
sensors

Letter

MongoDB Database as Storage for GPON Frames

Martin Holik * , Tomas Horvath , Vaclav Oujezsky , Petr Munster , Adrian Tomasov
and Sobeslav Valach

Department of Telecommunication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic;
horvath@feec.vutbr.cz (T.H.); oujezsky@feec.vutbr.cz (V.O.); munster@feec.vutbr.cz (P.M.);
xtomas32@stud.feec.vutbr.cz (A.T.); valach@feec.vutbr.cz (S.V.)
* Correspondence: xholik11@stud.feec.vutbr.cz; Tel.: +420-541-146-923

Received: 17 September 2020; Accepted: 29 October 2020; Published: 30 October 2020
����������
�������

Abstract: This work is focused on creating an open-source software-based solution for monitoring
traffic transmitted through gigabit passive optical network. In this case, the data are captured by
the field-programmable gate array (FPGA) card and reassembled using parsing software from a
passive optical network built on the International Telecommunication Unit telecommunication section
(ITU-T) G.984 gigabit-capable passive optical network GPON recommendation. Then, the captured
frames are converted by suitable software into GPON frames, which will be further processed for
analysis. Due to the high transfer rate of GPON recommendations, the work describes the issue of
writing to the Mongo database system. In order to achieve the best possible results and minimal
loss of transmitted frames, a series of tests were performed. The proposed test scenarios are based
on different database writing approaches and are implemented in the Python and C# programming
languages. Based on our results, it has been shown that the high processing speed is too high for
Python processing. Critical operations must be implemented in the C# programming language.
Due to rapid application development, Python can only be used for noncritical time-consuming data
processing operations.

Keywords: analysis; FPGA; GPON; MongoDB; storing

1. Introduction

Optical networks are divided into active optical networks (AONs) and passive optical networks
(PONs). Active networks require some of the network elements to be powered and are used primarily
in transport core networks. On the contrary, the elements of the passive network do not require any
power supply and, thanks to their low purchase price, are used primarily as a so-called last mile
solution to connect end users. They are also common in networks combining metallic and optical lines,
which are created by the gradual replacement of metallic lines [1–5].

Currently, the most widespread International Telecommunication Union telecommunication
section (ITU-T) recommendations include Gigabit-capable passive optical networks (GPON)
and 10-Gigabit-capable passive optical network (XG-PON), which are based on time division multiplex
(TDM) [6,7]. The size of the frames is therefore not exactly given but is limited by time periods
of 125 µs. In the ascending direction, the concept of time division into 125 µs sections is retained,
but it is supplemented by regular time ticks/marks, which are used for synchronization. To enable
bidirectional communication, different wavelengths are used for uplink and downlink. For GPON,
a signal with a wavelength of 1490 nm is used for the downlink and 1310 nm for the uplink and
1577 nm in the downlink and 1270 nm in the uplink direction for XG-PON [2–4,6,8–11].

The problem of data traffic analysis lies in the large flow of data that is transmitted through
passive optical networks. This is an area of big data processing, where it is impossible to analyze

Sensors 2020, 20, 6208; doi:10.3390/s20216208 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0301-0074
https://orcid.org/0000-0001-8659-8645
https://orcid.org/0000-0001-7629-6299
https://orcid.org/0000-0002-4651-8353
https://orcid.org/0000-0002-2950-2720
http://dx.doi.org/10.3390/s20216208
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/21/6208?type=check_update&version=2


Sensors 2020, 20, 6208 2 of 13

communication in the usual way. Although there are tools for data analysis in a commercial
environment, the problem of these tools is associated not only with a problematic and very expensive
licensing policy but also with closed program code and the inability to use the interface for self-testing.
Today’s analyzers are difficult to reach for small Internet services providers (ISPs) with hundreds of
customers. Our solution is focused on providing a modular solution that should be distributed under
open-source licenses. Our proposed solution is built with field-programmable gate array (FPGA) card
and appropriate control software that will be installed on the operating system.

The main contribution of the article is the experimental verification of the write speed of traffic
transmitted in the downstream direction of the passive optical network. This work is focused on
traffic from the GPON network, but later it is planned to create a version for the analysis of XG-PON
networks. After the successful storage of all important data, the data will be further processed in order
to detect hidden security threats using artificial intelligence.

The rest of this paper is structured as follows. Section 2 provides an overview of the related works.
Section 3 describes the necessary prerequisites that are required for testing including a data structure
built on Mongo database. Section 4 is focused on the description of test scenarios. The individual
scenarios are divided according to the way in which GTC frames are written to the repository and
according to the programming languages used. Section 5 provides a discussion of the results. Finally,
Section 6 concludes the paper.

2. Related Works

In recent years, several PON-related studies have been published. The authors in [12] describe
a novel method for low-latency 10-Gigabit-capable symmetric passive optical network (XGS-PON)
mobile front-haul for small cell in cloud radio access network (C-RAN) based on traffic estimation.
They proposed the adaptive-Learning dynamic bandwidth allocation (DBA), which reduces jitter in
optical distribution network (ODN), packet loss ratio, delay, and increasing utilization performance.
The article [13] deals with the impact of report message scheduling (RMS) in 1/10 G passive optical
networks. The researchers reduce the idle time of channel during a reporting optical network unit
(ONU) buffer occupation for data transmission. The work [14] also deals with a dynamic bandwidth
allocation algorithm for long-reach systems. The primary purpose of this research is to reduce
inefficiency occurs in the DBA upstream protocols because of the large propagation time between
optical line termination (OLT) and ONUs. This algorithm is independent of the SI and uses real
data queuing information without prediction. In [15] the authors present a novel opportunity for
data transmission in GPON with sensing data encapsulation. The sensory system uses different
wavelengths; the results are transmitted in GPON encapsulation method (GEM) frames.

Another research field in passive optical network is their software defined controlling. In general,
software defined networks (SDNs) are a very popular and promising solution in metro and core
networks; the software controlling can be applied in access networks [16–23]. A big network with
multiple OLTs will require a complex support of technician; however, the SDN controlling with one
central point may help to make a management easier. Multi-OLT networks have to control DBA
algorithms to ensure the quality of service (QoS) [24–26].

A data analysis is not a trivial task in passive optical networks defined by ITU recommendations.
First of all, all data are encapsulated into GPON transmission convergence (GTCs). The structure
of GTC is completely different in comparison with Ethernet frame; however, Ethernet frames are
encapsulated into them. In recently years, many publications have been published about simulations
of data traffic in passive optical networks [27–29]. Note that each simulation tool supports physical or
above layers; this means that the physical parameters will be evaluated or data transmission will occur
separately. Nowadays, the available tools for data analysis in passive optical networks are in stock but
with one main limitation—postprocessing data representation [30,31].

Analyzing the transmission convergence layer of passive optical networks is not a new problem.
Several patents in the field of passive optical network analysis have been published in the past.



Sensors 2020, 20, 6208 3 of 13

Still, current developments in technology and world affairs place greater emphasis on detecting
unwanted processes that could cause the leakage of sensitive information. The work [32] discloses
a method of reducing a PON network’s energy consumption by monitoring the physical layer and
the GTC layer. In the work [33], the authors proposed a GPON network extender built on an FPGA
array. For this extender to work properly, adding a sync bit sequence to the optical layer during coarse
wavelength division multiplexing (CWDM) transmission was necessary. The designed extender with
OLT unit allows them to connect up to 512 client devices but changes the activation process of ONU
units according to ITU-T recommendation [3] were necessary. The article [34] also deals with the issue
of security using FPGA arrays. The authors created an advanced encryption standard (AES) encryption
algorithm for hardware transmission encryption using the FPGA card. As part of the Fabulous EU
Strep project, the authors dealt with the simulation of traffic transmission and its digital processing
using algorithms in FPGA arrays [35].

Previously mentioned works, focused on FPGA card data processing, are primarily focused
on increasing the quality of operation of passive optical networks or security from the perspective
of third parties, for example, against eavesdropping. The focus of our research is to analyze the
communication itself against unwanted processes that are not defined in the ITU-T recommendations
of GPON networks. Currently, the market offers many devices of different manufacturers that are not
compatible with each other due to various implementations of optional values or specification in their
recommendations. Mutual incompatibility and the use of one manufacturer’s equipment on a single
network could be a hidden threat to sensitive data leakage. This research should make it possible to
verify that the data transmitted follow the ITU-T recommendations.

3. Prerequisites

Our test scenario was designed with regard to the requirements for capturing traffic from passive
optical networks. The entire circuit diagram of the topology of the currently used optical network is
shown in Figure 1. The FPGA module developed by our partner is connected to the passive optical
network, which captures the transmitted bits in the downlink direction, i.e., from the OLT unit to the
ONU unit [36]. The captured data are reassembled into higher layer frames and stored in a folded
form. Depending on the recommendation used, it is necessary to perform the optimal design of the
data structure for the maximum speed of writing data to the storage. The second, but less critical,
operation is the optimization of the output for future reading and subsequent data processing.

Splitter

Parser + 
StorageFPGA

OLT

ONU

Figure 1. Scheme of our measurement topology.

The FPGA card (named Cecilia) is specially designed for processing and transferring data streams
from the GPON and Ethernet interfaces up to 100 Gbit data rates. The card is equipped by a middle
class Xilinx’s Kintex UltraScale + FPGA—XCKU11/15P-2FFVE1517. The FPGA provides 20 pairs of
gigabit transceiver Y (GTY) transceiver operating up to 28.21 Gbit/s and 32 pairs of gigabit transceiver
H (GTH) transceiver with maximum achievable bit rate 16.375 Gbit/s [37]. Figure 2 depicts a block
drawing showing card configuration and Figure 3 shows the main peripherals.

This parsing software utilizes one GTH transceiver connected to the small form-factor pluggable
(SFP+) cages. One cage is used for upstream and the second one for downstream monitoring and



Sensors 2020, 20, 6208 4 of 13

stream capturing. The captured data are transferred directly into a host computer main memory by
peripheral component interconnect express (PCIe) interface. Due to a low rate stream, the PCIe can be
configured as x4 interface to save FPGA resources and lower power consumption.

4GB DDR4
64bit 2666 Mb/s

XCKU11P
(XCKU15P)

-2FFVE1517I

QSFP28

QSFP28

SFP+

SFP+

PCIe 16x

Power

FMC+

4xTX
4xRX

1xTX
1xRX

1xTX
1xRX

4GB DDR4
64bit 2666 Mb/s

12 V

12xTX

16xTX
16xRX

12xRX
12xTX
12xRX

160 IO

GTY - max 28.21 Gbps
GTH - max 16.375 Gbps

32x GTH20x GTY

8x LEDs
16x GPIO
2x PMOD

CLK
Si5348B

1x 300 MHz
1x 300 MHz/prog

4xTX
4xRX

Page 1 of 1

14.10.2020file:///C:/Users/TomasH/AppData/Local/Temp/cecilie.svg

Figure 2. The block diagram of developed field-programmable gate array (FPGA) card.

100G Ethernet
subsystem

(CMAC)

Microblaze

Upstream
monitor

Downstream
monitor

SFP+
transceiver

Upstream
GTH

Downstream
GTH

SFP+
transceiver

Upstream
reset control

Downlink

Uplink

Reset, control and status

Transceivers I2C

EEPROM

Upstream/
Downstream

data

ONU
mapping

raw
data

Transceiver
reset

EEPROM I2C

PC
Server

100G
Ethernet

100G UDP

UDP/IP
packet

FPGA

UDP packet
composer

UDP payload

CECILIE

Page 1 of 1

14.10.2020file:///C:/Users/TomasH/AppData/Local/Temp/gpon_100g.svg

Figure 3. The internal configuration of Cecilia card.

A firmware implementation is divided into three blocks. The first block captures data from
downstream and upstream links and provides raw data to the monitoring block handling ONU’s
mapping and upstream reset generation. The downstream capture unit oversamples input stream by
ratio of five and digitally recovers incoming data.

The time stamped data are sent through the PCIe subsystem to the computer host main memory.
The logic utilization is 9.5% of the XCKU11P device without any special optimization technique.
The design includes debug support features consuming more than 50% of overall application.

In general, this type of application can be processed by application-specific integrated circuits
(ASICs) or Network processors. The FPGA is more flexible and gives us a high level of freedom in
development of new monitoring techniques and ideas.



Sensors 2020, 20, 6208 5 of 13

The Cecilia card allows two connection modes. The first mode preverification (PV) can be used as
a standalone solution and it is connected to the server that processes the data via a 10 gigabit Ethernet
port. The second option is to use the card as a server solution when inserted into the PCIe slot of the
server on which the control software is running. During our tests of the FPGA card, a stand-alone
connection was used. The whole concept of data capture consists of four layers. The first and, at the
same time, the lowest layer is the FPGA card itself, which sends via the Ethernet interface to the server,
where they are captured by the listening module. The intercepted data is processed at the application
module level by parsing software written in the C# programming language, allowing data to be stored
in a repository for GPON frames. The stored data is ready for processing or can be viewed using a
web interface written in the Python programming language [36,38,39]. Our solution does not include a
step to create COM-callable wrapper and call using Python’s component object model/object linking
and embedding (COM/OLE) from the complexity perspective.

During the tests, a passive optical network based on the ITU-T G.984 GPON recommendation
was used, which offers a downstream transmission speed of 2.488 Gb/s [8]. The total number of GEM
frames per second is very difficult to estimate because it is a problem to estimate the correct number of
frames with relevant data. However, it is relatively easy to determine the lower limit. A GEM frame
can carry a maximum of 4095 bytes of data, and therefore a minimum of about 76,000 GEM frames per
second can be expected. Assuming that one GEM frame carries half the maximum size, the storage
must handle twice, that is, 152 thousand GEM frames per second. All transmitted GEM frames are
encapsulated as user data into 8000 GPON frames.

4. Testing Scenarios

The first data storage tests were performed using Microsoft structured query language (MS SQL).
MS SQL is a database system designed for a large volume of data, and a suitable design can divide the
data into tables to avoid duplicate records [38–40]. Better results were obtained using the MongoDB
document database system. This system’s advantages include native data storage in JavaScript object
notation (JSON) format, which is more advantageous not only for easier and faster writing to the
database but also for the reading speed, which is often higher than the MS SQL database. The second
advantage of using a Mongo database was eliminating problematic data conversion, which caused up
to 90 percent loss of reshaped frames in the previous case.

The Mongo database is supported by many programming languages, including Python and C#,
with which we performed write testing. The MongoRepository class has implemented methods for
testing all tested scenarios, as shown in the unified modeling language (UML) diagram in Figure 4.
This class is used as a general model and for GEM frames, GPON frames, bandwidth maps (BWmaps),
GemRepository, GtcRepository, and BwMapRepository. Each class represents one collection in the
Mongo database. The data were not intentionally divided into smaller collections, not only due to
the possible slowdown in the writing speed, but also the complexity of the logic that would put
the data back into the final frames. The UML diagram is only a general design. The individual
naming of methods in the UML diagram is adapted to the naming conventions of the programming
language used.

Individual frames are stored as Mongo database documents and as a whole form a collection.
Information about the smallest unit of the GPON frame is stored in individual documents, i.e., a GPON
header without a BWmap field, a BWmap field and all GEM frames transmitted in the body of
the GPON frame. The data is stored in binary javascript object notation (BSON) format, which is
convenient for further processing. The proposed structure in the Mongo database allows to store data
in inconsistent or nonstandard form against relational databases, which can be especially useful when
storing undefined traffic compared to the G.984 recommendation.



Sensors 2020, 20, 6208 6 of 13

MongoRepository

+ collection

+ insert_one(item)

+ insert_many(items)

+ update_one(item)

+ update_many(items)

+ delete_one(id)

+ delete_many(ids)

+ get_by_id(id)

GtcRepository

+ get_by_id(id)

GemRepository

+ get_by_gtc_id(id)

BwMapRepository

+ get_by_gtc_id(id)

Figure 4. UML diagram—MongoRepository.

To achieve the most realistic simulation of real operation, each collection (GTC, GEM, BWmap)
in the database was written for each scenario. GTC documents and bandwidth maps are connected
by a direct link (1:1), while multiple links (1:N) are proposed between GTC and GEM documents.
From the above, it is clear that the GEM of documents will be many times more and therefore the
speed of writing will be limited by writing GEM documents.

The test data set is the same for both languages and is based on the data actually captured by
the FPGA card. In order to make the operation uniform during the test and to be able to realistically
compare the results between the individual test scenarios, one GPON frame is selected from the real
operation. This GPON framework is periodically generated by a script in a given language and sent
for storing in the database.

The test scenarios were run on a computer station with the same configuration as shown in Table 1.

Table 1. Hardware used for testing.

Component Caption Key Parameters

CPU AMD Ryzen 7 2700X 3.2 GHz, 8 physical cores
RAM HyperX Predator 4 × 8 GB 32 GB DDR4 3333 MHz
HDD M.2 SSD WD SN500 Writing 1450 MB/s

4.1. Serial Data Writing

Serial writing method is a way in which individual data are written sequentially. Due to the
proposed structure of the Mongo database, this is a way in which the GPON header of the frame
is written first, including both payload length indicator (Plend) fields but without the BWmap
field. After writing the header, the BWmap field is written and finally the document containing
the GEM frames.

4.2. Mass (Batch) Data Writing

There are two ways to test batch enrollment. As in the previous case, the GPON header of the
frame without the BWmap field is written first. The remaining parts of the GPON frame are stored in a
field in the writing application and linked to the document key of the specific GPON frame, which was
obtained after writing the specific GPON frame header to the Mongo database. Two batches are stored
in the repository, the first with BWmap fields and the second with individual GEM frames.

The second way of writing is very similar. The principle of writing is the same, differing only in
the amount of data that is written in the batch. In contrast to the previous method, where all BWmap



Sensors 2020, 20, 6208 7 of 13

fields and GEM frames were written at once for the whole batch of GPON frames, the write is always
related to one GPON frame.

4.3. Asynchronous Writing Method

The asynchronous writing method is based on writing after the previous method, i.e., after GTC
frames. In this test, the emphasis is on parallelism. Unlike the previous methods, each write waited
for its result, while the asynchronous write waited for the result at the end of the test. Better results
should be obtained by using asynchronous code. The principle of writing is shown in Figure 5.

Generating 
GTC frame

GTC header
 created

Storing GTC
Generating GEM

and BWmap

Storing GEM

Storing BWmap

Figure 5. Asynchronous writing method.

4.4. Asynchronous Bulk Write with Parallel Generation

This test scenario is again a modification of the previous scenario. The only difference is when
BWmap fields and GEM frames are written. The previous scenario saved the GTC header, when the
unique key of the document was returned, then the GEM header of the frame and the BWmap field
were generated, which were then stored asynchronously. In this scenario, parallelization is already
achieved when saving the GPON frame. While waiting for the document’s GTC key to be obtained,
a BWmap and GEM frame field is generated. While the key is being added to the second generated
data, the process of generating another GPON frame is already started. Detailed process flow is shown
in Figure 6.

Generating 
GTC frame

GTC header
 created

Storing GTC

Generating GEM
and BWmap

Storing GEM

Storing BWmap

Adding GTC key to GEM and 
BWmap

Figure 6. Asynchronous bulk write with parallel generation.

5. Results

Serial write speeds for Python ranged from approximately 2100 to 2900 GEM documents per
second. In most cases, C# achieved faster write speeds ranging from 1500 to 4100 documents per second.
The dependence of the write speed on the number of GEM documents can be seen in Figure 7. Serial
writing does not seem appropriate, because its speed is many times less than the minimum required.

The bulk write speed ranged from 6000 to 32,000 GEM headers per second for Python and
from approximately 8500 to 97,000 GEM headers per second for C#. As can be seen from Figure 7,



Sensors 2020, 20, 6208 8 of 13

the bulk writing of all GEM documents is faster for smaller numbers of GEMs. At more than 250 GEM,
the performance difference begins to decrease and is almost zero for 800 elements.

The bulk write speed ranged from 6000 to 32,000 GEM headers per second for Python and from
approximately 10,000 to 325,000 GEM headers per second for C#. Asynchronous storage in Python
provided almost no acceleration compared to bulk writing. Performance testing in C# shows that
asynchronous access is not suitable for small numbers of GEM headers up to 50, where the write
speed is slower than for bulk write. However, for larger quantities, there is a significant increase in
performance, with both the minimum and expected write speeds achieved in both scenarios. An hybrid
solution (precompiled C# package) might solve the issue.

0 100 200 300 400 500 600 700 800103

103.6

104.2

104.81

105.41

GEMs in GTC [—]

W
ri

ti
ng

sp
ee

d
[G

EM
s/

s]

C# – Serial data writing
C# – Asynchronous writing method

C# – Asynchronous bulk write with parallel generation
C# – Mass (batch) data writing

C# – Mass (batch) data writing after GTC
Python – Serial data writing

Python – Asynchronous writing method
Python – Asynchronous bulk write with parallel generation

Python – Mass (batch) data writing
Python – Mass (batch) data writing after GTC

Figure 7. Graph of dependence of writing speed based on the used writing technique.

The results obtained, on which the above graphs are based, are also introduced in Table 2.
The complete testing differed based on the change in the number of GEM frames encapsulated
in GPON frames. During testing, results were measured for 10, 50, 100, 150, 200, 250, 300, 350, 400, 450,
500, 550, 600, 650, 700, 750, 800 GEM frames encapsulated in GPON frames. Due to the high number of
measured values, only a subset of them was listed in the table.



Sensors 2020, 20, 6208 9 of 13

Table 2. Reached results from writing tests.

GEMs in GTCs 10 100 200 300 400 500 600 700 800

C# – serial 1488 3903 4131 4206 4114 4121 4211 4102 4163
C#–batch all 25,707 79,302 90,050 94,817 96,642 97,867 96,790 97,943 97,312

C#–batch GTC 15,456 104,167 149,925 171,821 185,529 190,549 189,095 196,574 198,265
C#–asynchronous GTC 8681 53,135 69,881 84,507 86,003 92,920 92,061 95,720 96,165
C#–parallel generating 10,905 212,314 275,482 313,152 325,468 314,861 313,972 316,170 312,744

Python–serial 2182 2632 2693 2842 2883 2940 2747 2844 2919
Python–batch all 10,300 23,856 27,466 28,198 28,557 28,341 29,254 29,617 29,168

Python–batch GTC 6751 22,655 26,188 28,655 30,161 30,075 29,299 29,435 29,439
Python–asynchronous GTC 6278 22,915 28,893 29,943 31,052 30,612 32,316 32,466 32,784
Python–parallel generating 5520 22,301 26,893 29,071 29,022 30,257 31,028 24,946 25,959

6. Discussion

The results of this work are based on previous experiments with the MS SQL database, described
in the publications [38–40]. The main requirement for future work was to optimize the writing speed
as much as possible and also to enable easy data acquisition, which may not comply with G.984
recommendations. Based on these requirements, the Mongo database system was selected and a
series of experiments to write to the database were performed. Because these are high data rates,
we consider working with data to be a big data area. The experiments performed were to show
whether it is possible to reach the minimum writing speed with the selected area. Two programming
languages were used during the experiments. The Python programming language was chosen as
the environment for rapid application development and the language that will be used for future
processing, for example using analysis in TensorFlow. The second programming language that is used
to implement test scenarios is C#. The parsing software, described in publication [38], is implemented
in this programming language.

After initial examination of the writing possibilities, it was quite clear that the serial writing
would be completely unsuitable for the described bit rate, but it was mentioned for interest. The aim
of the established tests was to parallelize the writing of data to the database as much as possible and
thus achieve maximum writing speed. From the achieved values in Table 2, it is clear that the Python
programming language is very slow and therefore unsuitable for very fast operations. During tests
with the C# programming language, it has been shown that sufficient speed can be achieved to write
data fast enough with zero GPON frame rate.

The proposed experiments aimed to show the possibility of writing data from passive optical
networks based on the G.984 GPON standard, which are currently still used in Europe. Due to newer
types of passive optical networks (e.g., XG-PON), these tests can be used for testing if the input GPON
frames are converted to XG-PON frames. By converting to a newer type of passive optical networks,
the speed limits of both the programming language and the data storage itself will probably be reached
and it will be necessary to adjust the whole principle of frame storage.

7. Conclusions

This paper summarizes the issue of recording traffic from a passive optical network to a repository
built on the popular Mongo document database. The main goal of this work was to select a suitable
way for data to be stored in the repository. Based on the performed testing, it is possible to use the
Mongo database to store such a large amount of data, but even so, values at the limit of the required
standards are achieved. If we wanted to apply current methods for storing traffic from faster networks
(such as XG-PON), it would be necessary to use other technologies such as Apache Kafka. The stored
data can also be processed by the tested Python language, because there is no longer a speed-limiting
element. The data stored in the repository will be used for the following analysis of the operation,
for example using artificial intelligence.



Sensors 2020, 20, 6208 10 of 13

Future work will be focused on the analysis of stored data, design of methods for traffic analysis
and modification of the presented solution for use in passive optical networks with higher data
transmission. In addition to the ability to use other technology, processing speed can be increased
by adjustment of the computer configuration. Multiprocessing might be used to increase the
parallelization of computational operations to achieve better results.

The second option is to increase the number of solid-state drives (SSDs) and create a raid array.
Another thread of this work could be focused on the data preprocessing performance directly on the
FPGA card. Which could, after appropriate consideration, filter, ignore, or delete unnecessary data.
For example, the same repeated physical synchronization (Psync) fields can be ignored. They indicate
only the beginning of the GPON frame.

The last option to achieve better write results, which can also be a big challenge, is to send data
directly to the Mongo database from the FPGA card. Artificial intelligence neural networks appear to
be suitable methods for analysis.

Author Contributions: Conceptualization, M.H. and V.O.; Data curation M.H., T.H., and P.M.; Funding acquisition
T.H. and V.O.; Investigation M.H., T.H., V.O., and P.M.; Methodology, M.H., T.H., V.O., P.M., and S.V. Software,
M.H. and V.O. Validation, T.H. and P.M.; Resources T.H. and V.O.; Software M.H., T.H., P.M., and A.T.; Validation
M.H., T.H., V.O., P.M., A.T., and S.V.; Writing—original draft M.H., T.H., V.O., P.M., A.T., and S.V.; Writing—review
and editing M.H., T.H., V.O., P.M., A.T., and S.V. All authors have read and agreed to the published version of
the manuscript.

Funding: The research described in this paper was financed by a grant from the Ministry of the Interior of the
Czech Republic, Program of Security Research, VI20192022135, PID VI3VS/746 for ”Deep hardware detection of
network traffic of next generation passive optical network in critical infrastructures”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AES Advanced encryption standard
AON Active optical network
ASIC Application-specific integrated circuit
BSON Binary JSON
BWmap Bandwidth map
C-RAN Cloud radio access network
COM Component object model
CPU Central processing unit
CWDM Coarse wavelength division multiplexing
DBA Dynamic bandwidth algorithm
FPGA Field-programmable gate array
GEM GPON encapsulation method
GPON Gigabit-capable passive optical network
GTC GPON Transmission Convergence
GTH Gigabit transceiver H
GTY Gigabit transceiver Y
HDD Hard disk drive
ISP Internet services provider
ITU-T International Telecommunication Unit telecommunication section
JSON JavaScript object notation
MS SQL Microsoft structured query language
ODN Optical distribution network
OLE Object linking and embedding
ONU Optical network unit
OLT Optical line termination
PCIe Peripheral Component Interconnect Express



Sensors 2020, 20, 6208 11 of 13

Plend Payload length indicator
PON Passive optical network
Psync Physical synchronization
PV Preverification
QoS Quality of Service
RAM Random access memory
RMS Report message scheduling
SDN Software defined network
SFP Small form-factor pluggable
SSD Solid-state drive
TDM Time division multiplex
UML Unified modeling language
XG-PON 10Gigabit-capable passive optical network
XGS-PON 10-Gigabit-capable symmetric passive optical network

References

1. Singh, J.; Garg, A.K. Optimal solutions of integrated optical and wireless applications using GPON-RoF
technologies. In Proceedings of the 3rd International Conference on Electronics, Communication and
Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 526–531.

2. Hood, D.; Trojer, E. Gigabit-Capable Passive Optical Networks; Wiley: Hoboken, NJ, USA, 2011.
3. International Telecommunication Union. G.984.3 Gigabit-Capable Passive Optical Networks (G-PON):

Transmission Convergence Layer Specification, 1st ed.; International Telecommunication Union:
Geneva, Switzerland, 2014.

4. Hantoro, G.D.; Wibisono, G. GPON performance analysis for 5G backhaul solutions. In Proceedings of the
2018 IEEE Region 10 Conference, Jeju Island, Korea, 28–31 October 2018; pp. 1544–1547.

5. Zin, A.M.; Idrus, S.M.; Ismail, N.A.; Ramli, A.; Butt, R.A. Energy efficient performance evaluation of XG-PON
for sustainable green communication infrastructure. In Proceedings of the 2018 Progress in Electromagnetics
Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 950–955.

6. International Telecommunication Union. G.984.2 Gigabit-Capable Passive Optical Networks (G-PON): Physical
Media Dependent (PMD) Layer Specification, 1st ed.; International Telecommunication Union: Geneva,
Switzerland, 2003

7. International Telecommunication Union. G.987.1: 10-Gigabit-Capable Passive Optical Networks (XG-PON):
General Requirements, 1st ed.; International Telecommunication Union: Geneva, Switzerland, 2016

8. Cale, I.; Salihovic, A.; Ivekovic, M. Gigabit passive optical network—GPON. In Proceedings of the 2007
29th International Conference on Information Technology Interfaces, Cavtat, Croatia, 25–28 June 2007;
pp. 679–684.

9. International Telecommunication Union. G.984.1: Gigabit-Capable Passive Optical Networks (GPON): General
Characteristics, 1st ed.; International Telecommunication Union: Geneva, Switzerland, 2008

10. Menoutis, G.; Foteas, A.; Liakopoulos, N.; Georgis, G.; Reisis, D.; Synnefakis, G. A configurable transmitter
architecture organization for XG-PON OLT/ONU/ONT network elements. In Proceedings of the 2015 IEEE
International Conference on Electronics, Circuits, and Systems (ICECS), Cairo, Egypt, 6–9 December 2015;
pp. 673–676.

11. Pachnicke, S.; Eiselt, M.H.; Grobe, K.; Elbers, J. The frontiers of optical access networks. In Proceedings of
the 2015 International Conference on Optical Network Design and Modeling (ONDM), Pisa, Italy, 11–14 May
2015; pp. 12–15.

12. Mikaeil, A.; Hu, W.; Hussain, S.; Sultan, A. Traffic-Estimation-Based Low-Latency XGS-PON Mobile
Front-Haul for Small-Cell C-RAN Based on an Adaptive Learning Neural Network. Appl. Sci. 2018, 8, 1097.
[CrossRef]

13. Mercian, A.; McGarry, M.P.; Reisslein, M. Impact of report message scheduling (RMS) in 1G/10G EPON and
GPON. Opt. Switch. Netw. 2014, 12, 1–13. [CrossRef]

14. Sales, V.; Segarra, J.; Prat, J. An efficient dynamic bandwidth allocation for GPON long-reach extension
systems. Opt. Switch. Netw. 2014, 14, 69–77. [CrossRef]

http://dx.doi.org/10.3390/app8071097
http://dx.doi.org/10.1016/j.osn.2013.11.004
http://dx.doi.org/10.1016/j.osn.2014.01.009


Sensors 2020, 20, 6208 12 of 13

15. Wang, Y.; Zhu, Z.; Wang, L.; Bai, J. A novel proposal of GPON-oriented fiber grating sensing data digitalization
system for remote sensing network. Opt. Commun. 2016, 366, 1–7. [CrossRef]

16. Das, S.; Ruffini, M. A Variable Rate Fronthaul Scheme for Cloud Radio Access Networks. J. Light. Technol.
2019, 37, 3153–3165. [CrossRef]

17. Talli, G.; Slyne, F.; Porto, S.; Carey, D.; Brandonisio, N.; Naughton, A.; Ossieur, P.; McGettrick, S.; Blumm, C.;
Ruffini, M.; et al. SDN Enabled Dynamically Reconfigurable High Capacity Optical Access Architecture for
Converged Services. J. Light. Technol. 2017, 35, 550–560. [CrossRef]

18. Kosmatos, E.; Uzunidis, D.; Matrakidis, C.; Stavdas, A.; Horlitz, S.; Pfeiffer, T.; Lord, A. Building a Truly
Dynamic Filterless Metro Network by Reusing a Commercial PON’s Data-Plane and a Novel SDN-Enabled
Control-Plane. J. Light. Technol. 2019, 37, 6033–6039. [CrossRef]

19. Yeh, C.H.; Chow, C.W.; Yang, M.H.; Hsu, D.Z. A Flexible and Reliable 40-Gb/s OFDM Downstream
TWDM-PON Architecture. IEEE Photonics J. 2015, 7, 1–9. [CrossRef]

20. Pakpahan, A.F.; Hwang, I.S.; Nikoukar, A. OLT Energy Savings via Software-Defined Dynamic Resource
Provisioning in TWDM-PONs. J. Opt. Commun. Netw. 2017, 9, 1019–1029. [CrossRef]

21. McGettrick, S.; Slyne, F.; Kitsuwan, N.; Payne, D.B.; Ruffini, M. Experimental End-to-End Demonstration of
Shared N. J. Light. Technol. 2016, 34, 4205–4213. [CrossRef]

22. Yin, S.; Shen, T.S.; Bi, Y.; Jin, J.; Oyama, T.; Kazovsky, L.G. A Novel Quasi-Passive, Software-Defined,
and Energy Efficient Optical Access Network for Adaptive Intra-PON Flow Transmission. J. Light. Technol.
2015, 33, 4536–4546. [CrossRef]

23. Quadri, C.; Premoli, M.; Ceselli, A.; Gaito, S.; Rossi, G.P. Optimal Assignment Plan in Sliced Backhaul
Networks. IEEE Access 2020, 8, 68983–69002. [CrossRef]

24. Mustak, M.S.; Hossen, M.; Saha, S. Weight-based bandwidth allocation algorithm for improving the QoSs of
Multi-OLT PON in downstream direction. In Proceedings of the 5th International Conference on Advances
in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 663–667.

25. Hossen, M.; Hanawa, M. Dynamic Bandwidth Allocation Algorithm With Proper Guard Time Management
Over Multi-OLT PON-Based Hybrid FTTH and Wireless Sensor Networks. J. Opt. Commun. Netw. 2013,
5, 802–812. [CrossRef]

26. Liu, Z.; Gan, C.; Xie, W.; Yan, Y.; Qiao, H. Algorithm of both release and allocation bandwidth for downstream
channel in multi-OLT PON. IET Commun. 2018, 12, 824–831. [CrossRef]

27. Peng, Z.; Radcliffe, P. Modeling and simulation of Ethernet Passive Optical Network (EPON) experiment
platform based on OPNET Modeler. In Proceedings of the IEEE 3rd International Conference on
Communication Software and Networks, Xi’an, China, 27–29 May 2011; pp. 99–104. [CrossRef]

28. Wu, X.; Brown, K.; Sreenan, C.; Alvarez, P.; Ruffini, M.; Marchetti, N.; Payne, D.; Doyle, L. An XG-PON
module for the NS-3 network simulator. In Proceedings of the Sixth International Conference on Simulation
Tools and Techniques, Cannes, France, 5–7 March 2013; pp. 195–202. [CrossRef]

29. Nakayama, Y.; Yasunaga, R. ITU TWDM-PON module for ns-3. Wirel. Netw. 2020, 1, 1–12. [CrossRef]
30. Horvath, T.; Munster, P.; Jurcik, M.; Koci, L.; Filka, M. Timing measurement and simulation of activation

process in GPON networks. Opt. Appl. 2015, 45, 1–14. [CrossRef]
31. Horvath, T.; Krkos, R.; Dubravec, L. Deep data analysis in gigabit passive optical networks. Opt. Appl. 2017,

47, 157–170. [CrossRef]
32. Meng, L.; Peng, H.; Zeng, J. Hardware Platform System of GPON ONU System Designed Based on FPGA.

CN101365250A, 8 December 2010. Available online: https://patents.google.com/patent/CN101365250A/en
(accessed on 14 October 2020).

33. Doo, K.-H.; Lee, S.-S.; Kim, W.-W. Design of a retimed long-reach GPON Extender using FPGA.
In Proceedings of the Digest of the 9th International Conference on Optical Internet (COIN 2010), Jeju,
Korea, 11–14 July 2010; pp. 1–3.

34. Vinh, T.Q.; Park, J.-H.; Kim, Y.-C.; Kim, K.-O. An FPGA implementation of 30Gbps security module for
GPON systems. In Proceedings of the 8th IEEE International Conference on Computer and Information
Technology, Sydney, Australia, 8–11 July 2008; pp. 868–872.

http://dx.doi.org/10.1016/j.optcom.2015.12.029
http://dx.doi.org/10.1109/JLT.2019.2912127
http://dx.doi.org/10.1109/JLT.2016.2604864
http://dx.doi.org/10.1109/JLT.2019.2945410
http://dx.doi.org/10.1109/JPHOT.2015.2504970
http://dx.doi.org/10.1364/JOCN.9.001019
http://dx.doi.org/10.1109/JLT.2016.2593661
http://dx.doi.org/10.1109/JLT.2015.2477036
http://dx.doi.org/10.1109/ACCESS.2020.2986535
http://dx.doi.org/10.1364/JOCN.5.000802
http://dx.doi.org/10.1049/iet-com.2017.0876
http://dx.doi.org/10.1109/ICCSN.2011.6013671
http://dx.doi.org/10.4108/icst.simutools.2013.251605
http://dx.doi.org/10.1007/s11276-019-02236-8
http://dx.doi.org/10.5277/oa150403
http://dx.doi.org/10.5277/oa170114
https://patents.google.com/patent/CN101365250A/en


Sensors 2020, 20, 6208 13 of 13

35. Straullu, S.; Savio, P.; Nespola, A.; Chang, J.; Ferrero, V.; Gaudino, R.; Abrate, S. Demonstration of upstream
WDM+FDMA PON and real time implementation on an FPGA platform. In Proceedings of the 2015
European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015;
pp. 1–3.

36. Oujezsky, V.; Horvath, T.; Jurcik, M.; Skorpil, V.; Holik, M.; Kvas, M. Fpga network card and system
for gpon frames analysis at optical layer. In Proceedings of the 2019 42nd International Conference on
Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 19–23.

37. DFC Design. lCecilie—xPON Module. Available online: https://www.dfcdesign.cz/en/cecilie-xpon-
module (accessed on 14 October 2020).

38. Jurcik, M.; Horvath, T.; Oujezsky, V.; Skorpil, V.; Holik, M. GPON parser for database analysis. In Proceedings
of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest,
Hungary, 1–3 July 2019; pp. 347–350. [CrossRef]

39. Horvath, T.; Jurcik, M.; Oujezsky, V.; Skorpil, V. GPON analyzer—Frame parser module. In Proceedings
of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest,
Hungary, 1–3 July 2019; pp. 748–752. [CrossRef]

40. Holik, M.; Horvath, T.; Oujezsky, V. Application for GPON Frame Analysis. Electronics 2019, 8, 700.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.dfcdesign.cz/en/cecilie-xpon-module
https://www.dfcdesign.cz/en/cecilie-xpon-module
http://dx.doi.org/10.1109/TSP.2019.8768849
http://dx.doi.org/10.1109/TSP.2019.8768882
http://dx.doi.org/10.3390/electronics8060700
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Prerequisites
	Testing Scenarios
	Serial Data Writing
	Mass (Batch) Data Writing
	Asynchronous Writing Method
	Asynchronous Bulk Write with Parallel Generation

	Results
	Discussion
	Conclusions
	References

