resistors (R; = R, or C; = C, for
CO driving and R R; for FO tuning); ** matching of two resistors intended for FO must be ensured for uncoupled CO control by different pair of resistors; | up to 9.85 MHz without

working capacitors (used with parasitic nodal capacitances only); I 609 kHz available for 0.5 nF values of capacitors;

1

measured at 65 kHz with commercial element, simulated with

CMOS topology of active device at 1.33 MHz; IV high corner of tunability range set to 10.3 MHz but 25 MHz available when external C , = 4.7 pF applied, ¥ this value includes power
consumption of all devices on experimental printed circuit board (PCB) (also voltage buffers, automatic gain control circuit for amplitude stabilization (AGC), etc.); M—measured;
S—simulated, B—both; N/ A—not available, not tested.
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The controllability of the FO by two values of resistors (completely uncoupled from the CO) is
possible in topologies proposed by Soliman [9]. However, three active devices (CCII+ and CCII—) or
two dual output CCllIs (not commercially available) are required. The condition of oscillation can also be
controlled by two resistors that are not presented in the equation for the FO. Note that the engagement
of both resistors (suitability derived from characteristic equations) in References [9,14,17,18] for full
employment in FO tuning is not supposed and tested in these works. In addition, the majority of
solutions focus on a quadrature type of phase shift; different phase shifts are not expected to be
obtained in these structures, but it is possible as shown in our contribution. Work presented by
Bajer et al. [19] introduced a new type of Wien oscillator. The FO cannot be simply tuned without
impact on the CO if a special matching condition is not fulfilled (unfortunately, the FO adjustment was
not tested). Amplitude stabilization (with the exception of many other circuits included in Table 1) is
solved by an optocoupler regulating floating resistor.

The goals of our work include the proposal of: (1) improved dependence of the FO on the
driving force (extended tuning of the FO) in comparison with standard SRCO types; (2) constant
amplitude ratio of generated waveforms when the FO is tuned; (3) using only grounded capacitors
in topology; (4) only two active elements, only two capacitors, and two resistors employed in the
circuitry; (5) simple implementation of AGC; (6) comfortable tuning of the FO by a single control
voltage—a voltage-controlled oscillator (VCO); and (7) constant phase shift (45 degrees) during the
tuning of the FO. Point (6) particularly requires the careful selection and testing of known methods for the
replacement of the resistor with an electronically controllable equivalent. We selected a rather nonstandard
method (optocoupler with resistive output stage) that has not been frequently used for these purposes in
the past but brings certain advantages (no significant additional power consumption, not comparable with
standard commercially available active devices, good linearity, good frequency features).

The novelty of the presented circuit is revealed by the following features: (a) values of both
external resistors presented in a topology of the oscillator topology are suitable for tuning purposes;
(b) permitted voltage-controlled linear tuning of frequency that is not possible in the case of many
previously published and similar topologies known as single-resistance-controlled methods; (c) no
further “dummy” resistors or resistors suitable for the control of the oscillation condition occur in the
presented topology; (d) comfortable control of the condition of oscillation by a single active parameter
(current gain) independent from frequency; (e) optocouplers with the resistive output stage offer less
distorted output waveforms and more precise tuning of the frequency (even when one of the resistors
occurs in the floating form) than the field effect transistor (FET), which is not easily applicable in the
floating form; and (f) the method of electronic control (voltage driving of optocouplers) improves the
ratio of the frequency readjustment (tuning) vs. the driving force ratio.

This paper is organized as follows: Section 1 introduces the topic of resistance-controllable
oscillators and provides an overview of significant solutions and their features with respect to our
intentions in the above defined goals. Section 2 compares the parameters and available features of the
two most similar solutions and our proposal in detail. Section 3 discusses reasons for the selection
of the implemented method of resistance control. Section 4 analyses the discussed solution of the
oscillator (features of controllability). Section 5 provides a precise explanation of the design and
features of the component parameters as well as the experimental results of the circuit behavior when
the FO is tuned and their comparison to the expectations and ideal theory. Further methods of the
indirect electronic tunability (replacements of resistors) are briefly evaluated and compared in Section 6.
Section 7 concludes this work.

2. Detailed Qualitative Comparison of the Most Similar Solutions and the New Proposal

The following section explains the main differences of the newly proposed circuit and the most
similar solutions (topologically) already presented. Kumngern et al. [14] proposed a similar topology
of the oscillator where the target adjustability of the FO was solved by driving the intrinsic resistance
of the input terminal X (Rx) by the bias current. This means that external resistors are not present in
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the solution [14]. Unfortunately, current conveyors with controllable internal resistance Rx are not
available on the market. The control of the bias current (in order to adjust Rx) also has a significant
impact on the frequency bandwidth (transfer Y—X), input dynamics, and linearity as well as the
output resistance of the current conveyor (unintentional but unavoidable) [20]. Then, the range of Rx
value can be very limited. This results in a reduced range of FO tunability. Therefore, our contribution,
by solving the tunability of the FO with external replacements of both resistors, brings improvement
to the common practice (especially owing to the very low ratio of the driving force vs. the ratio of FO
readjustability, see Table 2). The CO in Reference [14] also proposes adjusting by the bias current, setting
a gain between the X and Z terminals of the current conveyor. Unfortunately, the implementation
of the topology as a two-phase oscillator as well as the analysis of the output relation has not been
performed and only a single-resistance Rx was employed for the FO tuning. This results in an inversely
proportional square root dependence of the FO on Ry, i.e., limited tunability. Therefore, the full
potential of the topology was not revealed and tested in Reference [14]. A very low output amplitude
(only slightly more than 20 mV) was also obtained in the results of Reference [14]. Our solution offers
a larger output level (amplitudes more than 100 mV). All these aspects (and more details) are clearly
visible in Table 2. Lahiri [17] proposed a very similar (topologically) circuit (Figure 1a in Reference [17]),
producing output signals in current form. However, the topology also had high-impedance nodes
where the output voltages were presented. Several features, compared in Table 2, are similar to those
of Reference [14] and our proposal (number of active and passive elements, character of allowed
and tested FO dependence). Nevertheless, the range of tested tunability is very narrow (narrow
change of resistance value = low ratio of FO readjustability), CO cannot be electronically controlled,
and the generated levels are not independent from the tuning process. Other similar solutions (listed
in Table 1) do not provide detailed information about the features required for the comparison in
Table 2. Therefore, other solutions are not included in this detailed comparison (Table 2).

Table 2. Comparison of our solution and topologically similar circuits in References [14,17] based on
two current conveyors and two grounded capacitors.

Reference [14] [17] (Figure 1a) Proposed (Figure 1)
No. of passive elements 2 4 4
No. of elements (parameters) suitable for FO control 2 2 2
No. of elements (parameters) used for FO control 1 1 2
) e e e
Allowed character of FO dependence ~R~1 ~R~1 ~R™1
Tested character of FO dependence ~R71/2 ~R71/2 ~R71
Range of driving force 1 pA—500 pA 8kO—15kO* 1.73—4.95V
Ratio of driving force S(C)Loxrlre(rlf;s 1.9:1* 3:1 (control voltage)
Obtained FO range (MHz) 02—1.8 0.120—0.165 1.05—10.30
Ratio of FO 9:1 1.4:1 10:1
Active parameter for CO control Yes No Yes
Type of active parameter suitable for CO control current gain N/A current gain
Outputs (nodes) used 1 2 2
Produced phase shift (°) N/A 90 45
Amplitude stabilization N/A N/A Yes
Generated levels (amplitudes) independent on N/A No Yes
tuning process
Output amplitude 25mV 80—125 pA, 95—110 pA 100 mV, 150 mV
THD (%) 1-7 0.7—1.4 0.7—3.3
Verification simulated simulated measured

* There is no driving force (voltage, current), the value of the grounded resistor is changed from 8 k() to 15 k().
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3. Implementation of Optocouplers for Control of VCO

Many possible solutions of electronically controllable replacements of resistors are available
for designers. Their brief comparison is given in Section 6. We selected the implementation of
optocouplers because their applications for purposes of tuning are beneficial in comparison with
the standard utilization of unipolar transistors in a triode/ohmic regime (see for example [11,12]).
Moreover, the implementation of unipolar transistors in floating connections between nodes is not an
easy task (additional active and passive elements are required) [11,12]. The application of optocouplers
in oscillators was introduced by Bajer et al. [19] and Biolkova et al. [21]. These devices have been
employed to stabilize the amplitude of sine waveforms. Our intentions in this paper are quite different.
Optocouplers are expected to be used for tuning purposes (to replace resistors suitable for the FO
tuning). The circuit solution in this paper is suited for application of optocouplers more than for
unipolar transistors because of the presence of grounded as well as floating resistors intended to tune
the FO in the topology.

4. Topology Suitable for Selected Method of FO Control

Figure 1 shows the topology of the oscillator utilizing only two active devices, two grounded
capacitors, and two resistors (the most similar solution [14] omits external resistors with full
consideration of the issues discussed in a previous text). The negative current conveyor of the second
generation (CCII—) [2,22] as well as a positive electronically controllable CCII (ECCII+) [2,22-25] have
identical definitions of two inter-terminal relations—Iy = 0, Vx = Vy—whereas the most important
difference rests in the transfer of the current from the X to Z terminals (I = —Ix for CCII— and I = B-Ix
for ECCII+). The parameter B represents a generally adjustable current gain. The characteristic equation

of this simple oscillator is:
C,—CiB 1

RiCiC ° T RiRCIG 0

This characteristic equation offers a very beneficial condition for oscillation B > C,/C;. The most
important advantage of the solution results from the mutually independent CO and the FO, completely
defined by the values of both capacitors and resistors having the typical form of wg = (RyR,C;C,) /2.

$* + 1)

- NRe CO control

5 ' B (Vsets)
-

= E % RXZCC” N »_"_'
5! z Y ECClI+| | Cy

' <=
3] : Y XR Z+—e
ok - =i

N -_

= ver
T T Ver

Figure 1. Simple oscillator employing two current conveyors, two capacitors, and two resistors.

The relation between the generated output voltage levels (amplitudes) can be expressed as:

: [R1Cy
1=/ &o

=
s=jw, 1+ RiG
Jwo RoG

Vel 1

= 2
VCZ 1+SC1R1 ( )

which can be modified into:
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1+ RiG R
Vel = Vo R exp j'tan_1 — 161 Veo. 3)
(1 + R1C1) R2C2
Ry Cy

Supposing the equality of both resistors and capacitors (R; = Ry = R, C; = Cp = C), the previous
relation can be simplified to:

2 7T
Vc1 = % exp (—]Z> Vc2. (4)

The proposed oscillator theoretically offers a constant level of output amplitudes with a constant
ratio of 0.707 between the generated waveforms and a phase shift of 45 degrees, while the FO is tuned
by Ry and R, simultaneously. Note that the controllability of the FO by a single value (R; or Rp) causes
amplitude and phase shift changes (when the FO is tuned). Valuable engagement of both resistors
for the FO control is not a typical feature in such simple circuitries (Figure 1). This represents a very
important finding in comparison with standard SRCOs and other solutions [1,3-12] tunable by a single
parameter value only. Moreover, the dependence of the generated output level on the tuning process
(variation of the parameter intended for the FO tuning) presents an unwanted secondary effect of the
single-parameter controllability of the FO [26]. It brings additional issues with amplitude limitation
and distortion. In our case, this was not an issue.

The most important small-signal parasitic effects of real circuitry (indicated by green color in
Figure 1) are easily taken into account in a modified form of Equation (1) where the parasitic (stray)
nodal capacitances Cy1, Cp, (in parallel to Cq, C) and resistances Rx1, Rx» of the current input terminals
(in X of both current conveyors) are considered:

5 (C2 + sz) — (C1 + Cpl)B 1
s+ =0. (5a)
(Ry + Rx1)(C1 + Cp1) (C2 + Cpo) (R1 + Rx1)(R2 + Rx2) (C1 + Cp1) (C2 4 Cpa)
C + sz
B* > — I 5b
- C+ Cpl ( )
W = ! (5¢)

\/(Rl + Rx1)(R2 4+ Rx2) (C1 + Cp1) (C2 + Cpo) '

This equation was gained by the routine analysis of an autonomous circuit including the most
important parasitic elements in Figure 1 (indicated by green color). The new CO and FO expressions
(difference from ideal CO and FO indicated in superscript *) can be derived from Equation (5a) as
follows. The equation for wq * (5¢) provides the expected values of FO used in Equation (8) and shown
in Table 3 when the oscillator is tuned. The relative sensitivity of the FO to the main parameters (R, R,
C1, (), in an ideal case derived from (1), reaches a typical value of —0.5. The sensitivities of the FO,
including the effect of important parasitic parameters presented in (5c), are: Sg1 %% * = —R1/[2:(R
+ Re1)], Sra®? * = =Ry /[2:(Ry + Rio)], Sc1®? * = —=C1/[2:(C1 + Cp1), S * = —Co/[2:(Ca + Cpa)],
Srx1%? * = —Ry1/[2:(Ry + Ryp)], Sgea®® * = —Ryu2/[2:(Ra + Rx2)], Scpi @0 * = —Cp1 /[2(C1 + Cpo)].
In fact, these sensitivities have absolute values lower than those of the ideal case (<0.4 numerically for
particular values from our design).

Note that many commercially available types of current conveyors have very high (MQ)
resistances (real parts of voltage inputs and current outputs) at the Y and Z terminals [27] and
their inclusion to (5a) does not create a significant effect in comparison with the Cp12 and Ry in this
case. However, there are solutions where these effects cannot be omitted and full consideration of all
parasitic features must be provided for the accurate estimation of behavior at high frequencies and
when the value of Cy 5 is set in hundreds of pF or lower. The specific values of Cp1 > for our case are
discussed in the next section.
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5. Design of Oscillator and Results of Experiments

The initial design of this circuit supposes C; = C; = C = 47 pF. Note that this selection (tens of
pF) is generally required in combination with resistance values (R; = Rp = R) in hundreds of () for
the operation of this and similar oscillators above 1 MHz. However, the values of working capacities
are not far from the values of stray capacitances of circuitry including the terminal capacities of
active devices (units of pF). The internal value of X terminals of CCllIs (Rxj7) must also be taken
into account from Equation (5a) and (5c). The current conveyors used in our topology (Figure 1) are
established by current-mode multipliers EL2082 [27] and a high-speed single-input single-output
transconductance amplifier known also as a diamond transistor OPA615 [28]. The electronically
controllable gain B (proportionally driven by Vsgrp voltage: B = Vggrp for Vsprp < 2 V [27]; because
B = k-Vggrg, where k =1 [V™1]is valid for Vsgrg < 2 V) of EL2082 was set to B = 1 for CCII— operation.
The cascade of EL2082 with OPA615 (output inversion of CCII—) creates ECCII+ type where B can
be controlled to drive the CO by an external AGC for the amplitude stabilization of the generated
waveforms (Figure 2). The main purpose of the AGC consists in the sustentation of unchangeable
output levels when the oscillator is tuned. This feature cannot be simply obtained when the CO is
set to fulfill an analytically obtained relation because energetic (gain) proportions in the circuit are
influenced by tunability. The operation without AGC leads to issues with output waveforms (damage
of the shape by nonlinear transfer responses of active devices or even limitation), resulting in high
total harmonic distortion (THD) (increased level and amount of higher harmonic components and
increased level of spurious combination products) or fading (drop down) of oscillations. Voltage
buffers (not included in the simplified schemes), based on the OPA2652 [29] operational amplifier,
are added to high-impedance nodes for the impedance separation and subsequent measurement of the
circuit on a printed circuit board (PCB) by a low-input-impedance (50 () spectrum analyzer HP4395A
and oscilloscope Rigol DS1204B.

2xBAT42

from any
output node

Figure 2. Simplified topology of AGC circuit for amplitude stabilization.

Expected values of stray/parasitic capacitances are Cy1 = 3 pF and Cp» = 10 pF (in parallel with
C; and Cy) where Cpy includes the Y terminal capacity 2 pF (CCII—-) [27] and input capacity of voltage
buffer (1 pF) [29]. The estimated effect of Cy, supposes a capacity of 5 pF of the Z terminal (CCII—) [27]
and the Y, Z terminals (2 + 2 pF) of ECCII+ [28], as well as the input capacity of the voltage buffer
(1 pF). Terminal X has an expected input resistance Rx; » = 95 (2 [27].

FO tuning can be achieved by the variation of R; and R, values simultaneously by a dual-channel
tandem potentiometer. Our design intention targets tunability in the approximate range of 1-10 MHz.
The discussed method (potentiometer) is not very comfortable for standard applications. Many systems
produce a DC driving voltage or current (after D/A conversion). Therefore, we seek useful methods of
indirect electronic control. The following paragraphs deal with the possible improvement of the circuit
to VCO.

The position of the R; resistor in the topology (Figure 1) of the oscillator requires the implementation
of controllable resistance in a floating form. The replacement of R; by the emulator based on active devices,
for example, operational transconductance amplifiers (OTAs) [30,31], brings significant additional power
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consumption, area, and further complications. Therefore, we selected the optocoupler NSL-32SR3 [32]
(photodiode-photoresistor) with very favorable features (frequency bandwidth and linearity) in a grounded
or floating form in comparison with many active solutions (unipolar transistors in a linear regime).
Our circuit (Figure 1) employs two optocouplers as shown in Figure 3.

? Vses
—r~B |, opnets

r———"""""3" 1 2 E  CJ

I Rm2 | _|, Ecci-

| 910Q DT
Vegr =1V -t B

| CO control -

| ROCZ 3 B (Vsets) EL2082

|FO control X

I Voc | NSL-325R3 | CCll- z[2 v ]

: : — v ECClI+ 2+

| | EL2082] oc, X

| T LEL20824

| I—> | NSL-32SR3 | ¥ Roci ~ OPAsIsL

| oC1 | Cz sz

conversion_ e]nd compenzation C1==\I/VC1
of driving currents ——

Figure 3. Indirect electronic control of the FO in the oscillator performed by two optocouplers.

The reasons for the presence of Ry12 = 910 ) and Ryt = 2.5 k() result from the required
transformation (Ry;12) of the driving voltage Voc to currents with a maximal allowed value
(here approximately 1.5 mA per branch, which is approximately more than 10 times lower current
consumption than opamp or CCII per single supply branch, for Voc = 5 V—fully positive supply
voltage) and the compensation for the slight inequality of the resulting Rocy and Roc (given by
fabrication mismatch) for the same driving current. We compensated this effect by the slight inequality
of driving currents (Ipc1 # Iocz). The threshold voltage Vy, ~ 1.6 V of the optocoupler’s LED was
obtained experimentally. The measured frequency features (by vector network analyzer E5071C) of
the optocoupler output (Zpc) are introduced in Figure 4 for particular values. Figure 5 shows the
dependence of Roc on the driving current and voltage (in accordance with the driving circuitry in
Figure 3). The datasheet [32] does not publish these features, but they must be known for the design
of applications. Features of the device limit its implementation to systems operating around 10 MHz
when the value of Rpc is set below 500 (). Based on our experiments, the relation between Roc and the
driving current Ioc can be found empirically as Roc [Q2] 22 0.2/Ioc [A]. Then Rpc can be approximately
expressed, in dependence on the driving voltage V¢, as:

~ 0-5Rpot + le,Z
ROCZ = 0-2 * - s _  ~5 . (6)
Voc — Vi
. loe = 1500 pA
Z1°°'° 3 0 (Roc = 0.16 k)
k?; i ® 10 -
o loc =25 pA
(ko] | loc = 25 pA (Roc = 15 kQ) 1 5] o ~51ng
loc = 50 uA (Roc =15 k2)
10.0 4 oc K .30 4
E (Roc = 4.91 kQ)
40 |
1 loe =125 pA (Roc 21.5kQ) -50 |
1.0 4 Joc = 250 pA (Roc = 0.71 kQ) 60
1 loc = 500 PA (Roc = 0.37 kQ) 70 |
1 Ioe = 1500 A (Roc = 0.16 kQ) -80
0.1 : : ‘ N Y/ Y AN N Wi | §
o> o o© ot o o> o I\ St I\
LT\ & THE AT fHE

(@) (b)

Figure 4. Frequency responses of the optocoupler output stage impedance: (a) magnitude plots;
(b) phase response plots.
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Figure 5. Dependence of Rpc on: (a) driving current Ipc; (b) driving voltage V.
Neglecting the discussed inequality of Ioc1 # Iocp, the ideal equation for the FO (f(;) controlled
by the optocoupler can be written as:

271-0.2- (0.5Rpot + Rp12)VC1Cr 27+ 432-/C1Cy

foi )

Note that this equation supposes the identical behavior of both optocouplers. A more accurate
relation (especially for operations with very low values of C; ; above 1 MHz) for the FO (f(,) can be
obtained for real values of parasitic features included in Equation (5¢c). We expect identical values
Rx1 =Rx2 = Rx =95 Q) (and Cp1 = 3 pF, Cy» = 10 pF) in the following expression:

®)

1
27 [02- (B2} 4 Ry] -\ /(G +Cpn) (Co+ Ca)

The experimental results of the FO of the oscillator in Figure 3, including the AGC from Figure 2,
are summarized in Table 3. The implemented optocouplers offer a range of Roc adjustability,
from approximately 130 Q) to 2.7 kQ) (Ipc varied from 75 pA to 1500 pA) in the ideal case and from
150 Q) to 2.8 k() in the measured case, see Table 3 for the detailed results. The expected trace includes
the abovementioned parasitic elements. These results are represented graphically in Figure 6a, and the
FO dependences for the driving of the oscillator by V¢ voltage are shown in Figure 6b. The traces in
Figure 6b represent the ideal (Equation (7)), expected (Equation (8), including the nodal parasitics of
the circuit), and the additional nodal capacitances (10 pF) expected in the case of the real printed circuit
board. Finally, the measured results are very close to the case in which PCB parasitics are considered.
The CO for the influenced circuit (as derived in Equation (5b)) is fulfilled theoretically for B > 1.12.

There are several reasons for the differences between the ideal, expected, and experimental

fOe =

behaviors (results of frequency dependences on V¢ in Table 3 and Figure 6b): (a) parasitic elements
(capacities) of the active element due to the close values of the working capacitors to the stray
capacitances; (b) transit features of active devices (their phase responses are especially important for
oscillators—these issues occur at frequencies lower than —3 dB cut-off or transit frequency); (c) Miller
effect of the increasing input capacity of active devices (amplifiers) when the gain is varied—the
“parasitic capacity” increases with increasing gain of blocks of the circuit; this behavior is not easily
predictable and implementable to the design equations; (d) high uncertainties in bands above 1 MHz
given by real parasitic features of the PCB (parasitic conductivity, inductance, and capacity) that can be
only approximately estimated in the case of capacity—the accuracy and high-frequency (RF) behavior
of circuits operating above 1 MHz highly depends on the design and quality of the PCB; and (e)
inequality of the driving current of optocouplers (Ioc1 # Ioca)-
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Table 3. Comparison of ideal, expected, and measured (experimental) FO dependences on
driving parameters.

Voc (V) Ioc Roci  Rocmeas Roci + Rocmeas + foi foe foe+10pF  fomeas
(HA) Q) Q) Rx1,2 () Rx1,2 () (MHz) (MHz) (MHz) (MHz)
4.95 1500 133 152 228 247 25.27 13.32 11.21 10.30
3.74 884 226 227 321 322 16.78 10.05 8.46 8.01
2.82 500 400 366 495 461 9.57 6.64 5.59 6.02
2.23 280 714 629 809 724 5.18 3.98 3.35 4.00
2.04 193 1039 936 1134 1030 3.45 2.77 2.33 3.01
1.86 123 1633 1524 1727 1620 2.04 1.70 143 2.01
1.73 75 2667 2780 2762 2880 1.04 0.89 0.75 1.05

Notes: symbols of subscripts: i—ideal value (7), e—expected value (8), ¢ + 10 pF—expected value (8) including the
effect of PCB in each high-impedance node of working C 5.

fo 15 1 ) ) fomo ideal calculation (7)
[MHz] | - - -ideal calculation [MHz] 1 without parasitic elements
b X measured ]
1 \ ——expected
10 4 10 4
5 1 4
1 ] \
expected (8) with PCB including additional
parasitic elements (+10 pF to node of C, ,)
0 T T T 1 o T T T T T T T T T T T T T T T T T T T 1
0 1 2 1 2 4 5
R, > [kQ] Voc [V]
(a) (b)

Figure 6. Dependences of FO on: (a) R; » (formed by Rpc1,2 only or Roc1 2 influenced by Rxq 2 =95 Q);
(b) Vo (traces obtained from ideal, expected, and measured results).

The ideal calculation (ideal values of C; 7 and Rpc1,2) supposes a range of the FO tunability of
1.04 MHz—25.27 MHz. Calculations including all important parasitic effects estimate a range of
0.89 MHz—13.32 MHz (R; » varied from 247 to 2.88 k(2). Consideration of the additional PCB effect
(+10 pF) leads to a range of 0.75—11.21 MHz. The experimental values follow our expectations because
the measured FO yields a range of 1.05—10.30 MHz.

Output amplitudes (V1 and V) reach levels of about 200 mV),., and 300 mVy,., (based on the
setting of the AGC) and they remain almost constant during the tuning process (Figure 7a). Their ratio
confirms the validity of Equation (4). The phase shift of both signals is around 45 degrees (Figure 7b).
This value was obtained from the oscilloscope in the time-domain measurement by the automatic
function evaluating the distance at which signals at both channels cross 0. An example of transient
responses for Voc =4.95 V (fomess = 10.30 MHz) is shown in Figure 8. Their spectral analysis provided
the results shown in Figure 9. The THD varies between approximately 0.7 and 3.3%. Quite high
values are given by the low suppression of higher harmonic components of the active device itself
(especially by the high-speed device OPA615 [28], only about 35 dBc in MHz bands). Similarly,
the implementation of many nonlinear high-speed devices results in a certain presence of somewhat
influential intermodulation products (visible in transient responses as superposed fluctuations at peaks
of amplitudes as well as some combination products observed in the spectral analysis around the
fundamental tone). The overall power consumption of the testbed (including buffers and opamps in
AGC) reaches 570 mW (five IC devices, approximately 60 mA of power current per supply branch, £5 V).
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Figure 7. Effects of the FO tuning on the generated signals: (a) dependence of output levels on the FO,

(b) dependence of phase shift on the FO.
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Figure 8. Example of the produced output waveforms in time domain at the end of designed range of

the FO adjustment.
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Figure 9. Spectrum of generated waveforms at the end of designed range of the FO adjustment: (a) V¢1;

(b) Vca.

We replaced values of capacitors in the oscillator in order to demonstrate the maximal available FO
in the experimentally tested prototype for a still practically feasible value (C; o = 4.7 pF was selected).
Then, the value f = 25 MHz was set experimentally by Voc = 4.55 V. The results of the spectral analysis
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are shown in Figure 10 for both output waveforms. Images of the measured prototype are given in
Figure 11.

Vor ¢ 1t Voc = 4.55V Vez o - gt Voc = 4.55V
[dBm:_I']O : C1,2 = 4.7 pF [dBm110 ] C1,2 = 4.7 pF
20 | f, =25.0 MHz 20 f,=25.0 MHz
.30 - 30 | spurious products
.40 | 51 dB spurious products a0 46 dB ©f active devices
: of active devices , 3rd
-50 1 ond 31 4th -50 1
-60 - , /o -60 - ; T
/ g 2nd /
=70 ] | '\\ | ; -70 + /
-80 MLl N ksl 80 | f N i il
O 9° N & P \® N\ I )
f[MHz] f[MHZ]
(a) (b)

Figure 10. Spectrum of generated waveforms for C;, = 4.7 pF and Voc = 4.55 V: (a) V1; (b) Va.

Figure 11. Measured prototype developed for experimental purposes.

The phase noise evaluation is shown in Figure 12 for V¢, output (these values are actually almost
identical for both outputs). The phase noise value was obtained for offset frequency Af yfset = 10 kHz
and 100 kHz (1/1000 and 1/100 of fundamental tone; the oscillator frequency was set to fo = 10 MHz
by Voc =4.92 V for this test). The phase noise values of 45 and 47 dBc/Hz were obtained for these
values of offset frequencies. Note that these are only approximate values due to the limited accuracy of
measurement (the noise background is influenced by the resolution-bandwidth (RBW) of the spectrum
analyzer that was set to 10 Hz in all cases). The value in the range of 40—70 dBc/Hz is typical for
these types of circuits due to the usage of inertial AGC (it solves limitation, shape distortion, THD,
and the variation of output levels when f is tuned, but its drawback is the higher fluctuation/jitter of
output amplitudes). Radio-frequency (GHz)-targeted solutions reach values in the high tens of dBc/Hz
(for example >100 dBc/Hz) in dependence on Af et because there is no AGC system in narrow-band
tunable oscillators and higher spurious spectral products are filtered. However, this approach cannot be
used in base-band or inter-frequency-band oscillators tunable in the f( range of 10:1 or more. Note that
the phase noise and f stability (except AGC) also depend on the precision of the construction of the
circuit (quality of the PCB, etc.). It may significantly influence overall performances, especially at high
frequencies above 1 MHz. The fundamental tone slightly fluctuates in the results shown in Figure 12.
The frequency change achieves £33 kHz (£0.33% at f, = 10 MHz), which results in a frequency
stability of S(fo) = | Afo/fo! = 6.6 x 1073 (being within the typical range for active RC oscillators).
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Figure 12. Spectral analysis for phase noise measurement at V;: (a) offset frequency 10 kHz; (b) offset
frequency 100 kHz.

6. Discussion of Other Methods of Indirect Electronic Control of FO

The position of the resistor R; is not very beneficial due to the floating (between two nodes)
connection to the circuit. The method discussed in the previous paragraphs implemented optocouplers;
however, there are also other possibilities that should be briefly discussed (their main advantages and
disadvantages). Table 4 reveals their general comparison.

The replacement of R; by junction field effect transistors (J-FET) in a triode/ohmic/linear
regime [11,12,33-35] can be easily applied. However, there are some restrictions. It is not easy to
maintain a transistor in a linear regime (Vpg < Vgs — V) even for increasing processed signal levels
in nodes where transistors are connected. Transistors behave highly nonlinearly for voltage levels
higher than several tens of mV, and nonlinearity increases for increased resistance (rpson) driven by
Vs voltage. The range of the rpgyn resistance adjustability can be large (N type J-FET BF245A [36]:
200 O—2 kQ) for 0——2 V); however, the nonlinearity of Vpg vs. Ip plots plays a significant role,
especially for high values of resistances (high Vs). Unfortunately, there is no other way in the IC design
practice. One example of J-FET implementation was experimentally tested in our oscillator (Figure 1).
Figure 13 illustrates the output level for the V1 wave that is significantly distorted (THD > 13%) by
nonlinearity with increased values of rpgon. The amplitude is not limited but the shape and symmetry
of the positive half-wave vs. negative half-wave is significantly damaged. The linearization of the
transistor can be provided by two additional resistors [33]; however, the linearization of the floating
form of an electronically controllable equivalent is not an easy task (many additional active and passive
devices are required) [34,35].

Ve, 02 | Voo=25V Ves = -0.84 V (rpson = 1100 Q)

f, = 4.01 MHz
[V] VA
J.NI‘ s\ﬁ ’x
Poa S \ Ver i
r N\ ’
/ \ /
! \ I
0.1 - / \ /
l\ / ! /’
\‘“,’r \\n",,/’
-0-2 T T 1
0.0 0.2 0.4
t[ps]

Figure 13. The example of distorted waveform by nonlinear effects of junction field effect transistors
(J-FET) replacing resistors.
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Table 4. Comparison of the methods for indirect FO tunability (standard potentiometer shown for
reference purposes).

Significant
Frequency Dynamical . . Response Additional
Method Features Features Linearity on Control Value Range Power Notes
Consumption
Resistor . large (several mechanical
(potentiometer) good good good fast decades) No features
. good good (nonlinear
Orz;?;?:fgitw;ih good * (hundreds deviation up to (ur?;fc:r;fg;s) large No
P of mV) units of %)
J-FET (or unipolar bad (tens bad (nonlinear maintain in
transistor) good of mV) deviation tens of %) fast large No linear regime
Digital . . fimited '(number discontinuous
otentiometer good good of switched Yes adjusting
p segments/bits)
limited (number discontinuous
L AAH
D/A converter good good of bits) Yes adjusting
Active analog lijm;ti}d (C:;I;Eea
solution (OTA for good average/bad average/bad fast flefa d:sff)r MOS Yes -
example) solution)

Notes: * values in hundreds of () (parallel parasitic capacity insignificant); ** there are types having a high number
of steps (1024) but their frequency features and parasitic capacities are not beneficial (bandwidth about 100 kHz,
tens of pF). There are also types having a wider bandwidth (>10 MHz) but with a very low number of steps (<256)
that may not be sufficient for the fine control of the condition of oscillation or frequency tuning in oscillators in
these bands; the responses depend on the type of bus (serial /parallel) and speed of control logic (tens of ps but also
tens of ms for specific type); *** allows wideband (tens of MHz and more) features, fast for specified bandwidths
but very expensive and requires high power consumption.

Digital potentiometers [37—-40] are widespread parts serving in control and adjustable systems,
especially for low-frequency circuits. They have the advantage of simple digital controllability of
value; however, many drawbacks limit their practical usability in medium- and high-frequency
systems. These issues consist in real parasitic resistance of the middle terminal (wiper), large parasitic
capacitances (tens of pF), and therefore very bad frequency features (only tens-hundreds of kHz
in many cases). Discontinuous adjustment of the value (based on the number of bits) can be also
considered as a drawback for specific applications (the control of amplitude stabilization, for example).
Also, the reaction on changes (depending on the construction of specific types and their internal control
logic) can be very slow. Therefore, the majority of these devices are unsuitable for the FO tuning in the
range presented in this paper.

Similar features are offered by D/A converters (they can establish controllable resistors [41]).
However, modern and very fast (Gsps) solutions can be prepared for high-frequency operation.
Unfortunately, the power consumption is enormous (power supply currents in hundreds of mA) and
the price reaches tens of dollars. This renders this method unsuitable for compact designs and solutions.

Active solutions (a floating resistor can be implemented by two OTAs [30,31]) may have a very
good frequency response and fast reaction on changes (adjusting of the driving voltage). However,
active solutions (especially OTA-based solutions without linearization [30]) have substantial problems
with linearity and dynamical restrictions. The range of the equivalent resistance value can also be very
limited (especially in MOS solutions where square laws [42,43] for currents are valid).

The following discussion evaluates the features of the proposed analog solution and direct
digital synthesis (DDS). Advantages of DDS are clear: wide bandwidth (hundreds of MHz), simple
configurability, stable operation, excellent phase noise (but this parameter is significant for bands
starting at hundreds of MHz, not for the bands observed in this paper), immunity to aging of
parameters, minimized temperature effects, high accuracy, etc. On the other hand, many DDS chips
generate only single-phase waveforms (70-80% of production). The generation of more than one
waveform requires the interconnection of several chips or multichannel DDS (conferring a significantly
higher power consumption and cost). DDS chips require an external clock generator (additional
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complication and power consumption) in some cases. The frequency is not continuously tunable.
The power current reaches hundreds of mA. A DDS must be equipped with some microcontroller
and/or supporting peripheral devices (USB connection, interface, clock generator = additional power
consumption), or DDS development boards are used in many designs (several times higher cost).
The cost of the complete designed analog oscillator in this paper (elements used in implementation)
reaches approximately 30 Euros, the cost of the multichannel DDS (AD9959 for example) chip (with
only the chip ready for implementation) reaches 40 Euros, and the cost of the complete operating
development board with DDS is several times higher (approximately 350 Euros). Therefore, advantages
coming from the utilization of DDS can be overcome by a low-cost solution with acceptable features
for the intended application.

The main advantages of the proposed analog solution in comparison to DDS are: (a) simplicity
of the resulting circuit and tunability method (an integrated DDS has a much more complex block
topology and a higher complexity of internal blocks—it cannot be implemented in discrete form in
practice); (b) low cost (for the intended bandwidth—up to low tens of MHz); (c) immediate response
of frequency on changes (no delay); (d) no requirement for additional peripheral devices (clock
generator, interfaces, etc.); (e) no requirement of programming (the approximate final costs noted
above do not take the controlling software for multiphase generation and the tuning of the DDS into
account). Of course, there are also disadvantages: (a) influence of temperature and aging effects on
frequency stability; (b) low value of phase noise and worse stability (however, this issue is usually
not evaluated /solved in the case of similar solutions in studied bands of units—low tens of MHz);
(c) the accuracy of frequency setting is influenced by parasitic elements. The proposed device’s
power consumption is comparable to that of the DDS (due to low supply voltage of 1.8 V of AD9959,
for example), but the supply current is several times lower in comparison to DDS.

Therefore, similar analog solutions are worth investigation at bands where high-speed opamps
and other active elements are still competitive (up to several tens of MHz). It really depends on the
application and quality of the application to determine whether a digital or analog solution should be
selected and, of course, it depends on the budget available for construction.

7. Conclusions

We designed and tested the topology of a sine wave two-phase oscillator with output waveforms
having a /4 phase shift. The phase shift of 45 degrees is suitable as a local source for multiphase
generation [1]. It can be further implemented in the modulation process (PSK—phase shift keying)
or multistate modulation techniques requiring wideband tunability [44]. The designed circuit brings
several benefits: (a) the low number of components (two grounded C, 2R); (b) simple topology using
only two three-port active elements; (c) wide tunability (indirectly proportional to the resistance
value) of the frequency of oscillations; (d) constant amplitudes when the FO is tuned; (e) simple
implementation of the independently controllable (voltage-controlled) condition for oscillation;
(f) minimal additional power consumption in comparison with the implementation of full active
devices, digital potentiometers, digital-to-analog converters (DACs), etc. for purposes of FO tunability.
The experimental tests employing optocouplers at positions of both resistors (floating and grounded)
confirmed the intentions and operation of the design in the range from approximately 1 MHz to 10 MHz
(ratio 10:1) by driving the control voltage between 1.7 and 5 V (ratio 3:1). So, a large readjustment is not
allowed when only a single resistor value is intended to be used for frequency tuning, similar to the
method of so-called single-resistance-controlled oscillators [2-13]. The output amplitudes sustained 100
and 150 mV (THD between 0.7 and 3.3%) when the frequency of the oscillator was tuned. Sensitivities
of proposed solution achieved the standard and low value of —0.5. A possibility of the implementation
of the both resistors for tuning purposes and their replacement by suitable electronically controllable
equivalents (optocouplers with resistive outputs stage) can be seen as inspiration for many interesting
topologies of oscillators (a great overview is available in References [45,46]), where the presented
method of tuning can be beneficially implemented.
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