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Abstract. Alkali-activated industrial by-products such as blast furnace slag are known to 

possess properties which are comparable to or even better than those observed for ordinary 

Portland cement. The combination of alkali-activated slag matrix with conductive filler 

introduces new functionalities which are commonly known for self-sensing or self-heating 

concrete. The present paper discusses the effect of the mixture of two different conductive 

fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-

activated slag mortars. Prepared samples were also tested for their mechanical properties and 

microstructure was investigated by means of mercury intrusion porosimetry and scanning 

electron microscopy. The percolation threshold for the resistance was reached for the mixture 

containing 0.1% CNTs and 8% graphite powder. 

1.  Introduction 

Electrically conducting cement-based composite materials have been extensively studied during the 

last two decades [1, 2]. The studies are generally engaged in materials behaviour in various electric 

fields (DC, AC with various frequency) and determine a variety of material properties that are 

dependent on the change of the electrical resistivity. Aluminosilicate materials are considered good 

electrical insulators with the resistivity up to 10
9
 Ω·m achieved for dry concrete [3]. In order to 

improve the electrical conductivity of these materials a conductive filler must be added to the basic 

mixture. Common conducting admixture are steel fibres or carbon fibres, graphite powder, steel slag, 

carbon nanotubes, carbon nanofibers, carbon black, or nickel powder [4–6]. Decrease in the electrical 

resistivity of the concrete results in new application possibilities such as development of self-sensing 

and self-heating composites, security composites eliminating electrical signal throughput or 

composites used for determining the weight of moving objects [7]. 

Alkali-activated slag (AAS) used in current study is a clinker-free material which is considered an 

alternative to ordinary Portland cement concrete. This material is composed of granulated blast 

furnace slag and alkaline activator, which is usually alkaline hydroxide, carbonate or the most 

preferably silicate [1]. Alkali-activated slag is appreciated for its superior properties such as higher 

corrosion resistance against acid or sulphate attack [2, 8–10] and also higher resistance to elevated 

temperatures [11–14]. 

The electrical properties of AAS with different conductive admixtures were reported by Kusák et 

al. [15, 16]. Graphite as well as carbon nanonubes (CNTs) prove to have positive effect on the 

electrical conductivity of AAS-based material. CNTs appeared very effective because addition of just 

http://creativecommons.org/licenses/by/3.0
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0.2% reduced the resistivity by almost 50%. On the other hand, CNTs are still quite expensive 

material and larger amounts of CNTs in building materials bring about severe technological 

drawbacks, such as worsened workability of fresh mixes, increased water demand and strength 

deterioration [17, 18]. In case of graphite, decrease of the resistivity by 50% was reached with 2% of 

graphite powder; however, its addition has a negative effect on the compressive strength and fracture 

toughness of AAS composite [19].   

The present study aims to assess the synergic effect of CNTs and graphite powder on the electrical 

properties of alkali-activated slag mortars. The addition of CNTs may improve the electrical 

conductivity of the composite because it may form a continuous conduction net and interconnect the 

graphite particles via conductive bridges. Addition of CNTs also reduces cracking of the matrix during 

drying shrinkage and can diminish the negative effect of graphite on the fracture properties of AAS-

based materials because CNTs are proved to improve fracture toughness and fracture energy [18]. The 

electrical properties were determined in the way of the specific conductivity, resistance and 

capacitance as a function of AC frequency and dosage of conductive admixtures. Together with these 

measurements the mechanical properties and microstructure were also investigated. 

2.  Experimental part 

2.1.  Materials 

The basic reference material was composed of finely ground granulated blast furnace slag supplied by 

Kotouč, s.r.o (CZ) and solid sodium silicate SUSIL MP 2.0 produced by Vodní sklo, a.s. (CZ). The 

chemical composition of the slag and sodium silicate is presented in Table 1. Specific surface area of 

the slag determined by Blaine method was 383 m
2
·kg

−1
 and the average grain size obtained by laser 

granulometry was d50 = 15.5 µm and d90 = 38.3 µm, indicating that 50% or 90%, repectively, of all 

grains is smaller than a given value. 

Graphite and carbon nanotubes were used as conductive admixture. Graphite PMM 11 was 

supplied by Kooh-i-noor (CZ) as a powder containing more than 99.5% of carbon with the average 

grain size d50 = 10.9 µm and d90 = 20.9 µm. Multi-walled carbon nanotubes Graphistrength CW 2-45 

(Arkema, France) were supplied in the form of small pellets. Since CNTs are commonly not water-

soluble, the received CNTs already contained 55% of carboxymethyl cellulose as a dispersing agent. 

Carbon nanotubes were used in the form of 1% aqueous dispersion. In order to prepare the dispersion, 

the procedure prescribed by the producer was followed. CNT pellets were dissolved in hot water and 

dispersed bundles of CNTs were further disintegrated by mechanical homogenizer (3 h at 14000 rpm). 

Quartz sand with a maximum grain size of 2.5 mm was used as aggregate. 

 

Table 1. Chemical composition of granulated blast furnace slag and SUSIL MP 2.0 (%) 

 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O MnO SO3 

Slag 39.75 6.61 0.46 39.03 10.45 0.63 0.38 0.37 0.71 

SUSIL  25.03      12.98   

2.2.  Preparation of samples 

The reference mixture (Ref) was prepared by mixing 450 g of slag, 90 g of sodium silicate SUSIL, 

1350 g of quartz sand and 200 ml of water. At first, sodium silicate activator was suspended and 

partially dissolved in water. Then, slag and quartz aggregate was added and the mixture was stirred in 

a planetary mixer for about 5 min to prepare a homogenous mortar. The same amount of basic 

components was used also for the preparation of composites with conductive admixtures. The amount 

of CNTs was 0.1% with respect to the mass of the slag, as it contributes to the best improvement of 

mechanical properties [18], and the dosage of graphite varied between 2 to 10 %. Since CNTs were 

used in the form of aqueous dispersion and graphite powder reduced the workability, the amount of 

additional mixing water was adjusted to achieve workability of reference mixture. The composition of 



3

1234567890

IMST 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 251 (2017) 012082 doi:10.1088/1757-899X/251/1/012082

 

 

 

 

 

 

the mixtures is presented in Table 2. Graphite powder was mixed with CNTs and part of additional 

mixing water to prepare homogenous suspension. Then, sodium silicate, slag and quartz aggregate 

together with the rest of mixing water were added in the successive steps and the mixing procedure 

followed the one given for the reference mixture. Prepared fresh mortars were cast into 40 × 40 × 

160 mm prismatic moulds and left to set. The hardened specimens were immersed in water for 27 

days. In order to avoid the influence of moisture on the measurement of electrical parameters, all 

specimens were dried at 105 °C to a constant weight before testing. 

 

Table 2. Composition of AAS mixtures  

 Slag (g) SUSIL (g) Sand (g) 1% CNTs (g)  Graphite (g) Water (ml) 

CG2 

450 90 1350 45 

 

9 165 

CG4 18 165 

CG6 27 180 

CG8 36 200 

CG10 45 220 

 

2.3.  Testing procedures 

Prepared test samples were characterized by impedance spectroscopy using sinusoidal signal generator 

Agilent 33220A and dual-channel oscilloscope Agilent 54645A [20]. Output voltage of the signal 

generator was 5.5 V. Input values of electrical capacitance and resistance of oscilloscope were 13 pF 

and 1 MΩ, respectively. These instruments were assembled under the proposed scheme for fully 

automated measurement. The samples were measured in the use of the frequency spectrum of 40 Hz to 

1 MHz. In order to perform impedance analysis, the specimens were placed between brass electrodes 

(30 × 100 mm) (Figure 1). Electrical parameters were also analysed in higher frequency range from 

100 MHz to 3 GHz using the vector analyser ZNC (Rohde & Schwarz) and coaxial probe DAK-12 

(SPEAG). 

 

 The specimens were also tested for their residual mechanical properties. Flexural strengths were 

determined using a standard three-point-bending test and compressive strengths were measured on the 

far edge of each of the two residual pieces obtained from the flexural test according to the EN 196-1 

standard. 

Pore distribution was evaluated by means of mercury intrusion porosimetry analysis, which was 

conducted on samples using a Micromeritics Poresizer 9300 porosimeter that can generate a maximum 

    
Figure 1. Experimental setup for the measurement of the electrical parameters with Agilent 

appliance 
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pressure of 207 MPa and can evaluate a theoretical pore diameter of 0.006 µm. Micrographs of the 

alkali activated slag mortars were taken on a TESCAN MIRA3 XMU scanning electron microscope in 

SE mode. The experiments were carried out on dry samples that were sputtered with gold. 

3.  Results and discussion 

3.1.  Electrical properties 

Electrical properties of alkali-activated slag composite with graphite and CNTs were determined in 

two different frequency ranges of AC source. At lower frequencies between 40 Hz and 1 MHz, 

electrical resistance (R) and capacitance (C) was analysed. At higher frequencies between 10 MHz and 

3 GHz, specific conductivity was measured. Electrical resistance was assessed as real part of 

impedance and capacitance was calculated from the capacitive reactance (XC) according to equation 

(1) where f is a frequency of AC source. 

 
CXf

C



2

1
 (1) 

The resistance of the reference sample at 40 Hz is more than four times higher than the resistance 

of composites with conductive fillers (Figure 2a). However, as the frequency increased its resistance 

considerably decreased, and for frequencies higher than 100 kHz the differences between all mixtures 

almost disappeared. The effect of graphite dosage is not so important in further reduction of resistance 

because the difference of resistance between samples CG2 and CG10 is 5.5× smaller than between 

reference sample and CG2. 

Since differences in resistance at frequencies higher than 1 MHz are too small, specific 

conductivity was used instead to describe the electrical properties of AAS composites. Specific 

conductivity of AAS composites versus frequency is depicted in figure 2b where each point was 

obtained as an average value from 15 independent measurements. The specific conductivity almost 

linearly rises with increasing AC frequency. It is also obvious that at extremely high frequencies the 

amount of graphite markedly influenced the specific conductivity. Such increase in specific 

conductivity is tightly connected with a decrease in polarization effect which in turn leads to an 

increase of the eddy current [21, 22]. 

The assessment of percolation threshold was performed at three different AC frequencies (50 Hz, 

1 kHz and 10 kHz). Figure 3 shows the dependence of resistance on the amount of graphite admixture. 

The combination of just 0.1% of CNTs and 2% of graphite decreased the resistance of AAS composite 

by almost 80%. The percolation threshold can be considered a minimum amount of conductive filler 

forming 3D network with predominating contacting conduction. Therefore, the effect of further 

addition of conductive filler on the improvement of electrical properties is diminished. Regardless of 

the AC frequency the percolation threshold was reached with CG8 mixture because CG10 sample 

showed no improvement of resistance. 
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        (a)           (b) 

Figure 2. Electrical properties of AAS composites with CNTs and graphite powder: a) resistance in 

the frequency range of 40 Hz – 1 MHz; b) specific conductivity in the frequency range of 0.01–3 

GHz 

 
Figure 3. Resistance vs. graphite content measured at 50 Hz, 1 kHz and 10 kHz 

 

Electrical capacitance of tested samples was calculated from measured data and is presented as a 

function of AC frequency in figure 4a. The capacitance rises with increasing amount of graphite but 

decreases with frequency. Figure 4b shows the dependence of capacitance on graphite content for 

different AC frequencies. It is obvious that the increase in capacitance is more remarkable for very 

low frequency but at higher frequencies the differences between various composite mixtures 

diminished. In other words, the capacitance is less sensitive to the amount of conductive admixture at 

higher frequencies. However, similarly to the resistance values there was no difference in capacitance 

of mixture CG8 and CG10, which is related to the percolation threshold reached with CG8 mixture. 

The increase in capacitance with increasing amount of conductive admixture is caused by the ability of 

graphite and CNTs to absorb electrical charge, either as a free charge carrier or by the formation of 

dipole elements. It is assumed that only isolated graphite particles contribute to the capacitance. At the 

percolation threshold when the connectivity throughout the specimen is established, no further 
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addition of graphite particle can increase the capacitance because they are discharged via conduction 

routes. Therefore, large excess of graphite should result in a decrease in capacitance once again. 

 

  
        (a)           (b) 

Figure 4. Capacitance of AAS composites with CNTs and graphite powder: a) as a function of 

frequency of 40 Hz – 1 MHz 

3.2.  Mechanical properties and microstructure 

Compressive and flexural strengths of alkali-activated slag composite with CNTs and various 

amount of graphite powder are presented in figure 5. The compressive strength of the reference AAS 

mortar was 51 MPa. Although according to the previous results, CNTs at the dosage of 0.1% improve 

the mechanical properties of AAS [18], addition of graphite caused considerable strength deterioration 

which can be attributed to increasing water-to-slag ratio and rather soft structure of graphite. This has 

quite long and weak bonds between parallel carbon layers which are prone to slippage causing the 

destruction of the sandwich structure when the stress is applied. The results show almost linear 

decrease in strength with the lowest value of 25 MPa achieved for the mixture CG10 which is 49% of 

the reference strength. The corresponding flexural strengths were not affected so much and only slight 

decrease by 1.3 MPa was observed between reference sample and CG10 mixture.  
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Figure 5. Compressive and flexural strengths of alkali-activated slag composite with CNTs and 

various amount of graphite powder 

 

Pore system was analysed by means of mercury intrusion porosimetry. Figure 6 shows the 

cumulative pore volume curves of tested AAS composites. Most of the porosity belongs to large 

capillary pores (> 1 µm) and secondly to the gel pores, which is common for AAS binders. It is 

obvious that with increasing amount of graphite the porosity increased as well. This can be attributed 

to two phenomena: increasing amount of mixing water which is necessary to maintain the same 

workability of all mixes and partial delamination of graphite flakes. The increase in volume of large 

pores is also responsible for the strength deterioration of the mixtures with higher graphite content. 

Morphology of AAS matrix with graphite particles and CNTs presented of figure 7 shows that 

graphite is not very well bonded to AAS matrix because of its nonpolar character. Therefore, it can be 

quite easily pulled out from the matrix during the fracture. Carbon nanotubes can be observed at 

higher magnification (Figure 7b). These are quite well dispersed in the matrix having direct contacts 

with graphite; thus, enable local contacting conductivity throughout the bulk material. 

 

 
Figure 6. Cumulative pore volume curves of AAS composite with CNTs and various amount of 
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graphite powder 

 

  
(a) (b) 

Figure 7. SEM micrographs of CG10 mixture at magnification: a) 10 000×; b) 50 000× – showing 

graphite (G) and carbon nanotubes (CNT) particles 

 

4.  Conclusions 

This paper presents an investigation of electrical properties of AAS composite with mixed 

graphite/CNT conductive filler. Electrical resistance decreased with increasing amount of graphite 

powder as well as increasing frequency of AC source. Mixture of just 0.1% of CNTs and 2% of 

graphite can reduce the resistivity by 80% at 50 Hz and by 67% at 1 kHz, respectively. According to 

the results from the measurement of electrical resistance the percolation threshold was achieved for the 

mixture containing 8% of graphite filler because with larger amount of graphite no further 

improvement was reached. Contrary to the resistance, electrical capacitance increased with addition of 

conductive filler because both graphite and CNTs are capable of charge absorption. However, at the 

percolation threshold the capacitance reached its maximum because the established conduction routes 

enable discharging of non-isolated particles. 

The addition of graphite to AAS mortars led to the deterioration in compressive strength, which can 

be attributed mainly to increased demand of mixing water and consequently to increased porosity of 

AAS composite. However, only minor influence on flexural strength was observed mainly due to the 

reinforcing effect of CNTs. 

This study is a part of a complex project devoted to an enhancement of electrical properties of AAS 

composites and the results can be used in designing new sorts of materials having self-sensing 

properties. Since the best sensing properties can be achieved below percolation threshold, the 

maximum amount of conductive graphite filler which is still suitable for the application in self-sensing 

alkali-activated slag materials is 6%.  
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