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Abstract. In the paper, a reduction algorithm for P,
transforming the general eigenvalue problem to the
standard one is presented for both classical full-matrix

methods and a sparse-matrix technique appropriate for
large-scale circuits. An optimal pivoting strategy for the

two methods is proposed to increase the precision of thg
computations. R

The accuracy of the algorithms is furthermore increased
using longer numerical data. First, lang double precision X n
sparse algorithm is compared with thiuble precision Q,,
sparse and full-matrix ones. Finally, the application of a

suitable multiple-precision arithmetic library is evaluated. Fig. 1. Final shapes of the matrices after the reduction.

2. Algorithms
Keywords J

Poles-zeros analysis, sparse-matrix reduction, genergl 1 Definition of Reduction Algorithms
eigenvalue problem, multiple-precision arithmetic.
A system of linear equations (or equations linearized

at an operating point) of a circuit can be written by means
of Laplace transformation

sP+QX=Y, 1)

1. Introduction

The poles-zeros analysis is indisputably among the
most important parts of design of electronic circuitswheres denotes the Laplace operat#/Q are the matri-
However, the programs of the PSpice family do not havees associated with thdynamiq static parts of the model
such algorithms implemented (the Spice3 and HSpice progerivatives, respectivelyX is the vector of Laplace trans-
rams only have this capability). An original software toolforms of circuit variables, an¥ is the source vector.
called CIA (Circuit Interactive Analyzer) is frequently used

for the poles-zeros analysis for this reason. The poles of all the transfer functions and the zeros of

a transfer function can be computed solving the equations

The poles-zeros analysis is known to be very sensitive

to the numerical precision of algebraic operations during

the process. Consequently, many of the theoretically exact  det(sP%/ + Q") =0 for zeros,
methods fail, especially for large-scale circuits.

det (sP + Q) =0 for poles
(2)

. (i h h where matrice®?’’ andQ'”’ arise from the original ones
are p-rrc\:\;)oosn;?j]%regpes of improvements to these met Odfi the first by clearing'tf‘ column and the second by _replac-

' ing 51 column byY with all its elements cleared with the
+ one consists in a meticulous algorithm desigrexception of the element corresponding toitheource.

regarding the choice of pivots, Solving the general eigenvalue problem defined by (2)

» and the other is based on using longer numerical data more difficult than solving the standard one. Therefore, a
types together with more precise arithmetic — either asystematic reduction is applied during transforming (2) to
just fully utilizing the given hardware capabilities or the standard form, which is shown in Fig. 1 (it is a variation
by applying a suitable multiple-precision arithmeticof the method in [1]). After the transformation, the deter-
library. minant can be computed in the classical way
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det (sP +Q) = €round IS @ Second parameter of the algorithm. It prevents
n the reduction of small elements that can arise because of
(—1)Mexch H (o, det (P P (sP; + Q1)) = (3) rounding errors. When such elements are reduced, the
i=m+1 number of nonzero elements of the matrices increases and
lis n the total error increases too (about¥0is recommended).
(=D [ Py, [ @z, det(s1+ P'Qyy),
=1

i=m+1 The reduction algorithm is to be implemented using
the sparsity of the matricd® and Q. These matrices are

. ) ) : . sparse enough already for not very complicated tasks.
exchanges while reducing, addis the unity matrix. The However, application of the full pivoting is then very

operations that transform. the m'a.tmi?f—i—Q to the for'm. difficult from the programming point of view. Therefore,
drawn above are a certain modification of Gauss ellmlnadnly partial pivoting must be used here — thé" key
tion method. The only exception occurs when the matri lement is chosen from the rest of tHE column of a
P,; contains a nondiagonal element that is not reducible br%duced matrix

the diagonal elements of this matrix. In such cases, it is
necessary to multiply some row from the lower part of the
matrix by thes operator. It is equivalent to moving a row of
the Q,, matrix left. The nondiagonal element of tRg _ ) )
matrix can readily be reduced by means of the transferrébowever’ the key e"?”_"e_”t determm(_ad in the _above way 1S
row. Note that the two products in the equation (3) may bEegarded to be zero if it is too small in comparison with the
enormous for large-scale circuits and therefore only thefjreatest element of tié" row

signs and logarithms may be stored.

where n.,., is the total number of row and column

I%k e—InaXU%kLkre {L.“7n}, (8)

i=k

if|f%k|§§€ HﬂaX|}%thhen.F%k:=:0. (9)
J=k+1

2.2 Implementation of Reduction Algorithms A final step for determining the poles and zeros of transfer

The reduction process is very difficult from the pointfunction is naturally computing the eigenvalues of the
of view of numerical precision in the case of large-scaléatrix (i.e., solving the standard eigenvalue problem)
systems. The matrices often contain elements of various

/ -1
magnitudes. Therefore, fall pivoting is to be used for the Q=P Qu (10)
choice otthek™ key element by the double-step QR algorithm with automatic shift of
nn origin [2, 5].
B, < max |Hj|, ke{l,...,n}, 4)
i=k,j=k

L 2.3 Design of Variable-Length Arithmetic
however, the key element determined in the above way is

regarded to be zero if it is too small in comparison with the ~ The arbitrary precision (variable-length) arithmetic

greatest element of thé column routines have been implemented in the Pascal language.
1 Since the design was made with portability in mind, the

if |Po| < €oigen max [P} then By, == 0. (5) 1SO 7185 standard was strictly obeyed. In addition, only a
i=1 subset of the language common with Borland Pdscal

Delphi was used. Simplicity and clarity of the design

Ecigen IS @N important parameter of the reduction algorithm. 4 by the ch g |
Inappropriately large value of this parameter causes i -ncouraged by e chosen programming language are con-

noring some (real, in fact) poles or zeros, inappropriatel idered to be major virtues. The variable-length natural
' - Xumbers representing the mantissa parts are implemented
small value of the parameter causes computing superfluoBs means of dynamically allocated linked lists rather than
(spurious, in fact) poles or zeros (about %0 is y or dyna y .
recomme;’lded) arrays. This eliminates the danger of undesirable heap
' fragmentation, which could otherwise cause allocation
The key elements determined in the upper and lowdailure before all available memory has been used. Only the

parts of the matrices are used for the reducticemfining classical general algorithms described in [3] have been

elements of the matrices if they are not too small employed for the four basic arithmetic operations. Since the
results of floating point operations are by principle appro-
n,n . .
it 1P, | < €poyng MAX | H-jl then P, , =0, X|mate_ (no matter hqw long the mantissa has_ be(_an_ chosen),
v ik, j—k vJ (6) an optional mechanism has been added maintaining upper

estimates of the cumulated roundoff errors for each
variable. This can be useful whenever the information about
o k the guaranteedaccuracy of obtained results is needed. No

if |Qi/j/| < €round ~ Max |Qijl then QZ.,J./ =0, special optimization to enhance the execution speed has yet
i=m+l,j=m+1 () been performed. This is supposed to be part of the
k=n,..m+1lm<i<krm<j <k prospective next stage of development, finally resulting in

E=1...n—1i{>knj >k,
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partial or complete conversion of the routines into the For the multiplying constant of transfer function, the
assembly language, utilizing all technical capabilities of thénaccuracy is similar. All the results indicate that the
given hardware. double sparse-matrix reduction introduces a welcome im-
provement. Still, the results are only correct to three de-
cimal places. The results with the full-matrix reduction are
more precise with the exception of zero at the origin (the
full-matrix algorithms do not implement the special struc-
fure of matrices used for a “smart” elimination of zeros at
the origin by the sparse algorithm). However, the full-
matrix reduction cannot be used for large-scale circuits.

The implementation of the variable-length floating
point (VLFloatingPoint) arithmetic is part of a more
extensive library of routines, covering a hierarchy of othe
variable-length numerical types: natural (or nonnegativ
integer) VLNatural, integer VLinteger, rational VLRational
and complexVLComplex. All these types adopt the same
philosophy of use: every variable of a particular type
(standing for any of, I, R, or F) has first to be allocated by Therefore, the application of unlimited- or variable-
the VLXNew procedure. If it is to be used as an input to atength arithmetic is expected to perform robust and
arithmetic operation LXAdd, VLXSub, VLXMul, or accurate analyses.

VLXDiv), it needs to be initialized byLXInit. By the end of
a computation, all used variables should be deallocated .
VLXDispose. Values can be converted frgimto the 32 Improvement of Sparse Mode With
standardreal type by VLXFromReal and VLXToReal, and Variable-Length Arithmetic

read from/ wnt_ten into text files byVLx_Read a_nd Results obtained with the sparse-matrix reduction
VLXWrite, respectively (except thelFRead routine, which  510qrithm rewritten to call the variable-length arithmetic
has ye_t to be |m_pleme_nted). For the Programmers, tines are presented in Tab. 2.

convenience, all arithmetic procedures are designed to

allow for variables to be given simultaneously as input as  The parametee was chosen to be 1%, ie., the
well as output parameters. same as in thieng double computation, to allow to compare

Calling Pascal procedures from inside C code of th(tahe corresponding results.

CIA algorithms has been made possible using the GNU  With mantissa length limited to 64 bits, which is the

family of compilers (specifically, its DJGPP port for same length as in theng double type (Extended Precision

MS-DOS), for GNU Pascal has types and calling converef IEEE 754), the achieved precision of results is basically

tions compatible with those of GNU C. the same as witlong double. A slight tendency towards the
correct values is already visible in the variable-length case
due to more correct rounding strategy used.

3. Results All the poles and zeros obtained with 128bit mantissa
are already correct to 6 decimal places. The results file

. differs from the ones for longer mantissas (256, 512 and

31 “Improvemer,l,t Of_ Spars_e Mode With 1024 bits were tried) only in the ordering of zeros done by
long double” Arithmetic the procedure solving the standard eigenvalue problem. All

Let us discuss an AB-class power operational amp"t_hepoles and zeros for 236ts andmorecameoutthe same

fier in Fig. 3 for which reduced [4, 6] (cuts “similar” . .

poles/zeros) poles-zeros configuration is presentedn ] d

Fig. 2. It is a very suitable example for checking the pre-***

cision of the sparse mode of reduction. 15E+8-] =
] I

In general, the full-matrix version of the reduction 1E+8]
algorithm seems to work sufficiently. However, its nume- ;. .1
rical precision is still inadequate for a certain class of tasks  {»,p, Dy 2 ZyZg...
solved by the sparse-matrix one. For that reasolang U; g
double (>10 bytes) version of the sparse-matrix reduction-se+7 —
has been developed. ]

j=12,.

y 4]

27

-1E+8+

In Tab.1, a comparison between sparse-matsixble | 5.5
and sparse-matrixong double reductions is performed. ]
Considering the results with 1024bit-mantissa variable-’zmsﬁ q
length arithmetic (see the following subsection) to be COr5E-+8t—rmm—rrrmm v

. . . 1 10 100 1000 10000 100000 1E+4+6 1E+7 1E+8

rect, the incorrect digits are marked by “strikethrough”. As Re(p..z.
observed, the poles have been computed quite precisely. - —2 i, j =1,2,... (Hz)
However, the accuracy of theomputation of zeros is
considerably worse — it is caused by the difference between Fig. 2. Reduced poles-zeros{ divided by2r) diagram of the
thesmallestandlargestpole/zeromagnitudestespectively. linearized AB-class power operational amplifier.

Im(pz.7 Z.

27
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Fig. 3. AB-class power operational amplifier with wide spread poles and zeros on which all the reduction techniques have been compared.

Crucial elements of transfer Full-matrix algorithm with | Sparse-matrix double Sparse-matrix long double
function regarding exactness eeigen=10‘15, €ound=10"2 | algorithm with e=10"19 algorithm with e =10-23
Zero which should be 0 Hz -0.986035 X 1076 Hz 0 Hz 0 Hz

Smallest pole by magnitude -1.76518 Hz -1.76518 Hz -1.76518 Hz

Biggest pole by magnitude -7.31331 X 1010 Hz -7.31330 X 1010 Hz -7.31331 x 1010 Hz
“Smallest” zero by magnitude || -0.0847816 Hz -0.0847825 Hz -0.0847825 Hz

Biggest zero by magnitude -6.99856 X 1010 Hz -7.04891 x 1010 Hz -6.99916 x 1010 Hz
Const. of transfer function 0.988898 1.04496 0.988968

Tab. 1. Comparison of the crucial elements of the amplifier transfer function obtainedfisiddengthcompiler’s arithmetic procedures. The
control parameters have been optimized so that the results be closest to those obtained with 1024bit-mantissa variatiektigth a

The same monitored elements

64bit mantissa, € =102

128bit mantissa, e=10"23

256bit mantissa, € =10"23

Zero which should be 0 Hz

0 Hz

0 Hz

0 Hz

Smallest pole by magnitude

-1.76518 Hz

-1.76518 Hz

-1.76518 Hz

Biggest pole by magnitude

-7.31331 X 1010 Hz

-7.31331 X 1010 Hz

-7.31331 X 1010 Hz

“Smallest” zero by magnitude

-0.0847825 Hz

-0.0847825 Hz

-0.0847825 Hz

Biggest zero by magnitude

-6.99775 x 1010 Hz

-6.99856 x 1010 Hz

-6.99856 x 1010 Hz

Const. of transfer function

0.988965

0.988898

0.988898

Tab. 2. Comparison of the same transfer function elements obtained using suggettbte-lengtharithmetic procedures. The results for the
128bit and 256bit mantissas are equal regarding the first six valid digits (the poles and zeros are only ordered iffifstigthyalys).
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to 6 decimal places and in the same order of listing in thReferences

results file. The duration of the computations did not
exceed approximately ten minutes even for the 1024-bitl
mantissa length.

Changing thes value was also tried for mantissas of
256 and 1024 bits. For 256 bits, it turned out to be possible]
to use its value as tiny as 18° without any change in the
highest six digits and order in the results file. With 10243]
bits, this limit even drops below 1°.

Experiments with the rational “unlimited-precision” 4]
arithmetic were also carried out; the computing complexity,
however, turned out to be too high for the present example.
The poles computation was interrupted after about thr
days, when only about a half of the approximate total g[fg
200,000 arithmetic operations had been finished. And since
the duration of multiplications and divisions increases with
about the square of operand length, it is virtually impossiblg;
to estimate the time needed for the second hundred
thousand arithmetic operations.
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