
symmetryS S

Review

Constitutive Equations for Magnetic Active Liquids

Simona Fialová * and František Pochylý

����������
�������

Citation: Fialová, S.; Pochylý, F.

Constitutive Equations for Magnetic

Active Liquids. Symmetry 2021, 13,

1910. https://doi.org/10.3390/

sym13101910

Academic Editors: Radu Abrudan

and Sergei D. Odintsov

Received: 10 August 2021

Accepted: 28 September 2021

Published: 11 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Victor Kaplan Department of Fluids Engineering, Brno University of Technology, 61669 Brno, Czech Republic;
pochyly@fme.vutbr.cz
* Correspondence: fialova@fme.vutbr.cz

Abstract: This article is focused on the derivation of constitutive equations for magnetic liquids.
The results can be used for both ferromagnetic and magnetorheological fluids after the introduced
simplifications. The formulation of constitutive equations is based on two approaches. The intuitive
approach is based on experimental experience of non-Newtonian fluids, which exhibit a generally
non-linear dependence of mechanical stress on shear rate; this is consistent with experimental
experience with magnetic liquids. In these general equations, it is necessary to determine the
viscosity of a liquid as a function of magnetic induction; however, these equations only apply to
the symmetric stress tensor and can only be used for an incompressible fluid. As a result of this
limitation, in the next part of the work, this approach is extended by the asymmetry of the stress tensor,
depending on the angular velocity tensor. All constitutive equations are formulated in Cartesian
coordinates in 3D space. The second approach to determining constitutive equations is more general:
it takes the basis of non-equilibrium thermodynamics and is based on the physical approach, using
the definition of density of the entropy production. The production of entropy is expressed by
irreversible thermodynamic flows, which are caused by the effect of generalized thermodynamic
forces after disturbance of the thermodynamic equilibrium. The dependence between fluxes and
forces determines the constitutive equations between stress tensors, depending on the strain rate
tensor and the magnetization vector, which depends on the intensity of the magnetic field. Their
interdependencies are described in this article on the basis of the Curie principle and on the Onsager
conditions of symmetry.

Keywords: constitutive equations; magnetic liquid; ferromagnetic liquid; magnetorheological liquid;
magnetic induction; viscosity; shear stress; shear rate

1. Introduction

Electromagnetic hydrodynamics can be divided into three basic parts. The first deals
with the interaction between the magnetic field and the conductive fluid. The solution
mainly concerns homogeneous and isotropic liquids, whose volumes are acted on by the
Lorentz force [1,2]. Homogeneous and isotropic liquids are used, for example, for the
construction of special magnetic bearings and pumps, based on the principle of electrically
conductive liquids [3–5]. The second part, so-called ferrohydrodynamics, investigates the
interaction between a magnetic field and a flowing, magnetically polarized liquid [6–12].
The third part focuses on the flow of so-called electro-magnetorheological non-Newtonian
fluids [6,7,13–17].

Liquids of the second and third classes are formed by a suspension of very fine
ferromagnetic or ferrimagnetic particles (FM liquid) dispersed in a carrier liquid. If the
particle size is of the order of nanoscale (≤6 nm) [3], the particles move in Brownian motion
and are characterized by a magnetic moment. When exposed to a magnetic field, the
nanoparticles polarize and twist in the direction of the magnetic field, which results in a
change in the isotropy of the environment [6,7,18].

Particles of larger dimensions, of the order of micrometers, do not have a magnetic
moment if they are not magnetically polarized. When a liquid is composed of these
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particles, it differs from ferrofluids mainly in its behavior, since the external magnetic
field increases the viscosity of the particles; consequently, they are characterized by a
strong magnetoviscous phenomenon, which usually gives the magnetic liquid a Bingham
character [6,7,15,17]. This type of liquid is known as a magnetorheological liquid (MR
liquid) [6,14–16]. These two types of liquids are mainly used for the construction of special
hydrodynamic dampers and hydrodynamic seals [11,19–22].

The effect of the magnetic field, as already mentioned, leads to polarization of the
particles. The movement of particles is very complicated, and during their interaction
with the carrier liquid, due to particle rotation, asymmetry of the stress tensor occurs due
to the angular velocity of the particles. The rotation induces additional surface forces in
the carrier liquid, characterized by an additional tensor of mechanical stresses Λij [7,23].
Changes in the viscosity, produced by the magnetic field and particle rotation, have a
significant effect on the resulting mechanical irreversible stress tensor σij, which must be
formulated in accordance with the rules of non-equilibrium thermodynamics [1,22–25].

For magnetic liquids containing particles, it is necessary to derive constitutive equa-
tions for an inhomogeneous liquid with more components (n), in which a number of
chemical reactions (r) can take place in a non-isotropic environment [26–28].

As a result, constitutive equations may include the effects of diffusion, chemical
reactions, magnetization, polarization, particle rotation, and temperature [7,22]. The solver
considers the significance of individual influences for a given type of liquid and provides
simplifications, with respect to the direction of the action of magnetic induction and the
direction of the flow rate of the liquid. It should also be emphasized that the properties
of FM liquids, especially MR liquids, depend on temperature. Technical applications
can be realized at temperatures in the interval (−50 ◦C, 200 ◦C); however, it is necessary
to consider the value of the Curie temperature, at which the magnetic properties of the
liquid disappear.

It is also necessary to consider the use of magnetic liquids for structural elements
operating under non-stationary loading. Depending on the time, the liquid heats up
and produces significant changes in viscosity. These changes must be considered in
mathematical and computational modeling.

The mentioned phenomena can occur especially in the construction of hydrodynamic
dampers [11,19–21], but also seals [22] when operating under non-stationary loading, if a
large volume of magnetic liquid is deformed without cooling.

Einstein summation convention is used in the article, where

δij Kronecker delta

εijk Levi-Civita tensor

2. Kinematics of the Motion of the Magnetic Liquid

When creating a mathematical model of MR liquid flow, it is necessary to know the
resulting tensor of irreversible stresses σij and the volumetric magnetic force FMi—which
is applied by the magnetic field to the liquid—which is the aim of this work. The general
relation [1] applies to the electromagnetic force FEi:

FEi = ρeEi + εijk jjBk +
∂Ek
∂xi

Pk +
∂Hk
∂xi

Mk (1)

ρe is a charge density, Ei is an electric field intensity, jj is a current density, Bk is a
magnetic flux density, Pk is a polarization, Hk is a magnetic field intensity, and Mk is a
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magnetization. In the case of non-conductive magnetic liquid, where jj = 0 and ρe = 0, we
obtain the following equation:

FMi =
∂Hk
∂xi

Mk (2)

If magnetization is colinear with intensity of magnetic field

Mk = χHk (3)

then the so-called Kelvin force can be written in the form:

FMi =
χ

2
∂

∂xi
H2, H2 = Hi Hi, M2 = Mi Mi (4)

When solving the flow of a magnetic liquid (FM or MR), we start from the equations of
equilibrium, in which the influence of external volume forces, represented by the Maxwell
stress tensor, is considered. The magnetic liquid no longer behaves like a Newtonian liquid
because the tensor of mechanical stresses is affected by the effects of magnetic induction;
thus, a constitutive model of irreversible mechanical stress tensor σij is defined. This
depends on the magnetic induction and kinematics of the liquid motion. The rotation of
particles, leading to the asymmetry of the mechanical stress tensor, can also be considered
in the constitutive equations. Constitutive equations can be derived for both compressible
and incompressible liquids.

Considering the effect of magnetic fields acting on a non-conductive magnetic liquid
by a force, FMi [1,10,29,30]:

FMi =
∂Mij

∂xj
, Mij =

χ

2
δijHk Hk (5)

The equations of equilibrium of magnetic liquids can be written in the following form:

∂

∂xj

[
ρ(

∂vj

∂t
− gj)xi + ρvivj − σ̂ij −Mij

]
= 0 (6)

σ̂ij = −pδij + σij (7)

Maxwell’s equations must be supplemented by the equilibrium equations because
Maxwell’s tensor Mij in equilibrium Equation (6) depends on the intensity of magnetic
field Hk for a given simplification. Maxwell’s equations have the following form [1,29,30]:

εijk
∂Hk
∂xj

=
∂Di
∂t

,
∂Di
∂xi

= 0 (8)

εijk
∂Ek
∂xj

= −∂Bi
∂t

,
∂Bi
∂xi

= 0 (9)

Furthermore, it is necessary to enter material characteristics, initial conditions, and
boundary conditions in the equation’s solution. If we want to solve the mathematical
model, it is necessary to derive constitutive equations for an unknown tensor of irreversible
mechanical stresses σij, dependent on magnetic induction Bi. The following part of the
work will focus on this identification.

3. Intuitive Constitutive Equations for Irreversible Stress Tensor σij

The tensor of irreversible mechanical stresses of magnetic fluid σij is composed of a
mechanical stress tensor deviator, Dij, and a spherical tensor, 1

3 σkkδij [27]:

σij = Dij +
1
3

σkkδij (10)
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Our intention is to introduce a new methodology for determining constitutive equa-
tions for a magnetic liquid, which, based on experiments, no longer has Newtonian be-
havior. The methodology described below is general and can be used to describe both
incompressible and compressible liquids.

A Structure of a Magnetic, Incompressible Liquid

To determine a constitutive equation, it is necessary to know the structure of a given
magnetic liquid. The introduction provides descriptions for both ferromagnetic and mag-
netorheological liquids.

It should be noted, however, that a liquid environment with magnetic particles is
generally inhomogeneous and non-isotropic [6,8,9,14–17]. Due to the magnetic field, the
arrangement of the particles changes, causes the liquid to lose its Newtonian behavior,
which is characterized by a linear equation between the shear stress and the shear rate. For
example, the following applies to an incompressible liquid:

τ = ηBγ, ηB = const. (11)

where τ =
1√
2

√
σijσij =

1√
2

√
DijDij and γ =

2√
2
√

vijvij =
2√
2

√
dijdij (12)

Note that σij , vij are symmetric tensors of second order, and vij is the tensor of
deformation velocity. Dij is a deviator of the mechanical stress tensor and dij is a deviator
of deformation velocity.

Figure 1a,b, show the change in the particles’ arrangements and their polarization,
caused by the effects of magnetization. It means that the magnetic fluid environment will
become inhomogeneous and will have non-isotropic properties. The effects of inhomo-
geneity and anisotropy will be higher in MR liquids. This will also affect the dependence
of shear stress on shear rate, which may have a non-linear character, as can be seen in
Figures 2 and 3.

Figure 1. Magnetic particle and the arrangement of particles in the carrier liquid.

Figure 2. Ferrofluid EMG 900 behavior in the magnetic field, experimental data.
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Figure 3. Rheological characteristics.

Figure 2 shows the flow curve of the real MR liquid (EMG 900) obtained from the
experiments [31]. From this view, it is clear that the diagram can be divided into two
parts, which correspond with Bingham’s behavior [6,10], whose mathematical model is
as follows:

τ = τ0 + ηBmγ, ηBm = const. (13)

where τ0 is the yield stress, and ηBm is the dynamic viscosity. From the shape of experimen-
tally obtained curves τ = τ(γ) the authors [11] derived a more general constitutive model
of a non-Newtonian fluid for 3D problems. Assuming that

τ = τ0 + ηBmγm, Dij = 2η
(
dijdij

)
(14)

By substituting from (14) to (12), it holds that

σij = Dij = 2τ0
dij√

2dαβdαβ

+ 2ηBm
(
2dijdij

)m−1
2 dij (15)

If we apply this experimentally determined dependence on the magnetic liquid, the
values τ0 and ηBm will depend on magnetic induction Bi.

τ0 = τ0(Bi),ηBm = ηBm(Bi) (16)

In the mentioned case, it should be noted that the relation (16) applies only to the
symmetric tensor of irreversible stresses Dij and to the incompressible fluid.

It should be noted, however, that the viscosity of a liquid strongly depends on the
temperature, as shown in Figure 4a. The non-linearity of the relationship between the
intensity of the magnetic field and the magnetic induction plays an important role in
solving the mutual interaction of the liquid and the magnetic field, as shown in Figure 4b.

B. Constitutive Model of a Magnetic Liquid with the Effect of Particle Rotation

Within part A, an intuitive constitutive model for a symmetric stress tensor, originally
derived for a general non-Newtonian fluid and applied to a magnetic fluid, was presented.
Now we present a new constitutive model that considers the asymmetry of the stress tensor,
induced by particle rotation, and the effects of surface shear stresses Yij

S, which come
as a consequence of the particle–liquid interaction [6–8,10,15,16]. When ferromagnetic
particles move in a magnetic field, their translational and rotational motions occur at an
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angular velocity
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. In this case, stress tensor σij for the incompressible liquid is no longer
symmetrical, and the following holds:

σij = Dij + Nij (17)

Dij = 2ηdij ; Nij = 2ηMdij + 2ηPω̂ij (18)

ω̂ij = −
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Let us introduce analogously, as in the previous case, that

τ =
1√
2

√
σijσij ; γ =

2√
2

√
dijdij =

√
2dijdij (20)

Due to the symmetry of dij and the antisymmetry ofωij, it holds that

dijω̂ij = 0, (21)

and it can be written as follows:

σijσij = 4(η + ηM)2dijdij + 4η2
Pω̂ijω̂ij. (22)

Assume that the following rheological model applies to a magnetorheological liquid:

τ = τ0 +
N

∑
n=1

ηBnγn (23)

τ2 =

(
τ0 +

N

∑
n=1

ηBnγn

)2

=
1
2

σijσij. (24)

After substitution from (19), it will be as follows:(
τ0 +

N

∑
n=1

ηBnγn

)2

= 2(η + ηM)2dijdij + 2η2
Pω̂ijω̂ij. (25)

Let us introduce that

2(η + ηM)2dijdij = κ2

(
τ0 +

N

∑
n=1

ηBnγn

)2

. (26)

After substitution to (25), it will be(
τ0 +

N

∑
n=1

ηBnγn

)2(
1− κ2

)
= 2η2

Pω̂ijω̂ij. (27)

From the expressions (26) and (27) it is possible to derive the equations for the un-
known values of η + ηM a ηP. The expression (26) can be written in the following form due
to the definition of γ:

(η + ηM)2γ2 = κ2

(
τ0 +

N

∑
n=1

ηBnγn

)2

.

From it:

η + ηM =
κτ0

γ
+

N

∑
n=1

κηBnγn−1. (28)

After the substitution from (12), it holds that

η + ηM =
κτ0√
2dijdij

+
N

∑
n=1

κηBn
(
2dijdij

) n−1
2 . (29)
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From the expression (27):

ηP =
τ0
√
(1− κ2)√

2ω̂klω̂kl
+

√
(1− κ2)√
2ω̂klω̂kl

N

∑
n=1

ηBn

(√
2dijdij

)n
.

ηP =
τ0
√
(1− κ2)√

2ω̂klω̂kl
+
√
(1− κ2)

N

∑
n=1

ηBn

(√
2dijdij

)n

√
2ω̂klω̂kl

(30)

The equation for the resulting stress tensor will have the following form:

σij = 2κτ0
dij√

2dkldkl
+ 2

N
∑

n=1
2

n−1
2 κηBn(dkldkl)

n−1
2 dij + 2τ0

√
1− κ2 ω̂ij√

2ω̂kl ω̂kl

+2
√

1− κ2
N
∑

n=1
ηBn

(
√

2dijdij)
n

√
2ω̂kl ω̂kl

ω̂ij.
(31)

For N = 1, we obtain a simple relationship between a Bingham liquid and an antisym-
metric stress tensor.

σij = 2κτ0
dij√

2vklvkl
+ 2κηB1dij +

√
1− κ2(2τ0

ω̂ij√
2ω̂klω̂kl

+ 2ηB1

√
dijdij

ω̂klω̂kl
ω̂ij) (32)

4. Constitutive Model of a Magnetic Liquid Based on the Entropy Production

The mutual effects of physical fields are characterized by the density of entropy produc-
tion σ, which forms the basis for the definition of constitutive equations [1,2,7,10,22–25]. Its
expression depends on the irreversible thermodynamic flows (Jz) and their corresponding
irreversible thermodynamic forces Xz:

σ = Jz Xz (33)

Flows and forces are characterized by a certain tensor dimension. For example [1,10,29,30,32]:

J1
(

Ji
1
)
=

1
τm

(Moi −Mi) (34)

Ji
1 is a vector flow of magnetization and

X1
(

Xi
1
)
=

1
T
(Hoi − Hi) (35)

Xi
1 is the generalized thermodynamic vector force of the magnetic field intensity, τm is

the relaxation time, and T is the absolute temperature [7,23]. Symmetric and antisymmetric
tensors, as well as vector and scalar variables, can be included in the expression for entropy
production density [23] as follows:

σ = SA
ij XA

ij + AB
ijZ

B
ij + JC

i XC
i + JDXD (36)

Sij is the symmetric tensor of the 2nd order, Aij is the antisymmetric generalized
thermodynamic force of the tensor of the 2nd order, and Xij is the symmetric general-
ized thermodynamic force of the tensor of the 2nd order. A = 1, . . . , M; B = M + 1,. . . ,N;
C = N + 1, . . . , K; D = K + 1, . . . , H.

The following relations apply between flows and forces:

SA
ij = LAa

ijklX
a
kl + LAb

ijklZ
b
kl + LAc

ijk Xc
k + LAd

ij Xd (37)

AB
ij = LBa

ijklX
a
kl + LBb

ijklZ
b
kl + LBc

ijkXc
k + LBd

ij Xd (38)
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JC
i = LCa

ikl Xa
kl + LCb

ikl Zb
kl + LCc

ik Xc
k + LCd

i Xd (39)

JD = LDa
kl Xa

kl + LDb
kl Zb

kl + LDc
k Xc

k + LDdXd

a = 1, . . . , M,b = M + 1, . . . , N;c = N + 1, . . . , K; d = K + 1, . . . , H;
L, Li, Lij, Lijkl − transfer coefficients (material constants for chosen i, j, k, l)

(40)

Alternatively, in the matrix form:∣∣∣∣∣∣∣∣∣
SA

ij
AB

ij
JC
i

JD

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
LAa

ijkl LAb
ijkl LAc

ijk LAd
ij

LBa
ijkl LBb

ijkl LBc
ijk LBd

ij
LCa

ikl LCb
ikl LCc

ik LCd
i

LDa
kl LDb

kl LDc
k LDd

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣

Xa
kl

Zb
kl

Xc
k

Xd

∣∣∣∣∣∣∣∣ (41)

Expressions (37)–(41) represent the constitutive equations between irreversible ther-
modynamic flows and forces. The matrix in expression (41) is formed by the unknown
transfer coefficients of a given physical quantity, which are dependent on B in the magnetic
field and must be determined from the experiment.

The Curie principle [24] can be used in relation (41). According to the principle,
only flows and forces of the same tensor dimension can react together in an isotropic
environment. In an isotropic environment, the matrix in expression (41) would be diagonal
and the diagonal elements would be scalars. The Onsager conditions of symmetry can also
be used for identification [22].

In the previous chapter, the design of constitutive relations was based on experi-
mental experience and in accordance with the experiment, constitutive relations were
intuitively designed (32).

The following method of creating constitutive relations is based on the physical laws
between irreversible flows and forces (41), which occur after the violation of the state of
thermodynamic equilibrium. In this procedure, intuition is replaced with physical laws,
using the principles of non-equilibrium thermodynamics [23].

Let us now start from the general relation for the entropy production density σ (36) [7,23]
for a system with n components. The lower indices characterize the tensor character
of variables and the upper indices characterize their physical significance. The index
convention is used. The index in parentheses is not an addition.

Since magnetic fluids form a multicomponent system, it may be useful to consider the
effects of diffusion, chemical reactions, magnetization, and polarization in the production
of entropy (36) [7,23]. For the entropy production density σ of an electromagnetic fluid,
under this assumption, a general relation can be written [7,23]:

σ = Π(S)
ij

1
T v(S)ij + 1

3 Παα
1
T vββ − Jq

i
1

T2
∂T
∂xi
− Jk

i
∂

∂xi

(
µk

T

)
+ JE

i
1
T Ei − Jl 1

T Al + Λ(S)
ij

Y(s)
ij
T −Π(AN)

ij
(Ωij−ωij)

T

+ 1
3 Λαα

Yαα
T +

(
dPi
dt + Pivαα − εijαΩjPα

)
(E0i−Ei)

T +
(

dMi
dt + Mivαα − εijαΩj Mα

)
(H0i−Hi)

T

(42)

k = 1, . . . . . . , n − 1, l = 1, . . . , r. Due to the fact that we work in the Cartesian
coordinate system, the subscripts take on the values 1, 2, 3. All indices in expression (42)
are summative, except the indices in parentheses.

The following variables are shown in expression (42): Π(S)
ij —symmetric tensor of

mechanical stresses;
δij
3T v(S)ij —spherical tensor of strain rate; Jq

i —heat flux; T—absolute

temperature; Jk
i —diffusion flux; µk—chemical potential; JE

i —electric flux; Ei—electric
current intensity; Jl—flux (velocity) of chemical reaction; Al—affinity of a chemical reaction;
Λ(S)

ij —symmetric stress tensor induced by the effects of the surface forces of particles;

Y(s)
ij —symmetric tensor of the generalized thermodynamic forces of the surface forces of a

particle; Π(AN)
ij —antisymmetric tensor of the particle rotation effects; Ωij—antisymmetric

particle rotation tensor; ωij—antisymmetric strain rate tensor; 1
3 δijΛαα—spherical tensor of

the effects of particle surface forces; vββ—divergence of the velocity vector.
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An analogous form of entropy production is given in [7] without the influences of
diffusion and chemical reactions. The effects of diffusion and particle separation are partially
mentioned in [8,14,15]. The expression for entropy production can be further simplified on
the basis of [7,19] according to the following relation for the magnetization vector [7]:(

dMi
dt

+ Mivαα − εijαΩj Mα

)
=

1
τm

(M0i–Mi) (43)

5. Magnetic Field

Let us now consider the simpler case of neglecting the effects of temperature, diffusion,
chemical reactions, and electric fields. A simpler relation applies to the density of entropy
production as follows [7,23]:

σ = Π(S)
ij

1
T v(S)ij + Λ(s)

ij
Y(S)

ij
T −Π(AN)

ij
(Ωij−ωij)

T + 1
τm
(Moi −Mi)

(H0i−Hi)
T

+ 1
3 Πaa

1
T vaa +

1
3 Λαα

Yαα
T

(44)

By comparing (36) and (44), we obtain the following physical meanings of irreversible
thermodynamic flows and forces.

Flows:
S1

ij = Π(S)
ij S2

ij = Λ(s)
ij A3

ij = Π(AN)
ij

J4
i = (Mi0 −Mi)

1
τm

J5 = 1
3 Πaa

J6 = 1
3 Λαα

(45)

In the mentioned case: σ̂ij = −pδij +Π(S)
ij + δij

1
3 Πkk + Π(AN)

ij .
Forces:

X1
kl =

1
T v(S)kl

X2
kl = Y(S)

ij = 1
2T

(
∂Ωi
∂xj

+
∂Ωj
∂xi

)
− δij

3T
∂Ωk
∂xk

Z3
kl = Y(AN)

ij =
(Ωij−ωij)

T
X4

k = 1
T (H0k − Hk)

X5 = 1
T vii

X6 = 1
T

∂Ωk
∂xk

(46)

The following are shown in expressions (45) and (46): Ω (Ωi)—angular velocity
vector of the medium particle; ωij—angular velocity tensor of the liquid; Ωij—angular
velocity tensor of the particle; vij—strain rate tensor; M(Mi)—magnetization vector;
H(Hi)—magnetic field intensity vector.

The constitutive equations for the magnetic fluid can thus be expressed by the re-
lations (37)–(40), or by the matrix relation (41). The elements of the matrix depend on
the magnetic induction vector B(Bi) and must be determined from the experiment. The
defined constitutive relations can be further simplified since it is expedient to introduce the
dependence of the stress tensor on the strain rate tensor into the equilibrium equations for
the magnetic fluid. This can be achieved by adjusting the constitutive relations through
expressing X4

k as a function of X1
kl and by using the relationship between the magnetization

vector and the magnetic field strength; thus, the dependencies are as follows [1,7,29,30]:

(Moi −Mi) = χ(H)(H0i − Hi) (47)

If we mark that
Λ̂ = χ

T
τm

(48)
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It can be written that

J4
i J4

i

∣∣∣J4
(n)

∣∣∣2 =

(
T
τm

)2
χ2
∣∣∣X1

(n)

∣∣∣2 = Λ̂2X4
i X4

i (49)

We now use the experimentally determined dependencies (47) (see Figure 3) to sim-
plify and refine the constitutive relations (37)–(40). We show the methodology for simplifi-
cation, in which we currently assume only the effects of one flux of magnetization and one
flux of the stress deviator. In this case, the entropy production will be in the following form:

σ = Π(S)
ij

1
T

v(S)ij +
1

τm
(Moi −Mi)

(H0i − Hi)

T
= S1

ijX
1
ij + J2

i X2
i (50)

S1
ij = Π(S)

ij = Dij, X1
ij = v(S)ij = dij (51)

J2
i =

1
τm

(Moi −Mi), X2
i =

(H0i − Hi)

T
(52)

The production of entropy, expressed in terms of flows and forces, will in this case
take the following form:

σ = S1
ijX

1
ij + J2

i X2
i (53)

The following will apply to individual flows:

S1
ij = L11

ijklX
1
kl + L12

ijkX2
k (54)

J2
i = L21

iklX
1
kl + L22

ik X2
k (55)

In deriving a simplified dependence between flows and forces, we now use the relation
(49), which is justified by the experiment. Let us mark that

Q = J2
i J2

i = Λ2X2
i X2

i =

L21
iklX

1
kl + L22

ik X2
k︸ ︷︷ ︸

Ui

(L21
iκλX1

κλ + L22
iκ X2

k

)

After the decomposition it will be:

Q = Λ2X2
i X2

i = 2L21
iklX

2
kl L

22
iκ X2

κ + L21
iklX

2
kl L

21
iκλX2

κλ + L22
ik X2

k L22
iκ X2

κ (56)

In the last expression, let us assume that the relation holds, even in a non-isotropic
environment:

L22
ik = AΛδik;L22

iκ = AΛδiκ (57)

Once implemented in the previous equation, it will be

L22
ik X2

k L22
iκ X2

κ = A2Λ2X2
i X2

i

Next, we put:
2L21

iklX
2
kl = BΛX2

i (58)

We will use the above obtained results to edit other terms as follows:

2L21
iklX

21
kl L22

iκ X2
κ = BΛX2

i AΛδiκX2
κ

2L21
iklX

21
kl L22

iκ X2
κ = ABΛ2X2

i X2
i
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By using (58), we obtain

L21
iklX

2
kl L

21
iκλX2

κλ =
1
2

BΛX4
i

1
2

BΛX4
i =

(
B
2

)2
Λ2X4

i X4
i

L4a
iklX

a
kl L

4α
iκλXα

κλ =

(
B
2

)2
Λ2X4

i X4
i (59)

We will now focus on the determination of X2
i , to simplify the constitutive Equation (54).

From expression (58), it can be deduced that

X2
i =

2
ΛB

L21
iklX

2
kl =

1
Λ

1
B
2

L21
iklX

2
kl (60)

From (59), it can be deduced that

B
2
=

1
Λ
√

X2
uX2

u

√
L21

iklX
2
kl L

21
iκλX2

κλ (61)

After substituting (59) into the relation, we obtain the following:

X2
i =

√
X2

uX2
u√

L21
iklX

2
kl L

21
iκλX2

κλ

L4a
iklX

a
kl (62)

With the known X2
i , we can already write a constitutive equation for the stress

deviator (54) in the required form:

S1
ij = L11

ijklX
1
kl + L12

ijκ

√
X2

uX2
u√

L21
mklX

2
kl L

21
mκλX2

κλ

L21
κklX

2
kl (63)

Let us sign Hijkl

(
B(m)

)
= L12

ijκ L21
κkl , Usnκλ

(
B(m)

)
= L21

msnL21
mκλ, then we can write

the following:

S1
ij = L11

ijkl

(
B(m)

)
X1

kl +
√

X2
uX2

u

Hijkl

(
B(m)

)
√

Usnκλ

(
B(m)

)
X2

snX2
κλ

X2
kl (64)

The last expression shows the non-linear form of the constitutive equation of a mag-
netic liquid, where Dij represents the deviator of the mechanical stress tensor:

S1
ij = Π(S)

ij = Dij√
X2

uX2
u = X1 =

1
T
|(H0i − Hi)|

X2
kl =

1
T

dij where dij represents the deviator of strain rate velocity tensor of the liquid

Dij = L11
ijkl

(
B(m)

) 1
T

dij +
1
T
|(H0i − Hi)|

Hijkl

(
B(m)

)
√

Usnκλ

(
B(m)

)
dsndκλ

dkl (65)

Expression (65) represents a constitutive equation for an incompressible magnetic fluid,
assuming symmetry of the stress tensor. It applies to 3D problems and can be simplified
by determining the degree of isotropy of the expressions Hijkl

(
B(m)

)
, L11

ijkl

(
B(m)

)
on the
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basis of the experiment. From the expression for the magnetic flux J2
i , the dependence

between the variables A and B can be determined:

J2
i = Λ̂X2

i = L21
iklX

1
kl + L22

ik X2
k (66)

However, it holds (57) and (58) so

L21
iklX

1
kl =

1
2

BΛX2
i , L22

ik = AΛδik (67)

After substituting into the previous equation, we obtain an important equation be-
tween variables A and B, used to identify phenomenological coefficients:

B
2
+ A = 1 (68)

It follows from Equations (66) and (67) that, under the given assumptions, even in
a non-isotropic environment, the vectors (H0i − Hi) and (M0i −Mi) are collinear. For a
one-dimensional problem, the constitutive Equation (65) is reduced to the following form:

τ = τ0 +
N

∑
k=1

ηBkγk (69)

For the Bingham fluid, the terms obtained from the experiment [6,10,31,33] apply
to k = 1.

τ = τ0

(
B(n)

)
+ ηBk

(
B(n)

)
γ (70)

We will now use this simplified procedure to specify more general constitutive equa-
tions, considering the compressibility of the liquid and the asymmetry of the stress tensor.
The starting point will now be the production of entropy (44) and expressions for flows
and forces (45), (46). The procedure will be analogous to the previous one. The basis will
be the flux of magnetization J4

i .

J4
i = L4a

iklX
a
kl + L4b

iklZ
b
kl + L44

ik X4
k + L4d

i Xd = Ui + L4b
iklZ

b
kl + L4d

i Xd (71)

Let us write that

Q = UiUi =

L4a
iklX

a
kl + L44

ik X4
k︸ ︷︷ ︸

Ui

(L4α
iκλXα

κλ + L44
iκ X4

k

)
(72)

If we use the analogy with (56), (57), we can write that

Q =

[
A2 + AB +

(
B
2

)2
]

Λ2X4
i X4

i (73)

When simplifying the constitutive Equation (71), we proceed analogously with the
previous case, using the following dependence between magnetization and the intensity of
the magnetic field:

ΛX4
i X4

i = J4
i J4

i =
(

Ui + L4b
iklZ

b
kl ++L4d

i Xd
)(

Ui + L4s
iklZ

s
κλ ++L4z

i Xz)
= U2 + 2Ui(L4d

i Xd + L4b
iklZ

b
kl) + L4b

iklZ
b
kl L

4s
iκλZs

κλ
+2L4b

iklZ
b
kl L

4d
i Xd

(74)
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The following relations can be derived from expression (74) analogously to the previ-
ous case:

L44
ik = AΛδik; 2L4a

iklX
a
kl = BΛX4

i ; L4δ
i Xδ = DΛX4

i ; L4b
iklZ

b
kl =

F
2

ΛX4
i (75)

If we sign that

β =
√(

L4a
iklX

a
kl + L4b

iklZ
b
kl
)(

L4α
iκλXα

κλ + L4b
iκλXb

κλ

)
(76)

then it is possible to write simplified constitutive relations in the following form:

X4
i =
|H0n − Hn|

Tβ

(
L4b

iklZ
b
kl + L4a

iklX
a
kl

)
(77)

SA
ij =

(
LAa

ijkl +
|H0n − Hn|

Tβ
LA4

ijκ L4a
κkl

)
Xa

kl +

(
LAb

ijkl +
|H0n − Hn|

Tβ
LA4

ijκ L4b
κkl

)
Zb

kl + LAd
ij Xd (78)

AB
ij =

(
LBa

ijkl +
|H0n − Hn|

Tβ
LB4

ijκ L4a
κkl

)
Xa

kl +

(
LAb

ijkl +
|H0n − Hn|

Tβ
LB4

ijκ L4b
κkl

)
Zb

kl + LAd
ij Xd (79)

JD =

(
LDa

kl +
|H0n − Hn|

Tβ
LD4

κ L4a
κkl

)
Xa

kl +

(
LDb

kl +
|H0n − Hn|

Tβ
LD4

κ L4b
κkl

)
Zb

kl + LDdXd (80)

After substituting into (40) it is possible to obtain the relationship between functions
A, B, D, F as follows:

1 =
B
2
+

F
2
+ A + D (81)

6. Discussion

Figure 2 shows the characteristic of shear stress τrϕ as a function of shear rate γ = 2 ∂vϕ

∂r ,
as obtained by the measurement on an Anton Paar MCR 502 rotary viscometer [31]. The
flow is characterized here as one-dimensional, where there are no signs of non-isotropy
or asymmetry. Mathematical models (15), (32) and (78) are, respectively, reduced here
to expression (13), where it is possible to determine the values τ0(B) and ηBm from the
diagram in Figure 2. In more general domains, when different types of vortex structures
occur, it is necessary to assess the degree of isotropy depending on these structures, and to
determine the main directions of isotropy, depending on the shape of the vortex structures
and the value of magnetic induction. These circumstances must be considered when
modifying the general mathematical model (78)–(80).

The mathematical model is significantly simplified if the experiment shows, for exam-
ple, that tensors LAa

ijkl , LA4
ijκ L4a

κkl , LAb
ijkl , LA4

ijκ , L4b
κkl are isotropic. If the liquid is incompressible

and the degree of asymmetry of the tensors AB
ij is negligible, then expressions (79) and

(80) can be neglected, and expressions (32) and (78) can be adjusted to a shape suitable for
solving magnetic fluids in 3D space; this is demonstrated as follows:

Dij = 2τ0
dij√

2dkldkl
+ 2ηBmdij (82)

7. Conclusions

Two approaches to the formation of constitutive equations of magnetic liquid have
been presented in this article. The first part presented a methodology using an intuitive
approach, based on experimental experience in the fluid flow in rotationally symmetric
structures [33,34], where shear rate γ is defined as a partial derivative of the velocity in the
direction that is perpendicular to jet (γ = ∂v

∂r ). For 3D problems, a reduced shear rate γ was
introduced, depending on the deformation rate deviator for the incompressible liquid,
determined by the relation (20).
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Due to the asymmetry of the mechanical stress tensor—caused by the rotation of
ferromagnetic particles and their interaction with the carrier liquid—a new form of consti-
tutive equation for the asymmetric stress tensor in the form (32) was derived on the basis
of intuition.

This derivation methodology is limited, in that it is subject to the derivation published
in [32–40] for a symmetric stress tensor; however, more plausible and accurate equations
can be achieved by applying methods of non-equilibrium thermodynamics, respecting the
physical state of the problem. Here, it is not necessary to proceed from intuition, but on
the contrary, one can proceed from the definition of entropy production, which includes
the action of all physical phenomena occurring in a magnetic fluid after a disturbance
of the state of thermodynamic equilibrium in a non-isotropic environment. In this way,
new general constitutive relations were derived for compressible magnetic fluids, for
the symmetrical and anti-symmetrical parts of mechanical stress tensors and spherical
stress tensors

(
1
3 δij JD

)
, in the forms of Equations (78)–(80). Identifying these relations,

it is necessary to assess the directional side of isotropy and to simplify the constitutive
equations in a suitable way, depending on the nature of the solved problem.
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