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Abstract. This paper shows an interesting sight on the cor-
respondence between total current solution obtained by the
Method of Moments and by the Characteristic modes re-
spectively. Derivation is based on representation of a matrix
in its spectral form. Detailed study of dipole antenna fed
under different conditions is presented demonstrating that
modal decomposition of currents offers a nice physical in-
sight into behavior of radiating structures.
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1. Introduction

Solving current distribution on metal surfaces usually
incorporates formulation of the EFIE (Electric Field Integral
Equation) [1]. Initial operator equation can be formulated by
employing boundary condition for tangential incident (E')
and scattered (E°) electric field! E! + E® = 0:

[L(J) - E'],,, =0. ()
The operator used in (1) is defined by
L(J) = jwA(J) + Vé(J) @)

where A(J) and ¢(J) are vector and scalar potentials re-
spectively, see e.g. [1] for their definition.

Physically, —L(J) gives the scattered electric field in-
tensity F° at any point of space due to current J on sur-
face S. Therefore, the operator L has the dimension of
impedance:

Z(J) = [L(J)], .- 3)

This impedance operator Z = R + jX is a symmetric but
not Hermitian operator, but since Z is symmetric, its Her-
mitian parts R and X are real symmetric operators. Solution
of (1) is usually treated by the mathematic procedure called
Method of Moments.

we will omit vector nature of the fields for easier notation

The total current distribution is then obtained by
7. matrix inversion (direct method), [1], [2]. An alter-
native approach is modal superposition of the Z matrix
via Characteristic modes, [6], [8]. In the following we
will show that both solution methods are equivalent.

2. Method of Moments
Consider general operator equation
L(g) =h “)

where the linear operator L is applied to an unknown func-
tion g to be found and A is a known excitation function. The
MoM solution procedure for (4) is well-known, [1], [2]. In
fact, the MoM procedure turns continuous operator equation
(4) into its discrete approximation:

N
Za"rL<w7naL(gn)> = <w'm7h>7 m = 1727N (5)
n=1

where a,, are expansion coefficients, g,, basis (expansion)
functions and w,, testing functions. Eq. (5) may be effec-
tively written in a matrix form:

La=h, L=[Lpa).a=[a]h=[hm]. (6

Now the unknown expansion coefficients a,, in (5) are ob-
tained by matrix inversion of L:

a=L"'h @)

Let’s turn now into the EFIE version of (4) for unknown
surface currents on structure J

L(J)=E (8)

where L is defined by (2) and E' is a known incident electric
field intensity (i.e. described as a gap source of linear dipole
or incident plane wave, see later). Applying the MoM pro-
cedure, one obtain the well-known matrix system

2 =E' Z=[Zpn,),J = [J.,E' = [E,]. (9

Note that operator L(J) has physical meaning of
impedance, (3), thus L, |=[Zmn] being the complex MoM
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Z = R + jX matrix. For Galerkin’s case, Z is N x N
symmetric matrix. The vector of total surface currents J is
obtained by inversion of Z (direct solution):

J=7Z"'E. (10)

3. Theory of Characteristic Modes

Theory of Characteristic modes (TCM) evaluates total
surface currents as a sum over so-called characteristic cur-
rents (eigencurrents) which are independent of any excita-
tion. A reader is referred to [3], [6], [8], [9] for detailed in-
formation. Having the complex Z = R+ jX impedance ma-
trix, we consider the following weighted eigenvalue equa-
tion [4]:

7] = vM]J 11

where M is the weight operator which is chosen M = R to
give orthogonality of the radiation patterns. We obtain:

(R + jX)J = vRJ. (12)

Now next let
v=14+j A (13)

and after a little manipulation we get
XJ = ARJ. (14)

A Solution of the problem (14) may be easily obtained nu-
merically, i.e. using eig in MATLAB. The modal decom-
position (14) of the square impedance matrix of order N
(N x N) produces N eigencurrents J,, with N correspond-
ing eigenvalues \,,. Such modes form a complete set of so-
lution, and hence the total current of a conducting body can
be expressed as a linear superposition of these mode currents
[6] (at a given frequency for which the Z is calculated):

N N i
{Jn, E)
J ; J ; o (15)
where the coefficients b,, (modal amplitudes) are given by:
L E Tgi
b, = W ) A (16)

B 1+jAfL B 1+.]>\TL

where J}:Ei is called the modal excitation coefficient (fac-
tor). For both MoM and TCM, the excitation vector E! has
the same meaning. For example, normal illumination of a
structure by a plane wave will require E' = {1})¥. Eq. (15)
resembles a solution using Green’s function [1] (see later).

4. Modal Superposition

Have a look at (10) and (15) for the total current ob-
tained by MoM matrix inversion and by the TCM eigencur-
rents superposition. Since both these equations refer to the

same total current density J, we obtain an interesting rela-
tion:

N JTEi
J=Z"'E' = n . 17
nz::l 1+, (17

This implies that MoM equation for total current J = Z~'E'
is in fact modal superposition of the characteristic currents,
i.e. the matrix operation Z~' conceals deep eigenmode su-
perposition. To confirm that, we need to introduce some
algebra.

4.1 Eigenvalue Decomposition

Eigenvalue decomposition is a special case of the Sin-
gular Value Decomposition (SVD), [7] for square N x N
matrices. Such spectral decomposition (factorization) of the
matrix A is defined as:

A = PAPT. (18)

The column vectors of P are the eigenvectors u,, of A and
they are orthonormal. A is the diagonal matrix with A, at
the diagonal:

A= _ . (19)

Then the matrix A may be expressed in a spectral form as
superposition over its eigenvectors

N
A= AlululT +... 4+ )\NuNu% = Z )\nunuz. (20)

n=1
where u,, are eigenvectors and \,, eigenvalues of A fulfilling
Au = \u. 21

Using (20), matrix inversion of A is consequently defined
as:

N
1
Al=PA'P= Z A—unuﬁ. (22)

n=1

The inverse matrix operator A~ is expressed as eigenvector
superposition; that’s the key to the original problem (17).

S. The MoM Matrix Equation
Let’s go back to the MoM equation for total current
J=27"'F (23)

where Z = R + jX, R and X being real symmetric matrix
operators of order V. Applying (14), the spectral formula-
tion for Z~* is:

N N
Y Jody _ 3 1,30 4

14
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and consequently

N T N Tl

_ Jnd ; J,E

ZlE:§ "EI:E”in. 25
n=11+j)\ n=11+j/\nJ ( )

Eq. (25) presents a clear physical view on the modal su-
perposition hidden in the direct solution (23). Actually, the
term Z'E! acts as a superposition of characteristic modes
weighted by modal excitation factor, see also Fig.1. To the
best author’s knowledge, this interesting relation hasn’t been
pointed out in a recent literature ([8], [3], [9] to cite a few).
Furthermore, it has to be noted that the operator Z~' may
be understood as a discrete Green'’s function. A short re-
mark (but with no derivation of it) on the spectral form of
771, eq. (24), is mentioned in [6].

EFIE core
E.u,-. 1) + V()
MoM

weighted eigenvalue eq.

complex impedance
matrix

excitation

direct solution

Fig. 1. Solution for total current J, correspondence between direct MoM
solution and modal superposition.

6. Example

Consider a thin dipole of overall length 2L and radius
a, excited under different conditions: by a plane wave and
by a center gap feed, see Fig.2. Simple thin-wire-kernel
(2L/a = 2000) MoM code has been used, with N = 61
segments. Simulation parameters are f = 300 MHz (A = 1
m) and 2L = 2 m.

At first, 9 characteristic currents .J,, have been calcu-
lated together with their associated eigenvalues A,,. The
modes have to be normalized to fulfill that each eigencur-
rent radiates a unit power [8]:

(Jn, RY,) =1, (26)
so the normalized eigencurrents j,, are obtained as follows

i, = In __d
" /(3. RY) \/JERJn

First 4 normalized currents? are plotted at Fig. 3.

27)

2as eigencurrent shapes vary with frequency [8], out-of-resonance

modes needn’t to always fulfill zero current at the dipole ends.

a) b)

2L A | E=VI/A

Fig. 2. Dipole excited with center voltage gap (a) and by a plane wave (b).

segment no.
T

o)

Fig. 3. First 4 normalized characteristic current j; - j, along the 2L = 2
m dipole @ 300 MHz.

According to (15), the contribution to the total current
can be decomposed into the following parts:

e excitation coefficient, that is inner product of (J,, E')
which models coupling of modes with their excitation

e modal amplitude | ey |

e amplitude of eigencurrents normalized to unit radi-
ated power, see (27)

For the given dipole, mode 4 has the smallest eigen-
value, close to O (that indicates resonance, [8]). Its cur-
rent pattern (Fig.3) has two wavelengths thus one can say
that this dipole is working with 2L, = 2\ resonance mode.
This can be easily confirmed recalling that 2L = 2 m and
A=3- 108/300 -10% = 1 m. However, as it was described
above, the eigenvalues themselves are not sufficient enough
to say that some mode will be dominant in the total current
distribution, but one has to consider the product of coupling

(Jn E

coefficient and modal amplitude, i.e. the value |m |

6.1 Plane Wave Illumination

We will study now the current distribution along our
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2L = 2) dipole in "receiving mode”, i.e. as illuminated
by normally incident plane wave E; = 1 V/m, Fig.2 b).
Excitation vector E' in (15) will thus have form E' =
[E', E', E'...]T. Superposition coefficients playing role in
(15) are shown in Tab. 1.

n| (200 N v N O 5

1 3.39 —5.6-10"13 0.283 —1.6-10"13
2 3.35 0.894 0.286 0.256

3 3.24 —1.565 0.295 —0.46

4 0.49 3.1-101 0.898 2.7-10715

5 —36.9 0.91 0.027 0.025

6 —616 —1.37-10715 0.016 —2.2.10718
7| —1.2-10% —0.94 82-107% | —7.6-107°
8 | —3.1-107 2.5-10-13 32.1076 | 8.0.10719

9 | —1.0-107 —0.96 9.8-1078 | —9.4.1078

Tab. 1. Superposition coefficients for a dipole excited by a plane wave.

Fig. 4 shows the real, imaginary and absolute value of
a current flowing along the dipole as calculated by super-
position of different modes up to count of 9. According to
Tab.1, only modes 2, 3 and 5 are significant (note that mode
4 with the lowest eigenvalue almost doesn’t contribute). It
can be seen that convergence is achieved after summing up
relatively low number of modes (~5).

0.0251

< 0.0151-

0.005

segment no.

Fig. 4. Re{I} (top left), Im{I} (top right) and |I| (bottom) for 2 dipole
excited by a plane wave.

6.2 Center Segment Excitation

The second case is introduced by 2L = 2 dipole in
“transmitting mode”, i.e. excited at the center segment by a
voltage delta gap [1], see Fig.2 a). Excitation vector E! in
(15) will thus have form E' = [0,0, ..., V., ...0,0]”, where

V. = % = 2LEW and E; = 1 V/m has been chosen. Again,
superposition coefficients playing role in (15) are presented
- see Tab. 2 and note of the mode 3 sign change compared to
the previous case. Fig. 5 shows how the total current along

| nB) | || | SRS

1 3.39 —1.6-10"12 0.283 —4.6-1013
2 3.35 2.258 0.286 0.655

3 3.24 0.919 0.295 0.271

4 0.49 1.1-10713 0.898 9.8-10~14

5 —36.9 5.753 0.027 0.156

6 —616 5.10716 0.016 8.1-10719

71 —-1.2-10* 59.7 8.2.107° 5.1073

8| —3.1-107 | —1.3-107' | 3.2-10°% | —4.0-10"17
9 | —1.0-107 —1.3-103 9.8-1078 | —1.3.-107%

Tab. 2. Superposition coefficients for a dipole excited at the center seg-
ment.

the dipole is formed when more modes are added. It could
be seen that in this case the convergence is much worse for
the imaginary part of current. This issue is known well but
exceeds the aim of this paper, we refer to [8] for more de-
tails.

AN

segment no.

Fig. 5. Re{I} (top left), Im{I} (top right) and |I| (bottom) for 2] dipole
excited at the center segment.

Current distributions obtained by the modal superpo-
sition confirms FEKO MoM code [10] used for comparison
(Fig.6), only |I| shown.

7. Conclusions

Using the singular value decomposition and later by
its special case - spectral decomposition of a matrix - we
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Fig. 6. FEKO results for the total current |I| along the 2 dipole: excitation
by a plane wave (left) and at the center segment (right).

showed that the Method of Moments equation for the to-
tal current is equivalent to the superposition of character-
istic modes. In other words, the inverse impedance ma-
trix operator may be expressed in spectral form as a sum
over eigenmodes of the related generalized eigenvalue equa-
tion. By calculating the total current by matrix inversion
and feeding incorporated, we are generally loosing informa-
tion on the underlying current modes. This is very similar
to the collapse of states (i.e. modes) in quantum mechan-
ics. An advantage of using the modal decomposition has
been demonstrated by the example of the dipole excited in
different ways. Unfortunately (and authors wonder why),
no commercial software package developer using integral
solver has incorporated this modal technique yet. Since the
impedance matrix has to be calculated anyway for the di-
rect solution, only very little computational effort is needed
to perform further matrix modal decomposition. The reason
for a such modal aspect is to gain precise physical insight
on antenna behavior by ”decoding” of total complex current
density into a much more comprehensible basic “building
blocks” - the modes with their eigenvalues.
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