VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGII
USTAV INTELIGENTNICH SYSTEMU

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

APPLICATION FOR CONTROLLING
INELS INTELLIGENT ELECTRICAL-INSTALLATION
FOR THE WINDOWS PHONE PLATFORM

DIPLOMOVA PRACE
MASTER'S THESIS

AUTOR PRACE Bc. David Bednar
AUTHOR

BRNO 2013

VYSOKE UCENIi TECHNICKE V BRNE

J BRNO UNIVERSITY OF TECHNOLOGY

7

k-
/ﬁ

FAKULTA INFORMACNICH TECHNOLOGII
USTAV INTELIGENTNICH SYSTEMU

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

S
7
\

///

APLIKACE PRO OVLADANI
INTELIGENTNI ELEKTRO-INSTALACE INELS
PRO PLATFORMU WINDOWS PHONE

APPLICATION FOR CONTROLLING INELS INTELLIGENT ELECTRICAL-INSTALLATION
FOR THE WINDOWS PHONE PLATFORM

DIPLOMOVA PRACE
MASTER'S THESIS

AUTOR PRACE Bc. David Bednar
AUTHOR

VEDOUCI PRACE doc. Ing., Dipl.-Ing. Martin Drahansky, Ph.D.
SUPERVISOR

BRNO 2013

Abstrakt

Tato prace se zabyva inteligentni elektroinstalaci iNELS od spole¢nosti ELKO EP a jejim ovladanim
pomoci zafizeni vyuzivajicich platformu Windows Phone. V textu je popsana komunikace, kterou
vyuziva systém iNELS a multimedialni systém iMM, pfedevsim pak protokoly EPSNET a XML-
RPC. Déle je popsana platforma Windows Phone a implementace samotné aplikace. V zavérecné
Casti se prace zabyva zajimavymi rozsitenimi dané aplikace.

Abstract

This thesis talks about iNELS Intelligent Electrical-Installation, which is developed by ELKO EP,
and its controlling using Windows Phone based devices. We describe communication, which is used
within the iINELS system and the iMM multimedia system, especially focusing on the EPSNET and

XML-RPC protocols. Windows Phone platform is discussed and the implemented application is
presented. The last section talks about interesting extensions to the application.

Kli¢ova slova

Domaci automatizace, inteligentni budovy, iNELS, ELKO EP, protokol EPSNET, XML-RPC,
Windows Phone

Keywords

Home automation, intelligent buildings, iINELS, ELKO EP, EPSNET protocol, XML-RPC, Windows
Phone

Citace

Bednai David: Application for Controlling iNELS Intelligent Electrical-Installation for the Windows
Phone Platform, diplomova prace, Brno, FIT VUT v Brng, 2013

Application for Controlling INELS Intelligent Electrical-
Installation for the Windows Phone Platform

Prohlaseni

Prohlasuji, Ze jsem tuto diplomovou praci vypracoval samostatné pod vedenim doc. Ing., Dipl.-Ing.
Martina Drahanského, Ph.D.

Dalsi informace mi poskytli pan Jiti Kone¢ny, Michal Mrnustik, Michal Richter a Jakub Hradek ze
spolec¢nosti ELKO EP.

Uvedl jsem vSechny literarni prameny a publikace, ze kterych jsem Cerpal.

David Bednat
20.5. 2013

Podékovani

Rad bych podékoval svému vedoucimu diplomové prace doc. Ing., Dipl.-Ing. Martinu Drahanskému,
Ph.D. za odborné vedeni, pfipominky a cenné rady, které mi béhem tvorby této prace poskytl.

Dale bych rad podékoval za vedeni a rady od spolecnosti ELKO EP, pfedevS§im panu Jifimu
Kone¢nému, Michalu Mrnustikovi, Michalu Richterovi a Jakubu Hradkovi.

© David Bednat, 2013

Tato prace vznikla jako Skolni dilo na Vysokém uceni technickém v Brnée, Fakulte informacnich
technologii. Prdce je chranéna autorskym zakonem a jeji uziti bez udéleni opravnéni autorem je
nezakonné, s vyjimkou zdakonem definovanych pripadii.

Table of contents

QLI o] L0 0] 11 (=] £SO 1
R 11 £ [o] o USRS 4
2 INEllIgENTt DUITAINGS ..ot 5
2.1 Evolution of intelligent BUIIAINGSocviiiiii s 6
2.2 SUDSYSTEIMS ...ttt e ettt b b n e 7
R T O 1 (=T (o] T TSSO T PO OT PP PRPRPR 9
2.4 INELS ..ottt sttt een et 10
2.4.1 EPSNET ProtOCOLeciiiiiciiite sttt ettt st e re et s e et be e saesreene s 11
2.4.2 EPSNET COMMUNICALION SEIVICESouveuieieeiieiiiiieie sttt s nneas 13
2.4.3 The iIMM multimedia XIENSIONccoieiiiiiiirese e 16
2.4.4 The iMM server and XML-RPC protocolcccccovvveiiiiiiciiciee e 17
2.4.5 Public server and configurationc.cooeeiiiiiicicisc e e 18

3 WINdows Phone Platform...........coioiiiiece ettt st ne e 21
3.1 REFEIENCE UEVICES ...eiiiiiiieieieeee ettt sttt neans 22
3.2 New WiINdoWS PhONE TRALUIES.........cviiiieiieiieieieieie e 23
TR T AN o 01 (=T (1] - SRR 24
34 NAVIGATION. ...ttt bbb bbbt 25
3.5 APPHCAtioN TITE CYCIE.....ciiiice s 26
36 MIUIEIEASKING ...ttt bbbt bbbt 28
3.6.1 BaCKGrOUNd AENTS.c.viiiiiiiiiiite et 28
3.6.2 Continuous background EXECULION..........cc.eieieiiiiireic e 28

3.7 Graphical USEr INTEITACE.cviiiiiiiiite e 29
3.7.1 Pivot and Panorama CONIOISviveieiieeiiie et seeeree e 30
3.7.2 LoNGLIStSEIECTOr CONIOLviiiieieiie e 31
3.7.3 APPHCAIION DA ..o et 32
3.74 RSY (0] 57/ 10 - 1o OSSPSR 32

3.8 RESOUICES. ... ittt ettt ettt b e he e sh et s ab e e R bt e bt e bt e ke e R et b et a b e et e e ebe e nbe e neeenane e 33
RS B B T 1 =1 o [o SRS 34
3.9.1 BINGING PrOPEITIESveeuieiieeieeie ettt sttt et et e saesae e seeenee e 34
3.9.2 BiNding COMECLIONS ..o s 34
3.9.3 L0001 4 =T £ S TSPV U P PRTPPTOPRO 34
3.94 Model-View-ViewModel approachccooviieiiireiene e 35

N (O B . 11 B 0] [0 [OO PRUPPRPR 36
3.10.1 Local folder (Isolated SLOrage)ccceeveiuiiieriiieiie e 36

3.10.2 Other data Storage l0CALIONS..........c.coveiiiiiieiese et st 36

T8 I T OSSR 37
3111 SECONUANY THIES....eeiiieeeieeee e 38
3.12 PUSH NOLITICALIONS. ...ttt e st e tesreeneeneas 39
3.13 AlLArmS and FEMINGETS.eeii ettt sb e e steste e e saeeseentesreeeesreeneeneas 41
B4 SPBECN... bt 42
TR0 5 RV o ol oo 44 1= T PSSR 42
3.14.2 Speech recognition and TeXt-t0-SPEECHccuciviiiiriiiiereee e 43
T80T I Yo 1 o o SRR 44
TR T I]SSR 45
3161 LAUNCRETS ...ttt et 45
TN 0 1 o 01 T=] £ OO PSPPI 45
3.17 Globalization and 10CAlIZALIONcccceieiiiieee s 46
318 NEEWOIK ..o bbb bbbt 47
N O 11 [- F O TSP PR UPPTOPRRTRN 48
.20 SEBINSOIS ..ttt ettt ettt ettt ettt bt bR bR bRt E e Re e R e e R et R Rt Rb e e b e e nRe e nbeenreennne e 49
3.20.1 ComDINEd MOTION ..oviiiieieiee e ettt 49
T R = (0 d 11111 4SO PRSP 50
3.22 WINAOWS PRONE STOTE.......oiiieiieiieiieiesie sttt sttt eneenas 51
3.23 DEVEIOPMENT TOO0IScviiitiieieieee ettt 53
324 Third-party [HOFArES.......coueiviiiiiieiee st 55
3.24.1 Windows PhoNe TOOIKILcceiiieiiiiiece st 55
3.24.2 XIML-RPCINET ...ttt e et e e s ae et e e sreeenaee s 55
Home Control apPliCATIONcc.iiiiiiiic s 56
4.1 PrOJECt UESCIIPTION ...o..itiiiteiceei ettt bbbt 56
411 PROPEITIES ...ttt bbb e ere s 56
4.1.2 RETEIENCES. ... ettt ettt e r et e et re e aenreereenre s 57
4.1.3 ASSELS AN IMAGESeiueereeieeieiii ettt sttt ettt b bbb r e aneeneas 57
414 Resources and Other TIlES ..o e 57
415 DIBVICES .. ettt sttt ettt ettt e ettt et Reene e bt et e naeeeeeeeseeeneenneas 58
.16 EPSNET ittt ettt ettt enenneas 59
.17 XIMLRPC ...ttt ettt ettt n e n et r ettt ettt eneeneas 61
418 EXPOITPUD ...ttt ettt et ae e saeene e e 63
419 (0 T0] 111514 o USRS 64
I O o =] 1 o= £ PSSR 65
4.2 ADPLICALION S PAZES ..vevereenrerreeieeiesieer st e st sre e b e ar e s reare e e are e nenre e nenre e nns 66
421 T o o = SR 66

4.2.2 0T o Lo [PPSR 67

423 PIACES PAGE. ... ettt 69
424 SBEEINGS PAGE ..ttt 70
425 EXIENSTON PAGES ...ttt 70
4.3 Extensions and SUQQEStEd FEATUIES..........coiiieieieieise st 71
43.1 O] 1 =T - SR 71
4.3.2 VOICE COMMANGS ...eovviieerieieiteeiesteeieste st e e see et tesre s e stesreeseesteeneesbeeteeneesreeseeneesneeneees 72
4.3.3 REMINGE ...ttt ste e e be e e naesreeneeseeeneeneens 73
434 INEEITIGENT CAMETA ... 74
435 WIi-Fi identifiCationc.ooiiiieiiiiiie e 75
4.3.6 ACCEIBIOMELEI .. .ccuiiiieeeee ettt nneas 76
4.3.7 e (0 |V 0oL o= SR PRTSPRIN 7
4.3.8 AJItioNal EXIENSIONScvvivieiiiiiiiiriisie ettt anenneas 78
(0703 To] (113 o] 4 [OOSR 80

1 Introduction

Nowadays, intelligent buildings are no longer a domain of large commercial building complexes, but
are becoming more important also for smaller family houses. Home automation puts together many
previously separated systems such as light and heating control, air conditioning, security and access
control and most recently also multimedia systems and household appliances such as washing
machines and dishwashers.

As these systems grow in complexity and more devices and various systems need to be
controlled, common switches and remote controllers are no longer effective and comfortable enough
to control these complex and heterogeneous systems. As a result, controllers and switches were
replaced by expensive in-wall touch screens and sophisticated remote controllers with programmable
interface. However, these can be easily substituted by today’s powerful smart phones and tablets.
These devices have a great advantage of being already familiar to users from their daily activities.
Also, most of available devices are based on modern mobile operating systems, which provide a
foundation stone for an all-featuring home control application. In addition, modern devices also
provide wide range of sensors and other equipment that can be used to further extend capabilities of
intelligent buildings and their interaction towards residents. Lastly, thanks to these devices, features
such as voice control or motion control can be implemented with minimal costs.

The aim of this thesis is to describe development of a home control application, which would
be able to control the iNELS electrical installation system developed by ELKO EP, which is one of
the largest producers of home automation systems in the Czech Republic as well as in Europe [18].
The platform, which has been selected for this project is the Windows Phone 8 operating system
produced by Microsoft. This system was chosen for its innovative approach, qualities, future potential
and great development tools and support. Also, this platform shares components with the Windows 8
operating system, which should support potential porting of the application to this platform as well.

In this project, we will firstly focus on the iNELS and iMM systems and their communication
protocols. We will also describe important configuration files used within these systems. This section
will benefit from the semestral project, which was preceding this thesis.

In the next section, the Windows Phone 8 platform will be described. We will especially be
looking into its features and APIs, which we can benefit from in our home control application, but
also general concepts will be discussed.

Lastly, the design and implementation of the application will be presented. Approaches used
within the application will be described and also description of implemented extensions and future

development will be provided.

2 Intelligent buildings

Should there be a list of things, which have the largest number of different definitions, intelligent
building, smart homes or home automation systems would be on that list. Over last decades, when
those systems were formed and have grown in popularity, each researcher or producer has created its
own definitions. For the purpose of our project, we will use a definition from [28]:

“An Intelligent Building is a building that integrates technology and process to create a facility
that is safer, more comfortable and productive for its occupants, and more operationally efficient for
its owners. Advanced technology—combined with improved processes for design, construction and
operations—provide a superior indoor environment that improves occupant comfort and productivity
while reducing energy consumption and operations staffing.”

Using this definition, reasons to build an intelligent building rather than a regular one are
obvious. Their occupants will have more comfort and most importantly, the operating costs and
maintenance costs will be lower. Even though intelligent buildings might be much more expensive to
build, the investment usually pays back thanks to the efficient energy saving mechanism and as

mentioned before, also much lower overall subsequent costs. Nowadays, most of new commercial

buildings are built with the intelligent building paradigm in mind.

Figure 2.1 - Burj Khalifa, Taipei 101 and Petronas Towers [27].

2.1 Evolution of intelligent buildings

The first generation of intelligent buildings dates back to the 1980s. Buildings used dedicated systems
that only controlled single functionality of the building such as lighting or access control. These
systems were not centrally connected and usually did not communicate with each other. [10]

The next generations provided a network connection between different systems, which enabled
remote control functionality and cooperation of multiple subsystems. Buildings from 1990s were able
to react on changing demands of the occupants and basically featured fully integrated automation
systems.

Together with the evolution of information technology and communication technology,
intelligent buildings became aware of its occupants. With the use of artificial intelligence and
machine learning, it was possible for the buildings to automatically adjust individual subsystems
based on the behavior of occupants. Also all systems became integrated within single one, which was
not only able to control all automation subsystems, but also all network communication.

Sometimes, however, intelligent buildings can also have negative impact on its occupants. Due
to very complex integration of all systems, even small changes can have a huge impact on the system.
For example, accidentally opened windows could change the inner climate in a way that the system
could not compensate. Therefore occupants’ freedom is being limited and controlled, which might be

discomforting. [10]

ENIS

Hetﬁgm?mggr?ated Ca#uhrrﬂammummﬁm
m
Enterprise Network Systems) ____ fimage) After 2002
Integrated Systems Remote Portfolio and
Felpdest Management comuB teorae \ e Communication
omputer Integrate ce & Data
Cnmmétjlrdlﬁgrated fi?éﬁﬁ?ﬁss DBuiIdinng _ _ (voice & bata) 19952002
Remote Access Integrated
via Modem Building Integrated
o Communication
Building Level Automation Systems 19001005
Integrated Systems Systems
; HVAC &
Integrated SEEUHW Elthetr Tﬁﬂm& Voice Image
an a
Multifunction ACCESS |)
Systems Confrol 19851990
Electrical | EDP & |Telefax & ygice [TV &
i . Lighting, Data Text _|Image
Fomdke JfSecurityl Access | HVAC Lit etc. | Commun-|Gommun- “eation Commun’
/Dedicated // Control| Contral | Control | Goptrg| | ication | ication ination 19801985
Systems
Single Apparatus Before 1980

Figure 2.2 - Intelligent building pyramid [8].

2.2 Subsystems

It would be very difficult to describe all features and subsystems of today’s intelligent buildings and
home automation systems and not to forget any. We will therefore only briefly summarize basic
subsystems that are usually present in most intelligent buildings.

Lighting

Lighting is one of the basic subsystems, which is present in almost every configuration. Where
possible, the sunshine is effectively used and its amount is controlled by blinds. The aim is to use as
little energy as possible, so when no one is present in an office lights are usually turned off.

Climate

Sustaining stable climate within the building is also very important for energy saving. These
subsystems take care of the climate as whole, i.e. they control not only temperature, but also
humidity, fresh air and gas and particle concentration. The climate subsystem is therefore very
complex, as it must control not only heating, venting and air conditioning, but also has to take into
account all the windows and doors, where heat exchange occurs, control blinds and communicate
with other subsystems.

Security and access control

Security has been one of the most important systems even before the era of intelligent buildings. It
features smoke and fire detectors, heat sensors and movement detectors, alarms and connectivity to
security and rescue services. Nowadays is also monitors movement of occupants and property and
features camera systems.

Maintenance

This subsystem is able to quickly recognize if some parts of the systems are not working properly. It
identifies not only the exact location of the error, but usually also the probable cause. This helps the
staff to remove the malfunction very quickly and helps maintaining stability and overall health of all
systems.

Elevators

Especially in large commercial buildings, elevators can consume a significant part of energy
resources. Modern elevator-monitoring systems try to maximize the number of transported occupants,
maximize the comfort while being transported and at the same time, minimize costs and waiting
times. This is usually achieved by monitoring not only buttons pressed by the occupants, but also,

with cooperation with camera monitoring systems, obtain more precise numbers of the occupants.

Multimedia

Multimedia subsystems tend to centralize all media resources to one server. This helps save the
energy and lower costs. Clients can then connect to the server and stream audio or video from various
sources such as the internet, cable or satellite television to any device within the building. Such
device can be a television, audio system, personal computer or mobile devices.

Appliance control

As many modern home appliances such as washing machines, coffee machines and dishwashers also
feature network connection, they can also be controlled by the intelligent building. Washing machines
can, for example because of the noise, be started when nobody is home, or during the night because of
energy prices. Also, monitoring of the state of those appliances can greatly contribute to the comfort
of occupants.

Communication

Modern buildings also use centralized communication control. Occupants can accept calls in different
places, even using different devices. The system will take care of proper redirection. Also, costs can
be reduced, as all calls can be directed through one connection, or even over the internet. Devices
connected to these subsystems can be phones, computers or house bells.

Energy harvesting

As the one of the main purpose is to reduce costs and energy consumption, energy harvesting also
plays a significant role. Firstly, energy monitoring subsystems provide information about excessive
use of energy sources and can identify many problems. Nowadays, many buildings also feature
photovoltaic panels, which can reduce energy costs, especially in sunny locations. Automatically
adjusting solar panels can also increase the energy obtained.

Watering

Watering subsystems are vital in dry areas, where water resources are limited. These subsystems
work autonomously and by monitoring the weather condition, or even weather outlook, watering

during night and not during windy times, they can preserve large amounts of water supplies.

2.3 Categories

As there are many types of home automation systems available, we will use categories as mentioned
in [10]. We will not mention custom solutions such as those described within [9], as these are not
subject of our interest in this project.

Open systems

The systems are built upon publicly available standards and their specifications are available. The
advantages of such system are that many manufactures can provide accessories and also academic
researchers can help develop new functionality. This pushes prices lower and community can help
with further development. On the other hand, the market can be fragmented and choosing best
alternatives can be time consuming. KNX, Lon, or BACnet are a great example of such systems. [10]
Closed systems

Closed systems are usually produced by a single company and specifications are not available. On
one hand, users are limited to use only devices and subsystems, which are provided by this company,
on the other hand, configuration of those devices tend to be much easier and service is usually
available. These systems are represented by ABB Ego-n, iNELS by ELKO EP or Moeller Xcomfort.
[10]

Centralized architecture

In centralized architectures, only one or a small number of central units is controlling whole system.
Parts of the system are connected directly to the central unit, or via a bus. Architectures without a bus
are have the disadvantage of having long and costly wires for each separate device, while bus-based
architectures can only use one or two wires for all devices. Centralized architecture does not require
intelligent sensors; however, whole system depends on the central unit. ABB Ego-n uses such
architecture. [10]

Decentralized architecture

In a decentralized architecture, the control is distributed across the whole building. All devices
include some intelligence and are connected to a central bus. Since intelligence is distributed, the

system tends to be more robust. These systems are represented by LON or KNX systems. [10]

2.4 INELS

The INELS Intelligent Electrical-Installation is a home automation system for intelligent buildings
developed by ELKO EP, s. r. 0., which provides the possibility to control whole house or commercial
building using centralized structure of control units. The INELS system is able to control many
aspects of an intelligent building, including light control, heating and air conditioning, security and
alarms, window blinds, other electrical devices such as washing machines and dishwashers. With the
use of iINELS Multimedia extension (iMM) the system can control also various multimedia devices
such as televisions, audio systems and others.

The main part of the centralized structure is a central PLC unit CU2-01M, which is responsible
for controlling all attached devices through CIB (Common installation bus). Attached devices are
connected by two wires that form the bus. This is a big advantage over other common systems that
sometimes use dedicated wires for each device or use a separate bus and power wires. The control
unit is able to connect to up to 196 devices using extension modules and also connects to a local

network using Ethernet port. [19]

a E— A ; a)
OTEVRENY PROTOKOL MULTIMEDIA TABLETY / SMARTPHONY

i0S/Apple Android Windows Phone

a Audiozéna PREVODNIK \s;ﬁ i i
LAN/R i
) a@e ¥) |

Ny

CENTRALNI ULOZISTE DAT

(= e > —r)
BEZDRATOVY SYSTEM lnE!:z

-]) ==\
sBErRNIcOVY sysTem 1llELS

CENTRALNI .
JEDNOTKA M.
——

@

| Pprevoonik
LAN/RF

EZ

- § g -
Dotykové jedinoti Nésténny ovadx Reg.

L]
DU

P‘ L E = ’,\\\ (tn ,
8 4 [/ o & L 2 &
s‘-‘. : Rekuperace Kimatizace vertor Domécl spotiebie “_“ A "_' (tu “.”

: £ _ - ,
___ smimore . 5 _ ket o) \ Seiver remdesns e,

Figure 2.3 — The INELS home control system [19].

10

2.4.1 EPSNET protocol

The INELS system can communicate via Ethernet port with remote devices, such as remote control
systems, using the EPSNET protocol [25], which is implemented over UDP. UDP is suitable for its
simplicity and fast communication setup, but does not provide the certainty of delivered messages.

The PLC can communicate in various modes — PC, PLC, UNI or MDB. In this work, we will
make use of the PC mode running on port 61682, which is used for basic communication. The
structure of UDP packet is fixed and consists of a six-byte header and one ore up to five EPSNET
messages, whose structure we will describe later. The header includes:

0 1 2 3 4 5 6.
MESI |PN| R | DPLEN | EPSNET1 | EPSNET2 |

EPSNET3 | EPSNET4 | EPSNET5 |

Figure 2.4 - EPSNET UDP packet structure [25].

MESI (byte 0 and 1) — number identifying the message, which is same for in the response
PN (byte 2) — code specifying whether PC (2) or PLC (3) configuration is used

R (byte 3) — reserved

DPLEN (byte 4 and 5) — length of all following data, where byte 5 contains the low part

The length must be even.

The EPSNET protocol specifies two kinds of devices — master and slave — and two types of
basic configuration — monomaster (with only one master and multiple slaves present within the
network) and multimaster (with multiple master and slave devices within the network).

The structure of each EPSNET message can have a variable length, so there the data are
protected by checking the sequence of values, even parity (can be turned off) and by a checksum
stored in FCS field. If these protections are not met, the message is discarded. There are also rules for

silence on the line before sending additional messages, which are discussed in details in [25].

11

One of the common structures of the EPSNET message is with DATA field as follows:

[SD2| LE [LER|SD2R|DA| SA | FC | DATA... |[FCS|ED |

Figure 2.5 — EPSNET message structure example [25].

SD1 — start delimiter 1 ($10)

SD2 — start delimiter 2 ($68)

SD4 — start delimiter 4 ($DC)

LE — length of (DA + SA + FC + DATA) = (3 ... 249)
LER — length repeat

SD2R — start delimiter 2 repeat

DA — destination address (0 ... 126)

SA — source address (0 ... 126)

FC — frame control byte — specific for each type of message

DATA — data specific for each type of message

FCS — frame check sum — byte sum of DA, SA, FC and DATA with neglect of overflow

ED — end delimiter ($16)
SAC - short acknowledge ($E5)
Where $XX stands for a number in hexadecimal formatting.

12

2.4.2 EPSNET communication services

The EPSNET network provides a set of communication services divided into two groups — system
communication services and public communication services. In this section, we will focus on a subset
of the public communication services that are essential for this project. This section is based on
implementation details from [25].

CONNECT

The beginning of the communication, bound to communication structures initialization.

[SD1] DA [SA | FC |[FCS| ED |

Figure 2.6 — The structure of CONNECT message [25].

FC = $49 or $69

[SD1[DA | SA | FC |FCS] ED |

Figure 2.7 — The structure of CONNECT reply [25].

FC = $00
IDENT
Service used for gathering data and information about the connected system.

[SD1] DA | SA [FC [FCS] ED |

Figure 2.8 — The structure of IDENT message [25].

FC = $4E or $6E
[SD2| LE |LER|SD2R| DA | SA | FC | DATA... [FCS | ED |

Figure 2.9 — The structure of IDENT reply [25].
FC = $00
DATA includes lengths and values of the identification string of the central unit, implementation
protocol sign, structure version string and software version string.
GETSW
This service reads the status word.

[SDZ | LE |LER|SD2R| DA | SA | FC | $0A |FCS| ED |

Figure 2.10 — The structure of GETSW message [25].

FC = $4C or $6C
[sD2]| LE |LER|SD2R| DA | SA | FC |[SW, [SWu|FCS] ED |

Figure 2.11 — The structure of GETSW reply [25].

FC = $08
SW fields contain low and high byte of the status word, which includes indications of errors and

system configuration.

13

READN
Service is used for reading data from the register memory.

[SD2[LE [LER[SD2R| DA | SA | FC | $0B | TR1 [IR1, [IR, | LR1 ..

... TRn[IRn_[IRny|LRn [FCS| ED |

Figure 2.12 — The structure of READN message [25].

FC = $4C or $6C
TR defines the register, from which the data should be read.
$00 for X registers
$01 for Y registers
$02 for S registers
$03 — $05 for R registers
$80 and above for DataBox memory
IR fields stand for low and high byte of the first read register index.
LR is the count of read registers.

|sD2| LE |[LER|SD2R| DA | SA [FC | DATAR{1 | .. | DATARn |[FCs| ED |
Figure 2.13 — The structure of READN reply [25].

FC =$08
DATAR fields contain the read values.
WRITEN
This service is used for writing data into the register memory.

[SD2| LE [LER[SD2R| DA | SA [FC [$0C [TW1[IW1, [IW1,[LW1| DATAW1 |.

.| TWn[IWn,[IWny|LWn| DATAWn [FCS] ED |

Figure 2.14 — The structure of WRITEN message [25].

FC =$43 or $63

TW, IW, LW and DATAW fields correspond to the TR, IR, LR and DATAR fields of the READN

service.

The WRITEN reply message only consists of SAC.

14

READB
Service used for reading single bits from register memory.

[SD2[LE [LER[SD2R| DA [SA | FC | $0F | TR1]IR1, |IR1, | BR1 ..
.| TRn[IRn,[IRn,[BRn[FCS [ED |

Figure 2.15 — The structure of READB message [25].
FC = $4C or $6C
TR and IR fields correspond to the TR and IR fields of the READN service.
BR fields include the index of the read bit (0 up to 7).
|SD2 | LE |LER [SD2R| DA | SA | FC [BITR1] |BITRn|FCS | ED |

Figure 2.16 — The structure of READB reply [25].

FC = $08

BITR fields contain the values of read bits converted to bytes according to the pattern:
0=$00
1=8$FF

WRITEB

Service used to write bits into register memory.

[SD2[LE [LER[SD2R[DA [SA | FC | $10 [TWA [IW1,[IW1,[BWA]...
.| TWn[IWn,[IWn,[BWn[FCS| ED |

Figure 2.17 — The structure of WRITEB message [25].

FC = $43 or $63
TW and IW fields correspond to the TR and IR fields of the READN service.
BW fields stand for the index of the written bit and its value:
For writing value 0 — $00 up to $07 (index O to 7 within the register byte)
For writing value 1 — $80 up to $87 (index 0 to 7 within the register byte)
The WRITEB reply message only consists of SAC.
Other public or system services are not implemented in this project as they are not needed for its
functionality. These include services for destructive read and write operations (READBD, READND
and WANDRND) and others.

15

2.4.3 The iMM multimedia extension

The INELS Multimedia extension provides even more functionality to INELS systems. It is based on a
linux machine, which is running the actual iMM server. This server can directly communicate with
the iNELS central unit and control attached devices, but also provides many multimedia functions.
Among these, the iIMM can serve as a central storage for music and video files; it provides the
possibility to control iNELS system using a TV screen and a special remote controller. Further, one
satellite receiver can be shared for all zones. It supports IP cameras, including the record and remote
control features. Also third party devices can be controlled, such as Miele [26] devices or air
conditioning and energy consumption can be monitored. Other PCs or mobile phones can than
connect to the iMM server using XML-RPC protocol and control other devices using the procedures

offered by the server.

MULTIMEDIALNI NASTAVBA

Audiozora | 2 | PC/Notebook | |iNElSTouchtsblst| | Kamera Matac: ar‘ Kiimatizace

o AR -
nternat e Switch i Satefit
o ' L Lo '
SBERNICOVY | ok v (e . BEZDRATOVY
SYSTEM ——~ EANTER |) SYSTEM
tréini jedrotka = tykova jednotka
| -l
1] H S %

Dotykova jednotia Hissova jednotka Reguistor tepioty Kii 8 ovy wpin
] P ! S Z
— —_
e — —
-
— o N mie "
dkandlovy vypinaé GEM Komurskator o Bezdratovs z3suvk pinaci sktor tmivaci a
! ! ? S = Z
— —
[— =
!!’ i (A nie

Strnivaci aktor Roletovy aktor Bezpeé. kigvesnice Roletovy aktor

Figure 2.18 — The iMM multimedia extension [].

16

244 The iMM server and XML-RPC protocol

For the communication between iMM server and other clients, the XML-RPC [14] protocol is used.
This protocol is actually a set of rules and implementations that allow software written in various
languages and various operating systems to perform remote procedure calls over the Internet. The
protocol uses HTTP as the transport protocol and XML for encoding the messages. This protocol
should be as simple as possible, but at the same time should allow transfers of very complex data
structures.

The iMM server provides several methods that can be used by the client devices. The most
basic is the ping method, which is called without parameters and return True value if connection is
successful. For obtaining the state of iINELS devices, the read method is used. This method accepts
array of string values representing names of required devices and returns pairs of values representing
the name of the device and its value. For setting values for devices, the writeValues method is used,
supplying an object with key-value pairs, where key is the device’s name and value is the value to be
set, as a parameter.

Probably the richest method set is provided for multimedia. These include methods such as
getPlayersList, getVolume, setVolume, playlfPaused, pause, stop, jumpFf, jumpRw, repeat, shuffle
and others. These methods usually require IP address of the station as a parameter and for certain
methods, also the type of station is required. The type of station is represented by a number:

0 - Audio client

1 - Audio squeezebox

2 - Video client

3 - Photo client

Other method sets include methods for energy manager readings such as the
eManTotalSumsAndPrices, eManTodaySumsAndPrices or eManWeekSumsAndPrices. These methods
are discussed within the extensions of our application in the Energy manager section. The rest of
methods include methods for obtaining configuration data, Miele device information and methods for
working with IP cameras.

For our project, we will, use the XML-RPC.NET library [14]which is described later in the text.

17

2.4.5 Public server and configuration

The iNELS system can be configured using two ways. If there is an iMM server present within the
network, it can be configured by supplying the configuration files and editing them. However, if iMM
server is not present within the configuration, public server can be used for configuration. These
servers provide a web-based interface, which enables the user to modify both configuration files,
which are discussed in the next section. The configuration consists of rooms, which contain certain
devices. A room can, for example, include various lights and lamps, blinds and other devices.

For the multimedia extension, zones are introduced. Each zone represents a single multimedia
device such as a television or audio player. Multiple zones can be assigned to a room. Air

conditioning and energy modules can also be present based on the configuration.

IMM Control Center / Configuration

ver. imme=2 467

Configuration C Rooms Uploads Downloads Manual

Edit export.pub

UserBits R B 17112 UBINT PUB_INGUT e
aystem AG1_ALARH R B 17146 .0 BOOL PUB_INGOT

system AG1 LOCKED B B 17148 .1 BOOL PUB_INGOT

system_AG1_LOCKING R B 17148 .2 BOOL FUB_INOUT

system_AGZ_ALARK R B 17181 .0 BOOL FUB_INGUT

aystem AGI LOCKED R B 197161 .1 BOOL PUB_INOOT

system AGZ LOCKING R B 17181 .2 BOOL PUB_INOOT

system AG3_ALARK R B 17214 .0 BOOL PUE_INGUT

system AG3 LOCKED R B 17214 .1 BOOL PUD_INOUT

aystem AGY _LOCKING B B 17214 .2 BOOL PUB_INOOT

syscem AC4_ALARN R B 17247 .0 BOOL PUE_INOUT

system AG4_LOCKED R B 17247 .1 BOOL FUB_INOOT

system_AG4_LOCKING R B 17247 .2 DOOL PUD_INOUT

aystem AGS_ALARM R B 172680 .0 BOOL FUB_INOUT

system ADS_LOCKED B B 17280 .1 BOOL PUE_INOUT

system AGS_LOCKING R B 17280 .2 BOOL PUB_INOOT

system kG6 ALARN R B 17313 .0 BOOL PUB_INGUT

aystem AGE_LOCKED R B 17313 .1 BOOL PUB_INCUT

system ACS_LOCKING R B 17313 .2 BOOL PUB_INOUT w
system AG7 ALARN R E 17346 .0 BOOL PUE INGUT

Ulpdate]

Figure 2.19 — The iMM Control Center configuration interface [19].

18

Export.pub

The export.pub configuration file contains definitions for all INELS devices, which are present. Each
device can be present in multiple forms, because its actions can be included as well. However, in our
application, we will only use devices defined without any suffixes such as _ON, OFF or _TRIG. The
structure of each line is fixed and is described below.

Inels_item REG CF ADDR B TYPE PUB_INOUT
Figure 2.20 — Formatting of export.pub.

Inels_item — item name generated by IDM

REG — defines type of register (X, Y, S, R values)

CF — compatibility field (B, F values)

ADDR - address of the register

.B — position of the bit within register for values of type BOOL

TYPE — type of the variable (REAL, BOOL, BYTE, UINT, UDINT, ...)
PUB_INOUT - specifies input or output (PUB_IN, PUB_OUT, PUB_INOUT values)

da22 r= stmivana zasuvka lampa ON E B 18840 .1 BOOL PUE INOUT

da2? r=s stmivana zasuvka lampa OFF R B 18840 .2 BOOL PUB INOUT

da22 r=s stmivana zasuvka lampa R F 18875 REAL PUE_TINOUT

state_da22 rs stmivane osvetleni halogeny ¥ F 12 REAL PUE OUT

da22 r= stmivane osvetleni halogeny ON R B 18323 .1 BOOL PFUE INOUT
da22 rs stmivane osvetleni halogeny OFF R B 18323 .2 BOOL PUE_INOUT
da22 rs_stmivane osvetleni halogeny R F 18362 REAL PFUE_INCUT
da22 rs TERM X F 7 REAL PUB INOUT

sa04 rs 1 SW1 X B 11 .0 BOOL PUS_INOUT
5204 rs 1 SW2 X B 11 .1 BOOL PUB_INGCUT
5304 rs 1 SW3 X B 11 .2 BOOL PUS_INGCUT
sa04 rs 1 SW4 X B 11 .3 BOOL PUS_INGCUT

state_sal4 rs 1 roleta nahoru ¥ E 16 .0 BOOL PUE_OUT
za04_rs_1 roleta nahorua OM R B 13066 .0 BOOL PUE_INOUT
2al4 r= 1 roleta nahoru OFF R B 13066 .1 BOOL FUE INOUT
sa04_rs_ 1 roleta nahoru TRIG R B 13066 .2 BOOL PUE_INCUT
zal04 r=s_1 roleta nahoru R B 13076 .0 BOOL PUE_INCUT
state =304 r=2 1 roleta dolu Y B 16 .1 BOOL PUE OUT

al4 r= 1 roleta dolu ON R B 15120 .0 EBOOL PUE_ INOUT
2al04_r=2 1 roleta dolu OFF R E 15120 .1 BOOL FUE_INOUT
sa04 rs 1 roleta dolu TRIG R B 19120 .2 BOOL PUB_TNOUT
sa04 r3 1 roleta dolu R B 19130 .0 BOOL PUE_ INOUT

Figure 2.21 - Sample of export.pub configuration file.

19

Rooms.cfg

The rooms.cfg configuration file contains structured information about iNELS devices, which belong
to specific rooms. Each room element is listed under the root rooms element and contains the name of
the room and also devices. There are various types of devices, such as conditioning, garage, gate,
lamps, lights, zones, scenes or shutters. Each of these has specific attributes, but there are some that
are common to all of them. The most important attribute is the inels, which identifies the device
within export.pub configuration file. Each device also contains its name, which represents it within
our application and also column and row in which it should be displayed. The rest is specific and

varies across different devices.

<V1——<?xml werzion="1.0" encoding="utf-8" 2>-->
<Irooms>
<room name="Room 1">

<thermals>
<item inels="Thermo_ sensor SA2 02B" placement="indoor">Teplota</item>
<item inels="Thermo_sensor WSB40" placement="outdoor">Teplota</item>

</thermals>

<SCEenes>
<item column="0" dev_ O0="ewvnt Zapnout_ wvsechny svetla" row="5"»5vétla ON</item>
<item column="1" dewv_ O0="ewvnt Vypnout_vsechny svecla"” row="5">5vétla OFF</item>
<item column="2" dev O="Kontrolka termchlavice OFF" dev_1="ewvnt Vypnout vsechny sve

</=scenes>

<ZOones>
<item audioc="1" wideo="1">VIDEQ ZONE</item:>
<item audic="1" wideo="0">AUDIC ZONE</item>

</zones>

<lights>
<item column="0" inels="Halogenova =zarovka 1" read only="no" row="0":>Halogen 1</ite
<item column="1" inelz="Halogenova =zarovka 2" read only="no" row="0">Halogen 2<fite
<item column="3" inels="Zarivka" read only="no" row="0">Zafivka</item>

</lights>

<lamps>
<item column="2" inels="Svetlo na zdi nalevo" read only="nao" row="0">kuchyn</itemn>

Figure 2.22 - Sample of rooms.cfg configuration file

20

3 Windows Phone platform

In this chapter, we will describe the Windows Phone platform, focusing on the latest version of this
platform — the Windows Phone 8. We will describe main concepts of this platform, as well as the
most important features for this project. This chapter will also look into some of the provided APIs of
Windows Phone platform and describe the development process together with publishing applications
to the Windows Phone Store.

Windows phone platform is a relatively new mobile phone platform. It is a successor to the
Windows Mobile platform, which was widely used between the years 2000 to 2010. Windows Phone,
released in November 2010, is a complete makeover of the mobile platform in terms of design,
structure and target user group. Windows Phone platform is not backward compatible with Windows
Mobile, it is a modern mobile operating system, primarily controlled by finger touch gestures,
opposite to the stylus touch input for Windows Mobile, and is targeted at wide public as well as
enterprise market.

In October 2012, the new Windows Phone 8 platform was introduced, again mostly restarting
the ecosystem as it is not compatible with Windows Phone 7 devices. Most of the Windows Phone 7
applications may be converted for the new version though.

Although the Windows Phone platform is younger than iOS or Android platforms and there are
not as many applications available [17], Windows Phone seems to be a progressive platform, which is

especially appreciated for its speed as well as overall user experience.

21

3.1 Reference devices

As a reference devices, on which the application will be developed and tested, the HTC
Windows Phone 8S and Nokia Lumia 920 were chosen. Both these devices run Windows Phone 8
operating system, but they were chosen due to different specifications, so that the application could be
tested on different hardware. The HTC features 4 inch display with resolution of 800x480 pixels. It is
powered by dual-core 1 GHz processor with 512 MB of RAM and has 4 GB of local storage
expandable by MicroSD cards (memory cards cannot be used for installing applications as for now)
[22]. The Nokia Lumia 920 comes from the top spectrum of Windows Phone 8 devices. It features 4.5
inch display with 1280x768 pixel resolution, has 1.5 GHz dual-core processor and 1 GB RAM. Its
internal storage is 32 GB, but non-expandable [21]. The Nokia Lumia 920 also supports Near Field

Communication (NFC).

.-‘..I.
HERE City Lens
& &3
v f‘;

L™

e
=

Figure 3.1 — The HTC Windows Phone 8S [22] and Nokia Lumia 920 [21].

22

3.2 New Windows Phone features

From the users’ prospective, Windows Phone 8 adds many new features to the Windows Phone
ecosystem. Even though most of these features are interesting, we will focus only on those that we
can profit from in this project.

As first feature to come to Windows Phone 8 is the ability to use more advanced hardware such
as multicore processors. Even though this project is not aiming at implementing a demanding
application, it will be useful in later stages of the application’s lifecycle, where additional
functionality like IP camera control will be added.

Additional feature is the NFC (Near Field Communication) support. We might benefit from
this technology later, as it can be used to transfer the configuration data for the application. This
would enable the user not to use a computer or other technology for transferring these into the device.

Other features extend the functionality of networking using Sockets[13]. This will also be
useful in the later stages, as it permits listening and consequently establishing a connection, which
was not initiated from the phone itself.

File and URI associations [13] will be useful for the configuration data as well. It provides the
possibility to associate and application with specific extension. So if the configuration file is sent via
email for instance, we can directly launch our application and load new iNELS [19] configuration.

Extended voice recognition and speech support will also be beneficial for our application’s

extension, as it greatly improved the way user can communicate with the application.

23

3.3 Architecture

Windows Phone 8 platform is no longer based on the CE (Windows Embedded Compact) architecture,
but is based on the Windows NT kernel, like Windows 8. Also, starting with Windows Phone 8, the
development for Windows Phone using Windows Phone API is now more flexible in terms of
languages and technologies that can be used. The Windows Phone API consists of three parts
available for development: the managed .NET framework, Windows Phone runtime, which provides
the possibility to use C++ native programming and also other low-level components such as
Direct3D for gaming [13].

WINDOWS PHONE API

Direct3D, XAudio?2,

B e ME, WASAPI,

SUNSIE Win32 & COM

MAMNAGED MAMNAGED & NATIVE MATIVE
Figure 3.2 — The Windows Phone API [13].

In this project, we will make use of the managed API, as this project will be mostly based on

.NET framework and the programming language chosen is C#.

24

3.4 Navigation

Windows Phone applications are not window-based like desktop applications. They are more like a
web application, i.e. page-based. This is due to a limiting factor of the screen size and resolution and
also touch —based controlling of the phone, where windows would not be user friendly and their non-
content features would occupy too much space.

As the applications are page-base, the navigation through them is very similar to the one used
on web pages. Upon starting, the application navigates to App.xaml page. This page hold application-
wide resources and is bound to App.xaml.cs code file, which includes most of the global objects of the
applications, as well as code for handling global lifecycle events of the application. [5]

Navigating between other pages can be done using NavigationService.Navigate method, which
is supplied with the URI (Uniform Resource Identifier) of the target page. Parameters can also be
appended to the base address, just like in web applications. The Navigate method will always create a
new instance of the requested page. Visited pages are stored within a page stack. Every time a new
page is navigated to, it is stored within the page stack and every time the back button is pressed or
NavigationService.GoBack method is called, the top page is removed. If there are no more pages
within the stack and back button is pressed, the application is navigated from. The concept of using
back button to navigate back instead of using Navigate method again to the previous page is
important as otherwise the page stack can be filled with circular page navigation and the user might
be confused when using the back button. [3]

The back button function can be overridden and navigating to the previous page canceled by
the developer. However, in order to publish the application and get it through the certification
process, the function must be reasonable. For example, the back button press might be used for hiding

a dialog, but not for a custom action such as taking a picture or starting calculations. [13]

25

3.5 Application life cycle

In Windows Phone, there can be multiple applications active, but only one is presented to the user in
foreground. This application is the only one, which is able to navigate to a different page and present
it to the user. Also only this presented page is active at that time. When pressing the Start button, user
is navigated from the application, also, as mentioned before, upon pressing the Back button, user
might be navigated to the previous application if there are no more pages in current application’s
page stack. After returning to the application, user should be navigated to the place, where he left off.
Applications can therefore be in certain states to give an illusion of multitasking. The concept
in is called Tombstoning. When the application is in the foreground, it is in a Running state. After an
interruption such as navigating away or invoking a Launcher or Chooser, the application moves to
Deactivated state, where is can save its data, and subsequently to Dormant state, in which the
application is not running and no processing is performed. Based on the available memory and
number of Dormant applications, the operating system can fully terminate the application and put it
to the Suspended (or Tombstones) state. When activating the application again from Dormant, the
developer does not have to do anything, as the operating system resumes the state automatically. [3]

App Interrupted

User should not

Running

even notice app was | by
resumed
Activated =~
Restarting App
- Read state | o
- Continue where
you left off User Reactives App

- If dormant, restarts
- If suspanded, restars |
[with state)

Suspended

b
0S Kills App
- Mamory unlcaded |
- But state presened

- Usar pressed search
- Usar pressed start
- Phone call started
- Nofification arived

. Being Inactivated
Deactivated |- Save stats
- App may be unloaded
Dormant
App Stopped

- Thread suspended
- Still in memaory
- 08 may suspend If necessary

Figure 3.3 — The application lifecycle diagram [3].

26

Although the applications go through multiple states and data is being saved and loaded, the
user should have the feeling as if the application was running in background: i.e. his position and state
of game or visual elements must be preserved. Events are being provided to handle the transitions
between states and also between pages. The most important are OnNavigatedTo/OnNavigatedFrom
and Activated/Deactivated methods. These methods can be populated with code for saving state and
data to achieve multitasking-like behavior for the user. The benefit of such approach is much better
responsiveness and smoothness of in-foreground running applications as well as better battery life. [5]

If there is an interruption to the application such as an incoming phone call, instead of
NavigatedFrom and Deactivated, the Obscured event is raised. The application continues running in
the foreground, but is covered with a higher priority user interface, such as the phone call interface. In
the Obscured event handler, the application may, for example, pause a game when relevant, since the

user cannot see the applications content until the phone call is ended.

27

3.6 Multitasking

Although Windows Phone allows only one application to run in the foreground to maximize battery
life and the overall performance of the system, there are some techniques that help the application
perform certain actions in the background.

3.6.1 Background agents

Background agents in Windows Phone are parts of the application, which can run in the background
without presenting any user interface. Background agents have access to some application’s data,
such as the Isolated storage, but also have many restrictions on the functionality they can provide.
Background agents cannot use APIs like camera, radio, sensors, tasks, clipboard and others and they
have limited memory available. Further, developer cannot precisely decide, when the background
agent will run, as this is partially controlled by the operating system itself.

Periodic Background Agent

The periodic background agent is a background agent, which runs some code at most every 30
minutes. Another restriction to this kind of agents is the maximum running time of 25 seconds. If
there are some other tasks, the background processing can be aligned, so the 30-minute period may
vary. Also, if battery saver is enabled or there are more tasks than is the limit for a certain device, the
background agent may not be run at all. [3]

Resource Intensive Background Agent

The resource-intensive background agent is can be used for longer lasting background tasks (up to 10
minutes), such as intensive synchronization tasks, but the system must meet tight conditions for
executing it. The device must have external power source attached and battery must be over 90%, the
device must be connected via non-cellular connection and must have locked screen. Also, no calls can
be active during the execution. Other form of background execution is also Background File Transfer

service or Background Audio.

3.6.2 Continuous background execution

The continuous background execution is another multitasking model since Windows Phone 8.
This kind of execution is suitable for applications of navigation or run-tracker type. If a user navigates
forward from this application, the application can still perform tasks in the background and keep the
user informed using notifications or voice instructions. The system then balances resources for the
application that runs in foreground and those that run in background, but in extreme conditions the
foreground application is always prioritized. The user has an option to block applications from

running in background. [5]

28

3.7 Graphical User Interface

The Windows Phone graphical user interface is very specific and is based on several principles. In
order for the app to fit Windows Phone look and feel, it should stick to those principles. One of the
most basic and innovative approach is the light feeling of all applications. Applications should focus
on the content rather than on many graphical artifacts. The graphical user interface should be as
simple as possible, without many sections on one screen, so the user does not get distracted. There
should always be only one thing that is important and should be focused at in the given context. [1]

Windows Phone provides many controls that are customized so that the mobile user experience
is as good as possible using touch navigation without stylus or keyboard. In this chapter, we will only
focus on those that are very specific to the Windows Phone ecosystem and are representing the
specific look and feel of this platform.

In order for all application to easily fit within the user interface, Windows Phone platform
provides several fonts and styles that can be used as well as simple animations that should help the
application visual responsiveness and fluidity. These animations can be used for elements as well as

for transitions between pages.

29

3.7.1 Pivot and Panorama controls

Whenever there is a need to present large amounts of data, mobile applications are limited by
their dimensions. Traditionally, scrolling is used on both desktop and web applications, or data is
separated into different pages. Windows Phone has two built-in controls that should help present
larger collections of data to the user. These controls are the Pivot control and the Panorama control.
Both these controls are useful for organizing multiple components horizontally, so user can reveal
extra content by swiping left or right. The main advantage of these controls can be taken when using
the phone in portrait mode, since in landscape mode, there is not much space left for the content
itself. [4]

The Pivot control is perfect for situations where a lot of information of the same type is
presented. An example for such situation is the email client, where messages need to be filtered
according to whether they belong to inbox, sent or archived folders. This could also be achieved using
multiple pages, but the navigation would then become too complex. The Pivot control provides an
easy solution for filtering large datasets and also and easy way of swiping between these filters.

item1 item?2 ite item2 item3 it item3

This is a simple sample for
the pivot control addint text.

this
item
has

a
short
list
of
strngs
that
you
can
scroll
up

ale

sSome generic

You can put any content you
want here...

Figure 3.4 — The Pivot control [13].

The Panorama control is similar to the Pivot control, but is more media-oriented and also
much more attractive looking. It is especially useful for presenting data of different kind on a single
page. The Panorama control is basically a large canvas which can be scrolled horizontally and
positioning its parts into the visible screen area. Panorama-based pages are usually used for main
page of the application as they can present recent information as well as provide top-level access to

deeply-placed pages of the application. [3]

30

VISIBLE SCREEN AREA

people

what's new recent together

s -
o
)

§ s |
.)

- £ p

- A Groups aﬁl
Jenny Liu T X [f‘ April Meyer

Brian Goldstein
-

-
‘ Charlotte Weiss
.

T R |

PANORAMA PANELS

Figure 3.5 — The Panorama control [13].

3.7.2 LongListSelector control

This is a newly introduced control to Windows Phone 8, which provides a unified way of
displaying list containing large numbers of items. For large lists, users had to scroll for a long time
until they reached the relevant section. LongListSelector control provides a matrix of shortcuts that
can be invoked upon clicking a group header item. List can be sorted by starting letters or by groups.

Group Header 5

Group Header 7

Figure 3.6 — The LongL.istSelector control [13].

31

3.7.3 Application bar

Since Windows Phone hardware does not provide any context button, menus can be placed in
pages using the Application bar control. This control can be displayed minimized so that it does not
take too much space, or can be viewed showing the menu buttons. Upon expanding the menu using
the three-dot handle, more menu items can be viewed. The Application bar control is an essential part

of most applications, since it enables the developer to further unify the look and feel of his application

®...

delete help settings

with the system. [3]

menu item 1

menu item 2

menu item 3

Figure 3.7 — Maximized application bar with menu items [13].

3.7.4 Storyboard

Storyboard is a concept for creating animations in Windows Phone applications. This concept
provides an easy way of animating various properties of visual elements. There are four kinds of data
that can be animated: Color, Point, object and double value. The DoubleAnimation is the most used
as it permits to animate properties such as Width, Height or Opacity. [5]

The Storyboard object may be declared within XAML code and apart from the animation itself,
also target object and its property must be set. For further simplicity, also EasingFunctions are
provided, which help modify the animation not to have linear behavior, but to be more realistic for

certain scenarios like sliding in or out. [5]

32

3.8 Resources

Applications in Windows Phone can use resources such as images, media files or fonts. These are
usually referred to as Binary resources. Based on the Build Action, they can be embedded directly
within DLLs as Resources or can be stored within application’s xap file as Content. These resources
can then be accessed using their URIs.

Another type of resources is XAML Resources [5], which represent stored objects such as
brushes or styles. These resources are mostly stored within application’s App.xaml file or inside page
xaml files. Resources are dictionary based, so each resource must have a key under which it can be
accessed. Resources from these dictionaries can be accessed by StaticResource keyword within xaml
definitions, such as:

<TextBlock Text="Sample text” Style="{StaticResource SampleTextBlockStyle}!” />

The resource is then applied upon element creation. When the resource is changed, in order to
have the effect on the target element, the element would need to be updated manually. As resources
can be defined within different resource dictionaries, such as in App.xaml or page’s resources as well
as in any other parent element’s resources, applying the resource means that the most specific i.e.
closest definition will be applied. Together with the possibility to use resources within other resource
definitions, this means that powerful hierarchy of resource definitions can be made, reducing the

amount of duplicate definitions. This behavior is similar to using Cascading Style Sheets.

33

3.9 DataBinding

As Windows Phone is based on latest technologies and modern programming frameworks, it also
provides a way to present data within the user interface using data binding. Instead of handling the
binding between Ul elements (declared in XAML) and the actual objects by hand, there are several
ways of automating the process to a certain degree, the developer might take advantage of.

3.9.1 Binding properties

For the basic scenarios, one can take advantage of the implementing INotifyPropertyChanged within
his class. This approach enables the fields of a class to be bound to a certain Ul element in a way that
when these properties change, the change is propagated to the Ul element.

For this setup to work, the class must implement INotifyPropertyChanged interface, properties
must have public getters and setter and setters must invoke a handler that registered for the public
PropertyChnagedEventHandler event [1]. Within the UI, elements’ properties can use the binding
syntax like:

<TextBox Text="{Binding PropertyName, Mode=TwoWay}” />

Such binding will then make sure that changes are propagated from the class to the Ul as well
as the other way, i.e. by changing the text value of this TextBox, the change will also affect the
property within the respective object.

3.9.2 Binding collections

If collections need to be bound to lists within the user interface, objects must be present in an
IEnumerable collection. By setting ItemsSource property of the respective Ul element such as
ListBox to this collection, the items will be set from it. For dynamic collections, it is advisable to use
the provided ObservableCollection, which implement INotifyCollectionChanged and therefore items
within the Ul lists get dynamically updated. [1]

3.9.3 Converters

As the data sometimes are not represented in the way in which they should be displayed, the
developer may make use of a class implementing the IValueConverter interface and implement
Convert and ConvertBack methods. These can then be used for the conversion between data
representation within the object and the visual representation. The converter must be declared within

page resources to be accessible for visual elements.

34

3.9.4 Model-View-ViewModel approach

The MVVM (Model-View-ViewModel) is an evolution from MVC (Model-View Controller) pattern
used extensively in Windows Phone applications. This pattern enables the developer to separate
design and coding of the application. The View is represented by XAML files within the project and
consists of user interface description. The Model is usually a collection of data objects or database
data and is bound to the Ul using ViewModel, which usually instantiates the Model and provides the
View with a data context [1]. The VMMV approach is widely used in templates providing Pivot or

Panorama pages.

35

3.10 Data storage

Windows Phone comes with a few concepts for storing and accessing data by the application. Since
full system access to file storage is not supported, these scenarios are specific for target use cases.

3.10.1 Local folder (Isolated storage)

The concept for storing persistent data in Windows Phone application used to be called Isolated
Storage, but as this name is still widely used [5], we will call reference local storage as Isolated
Storage as well. Isolated Storage is a dedicated place for the application, which can only be used by
this specific application. This approach has its advantage of being secure, so that no other application
or the user can harm or steal data from the application, however, on the other hand prevents
applications from sharing data this way. Also, applications are not allowed to directly access the
phone’s file system. In the Isolated Storage, application can store data in two ways: as a file or as a
setting. The file behaves like a standard stream, so can be easily written or read using standard
approaches.

The other possibility is to use Isolated Storage settings. This is a dictionary of key-value pairs
that can be directly accessed using IsolatedStorageSettings class. If there are more complicated
objects to be saved, the developer needs to make sure that they can be serialized.

The Isolated Storage also permits creating local database using LINQ to SQL. Relational data
can then be accessed using an object-oriented approach. Proxy class needs to be implemented in this

scenario. [5]

3.10.2 Other data storage locations

Applications can also access their installation folder; however, this access is read-only so no data can
be stored within this folder. This is useful for bundled data that come directly with the application’s
installation or update.

Since Windows Phone 8 supports SD cards, data can also be accessed in those locations.
However, the access is again very limited and read-only. In addition, only file types that are explicitly
registered by the application can be accessed from this location. These restrictions are a huge
limitation of current platform release, as applications’ data cannot be saved on SD cards, which limits
devices with small internal memory capacity (but with CD card slot) to use applications such as
navigation with large storage requirements.

The last data storage type is the Media library. This is a virtual storage container as media files
can be stored both in the internal memory and SD card. However, users have no control over the
location of media files. Since version 8, applications are allowed also to save songs within the media

library [13]. Saving photos was available also in earlier versions of Windows Phone.

36

3.11 Tiles

Windows Phone platform introduced a new concept of tiles. The tiles are one of the key features,
which distinguish Windows Phone from other platforms. Apart from having applications listed
alphabetically, users can also create tiles from these applications and pin them to the Start screen.
Tiles can be regarded to be a mix of a shortcut and a widget. They can be of three sizes and also three
types, which will be discussed later. The concept of tiles is to allow users to customize their Start
screen by arranging frequently used applications and also inform them about their state, as live tiles
can provide pieces of information. Comparing them to widgets, they might not be as universal, but
they have many advantages. Firstly, they have unified look and field, which is consistent with the user
interface of the system, and, most importantly, refreshing images and other information within these
tiles is controlled by the system, so it does not have negative impact on the speed and battery of the
device [7].

All tiles types of tiles can be of three sizes, which the user can change on the Start screen:
small, medium and wide. The medium sized tile takes place of 2 times 2 small tiles and the wide takes
place as two medium sized tiles next to each other. The small tile is never dynamic, only can show a

picture and numeric information.

Lorem ipsum Lorem ipsum dolor sit amet, con-
dolor sit amet, sectetuer adipiscing elit, sed diam
consectetuer nonummy nibh euismod tincidunt ut
adipiscing elit, se

9+

Filtrinsict
s

Lorem ipsum dolor sit

e 10 Amet consectetuer adipiscing elit
@ 10 sed do eiusmod tempor omnus
Contoso Contoso e 1 0

Figure 3.8 — Type of tiles (Flip, Iconic and Cyclic) [13].

Flip tiles provide front and back face and flip randomly in intervals around 6 seconds. The
front face has background image specified for all three sizes, title and count indicator, while the back
face can contain title and text content. Cyclic tiles provide a possibility to show a series of images
between which the tile randomly cycles by scrolling. The last type of tiles is the Iconic tile. These

tiles only you two colors — white for the icon and text and the system theme color for its background.

37

Iconic tiles provide a place for icon and a counter for the small tile, extra title for the medium tile and

another three content place holders for the wide tile.

3.11.1 Secondary tiles

Apart from the primary tile, an application may provide so called Secondary tiles. These tiles can be
generated directly within the application and users can then pin them to their Start screen. Such tiles
can represent a subsection of the application’s content, such as a category in news application, a
contact in social network application or a room or specific device in a home control application.
Secondary tiles can be of any of kind similarly to the primary tiles. Secondary tiles can be unpinned
programmatically, however, the standard approach is to let user unpin them from the Start screen

manually [7].

38

3.12 Push notifications

Windows Phone devices can receive messages from the internet using push notifications. Push
notifications can update a Live tile or can send data to a running application. In order to use this
feature, there must be an accessible web server provided by the developer. The phone first registers
with MPNS (Microsoft Push Notification Service) and obtains a unique URL, which can be used to
send notifications to this particular device. Afterwards, the phone contacts the developer’s server with
running service and passes its URL. From now on, the server can send messages using the URL

provided and MPNS will resend it as a push notification if possible to contact the phone.

Phone
Naotify Your Service with Push URL
Your App
Your Web
Register Channel Service
o Get Push URL
\’- Push Client || Pushes bPhone Mlcroslofl sIPush Send Push Message
- | Notification

| (Partof 0S) ,l adeies

Figure 3.9 — The Push notification scheme [3].

39

Raw notifications are messages, which are sent directly to the active application. If the target
application is not active, notifications are discarded. Raw notifications are simple POST messages
sent to the MPNS. After contacting the MPNS, a response is obtained with the status of the
notification, the status of the phone connection and subscription status providing information whether
the phone is still subscribed to the service.

Toast notifications are messages simple messages appearing on the top of the phone’s screen.
They are only delivered when application is not active and upon tapping them, user launches the
respective application.

= 12:08

#® SendToast TestMessage

e

Push Motification Sample

Toast Notification - Page 2

.".41'..'|-:_;|.|r_|_'~|:| hiere from Toast Notihcatson

Figure 3.10 — Toast notification [13].

Live Tiles is the last usage of push notifications. It allows sending messages containing an
XML document for Live Tiles on the start screen. The XML structure is strictly defined and provides

the tile with update information such as title, count or background image. [1]

40

3.13 Alarms and reminders

The Windows Phone platform supports two ways of alerting user from within an application — alarms
and reminders. Both these features are similar and allow an application to notify user event when not
running. An alarm is a simple notification, which can be set on specific time including a custom
sound to be played. After tapping the alarm pop-up the user is redirected to the application, but only
to the initial page, as if the application was launched from the application list. [3]

The reminder, on the other hand, cannot be assigned a custom sound to be played. The default
reminder sound is played instead. The biggest advantage of the reminder though is that after tapping

it, the user can be redirected to any page within the application and also query string can be passed.

CALENDAR
Alarm Review Board Meeting

Go to bed. Conference Room B 120f4»
June 4, 2009 4:30-6:30 PM

Figure 3.11 — The Alarm and Reminder notifications [13].

41

3.14 Speech

Windows Phone 8 provides an expanded set of features to support voice control of both the phone
system and applications. Voice commands can be used either by directly launching the Global Speech
Experience by holding the start button and saying the command, or can be invoked within a specific
application.

3.14.1 Voice commands

This mode allows users to use voice commands to start an application, but since Windows Phone 8,
also to perform actions handled by an application, such as playing a specific song, inserting new tasks
or even to perform a completely custom behavior. [1]

To register voice commands, the Voice Command Definition file must be registered by the
application. This file describes complete format of the expected voice commands and also the
respective answers and target pages. The default template for Voice Command Definition file consists
of CommandSet sections, which describe voice commands for given culture. Phone’s speech culture
must match these cultures and for each culture, separate CommandSet must be present [1].

Each Command within the CommandSet can consist of an example, which is displayed to the
user, the sentence or sentences with optional words and tokens from PhraseList which the phone
should listen for, the feedback the phone gives back and the target to navigate to, including optional

parameters. An example of a simple Voice Command Definition file might look like:

<?wml version="1.8" encoding="utf-8"7?:

<VolceCommands xmlns="http://schemas.microsoft.com/voicecommands/1.8">
<CommandSet xml:lang="en-GB" Name="RoomsCommands™:
<CommandPrefix>*Home Control</CommandPrefix:
<Ewxample> turn on </Example:

<Command Name="TurnOn":
<{Example> turn on </Example:
<ListenFor: [and] turn on {device} </ListenFor:

<{Feedback> Turning on {device} ... </Feedback:
<Navigate Target="RoomsPage.xaml" />
</ Command:

<Phraselist Label="device"»
<Item> one </ITtem>
</PhraselList>
</CommandSets

</ VolceCommandss

Figure 3.12 — The Voice Command Definition file from our application

42

The PhraseList can be dynamically updated in the code to reflect desired set of commands.
This can be done using VoiceCommandSet.UpdatePhraseListAsync method. Once, when the
application is first launched, the Voice Command Definition file must also be initialized using
VoiceCommandService.InstallCommandSetsFromFileAsync method. After the command is
processed, recognized data is sent to the page specified within the Target. The parameters include

voiceCommandName and also reco, which contains whole recognized text.

3.14.2 Speech recognition and Text-to-speech

All speech recognition features can be also used within the application itself. The advantage of using
speech recognition this way is that the developer has higher customization possibilities of both the
design and functionality of speech recognition. For example, small microphone can be used in a
textbox to invoke speech recognition features. Recognizing can be invoked by calling RecognizeAsync
method from SpeechRecognizer class.

“Windows Phone 8 includes support for pre-defined grammars for free-text dictation and web
search, and also supports custom grammars that are authored using the industry-standard Speech
Recognition Grammar Specification (SRGS) Version 1.0.” [13]

Text-to-speech feedback features are available. These can be used by calling SpeakTextAsync
method from SpeechSynthetizer class.

“Your app can speak a simple string of text, or a formatted string defined by the industry-
standard Speech Synthesis Markup Language (SSML) Version 1.0.” [13]

43

3.15 Location

In Windows Phone 8, location and maps APIs are based on Nokia maps platform. This is different
from the previous version of Windows Phone and has many advantages such as easier implementation
and higher performance, as well as richer functionality.

The location in Windows Phone 8 can be determined from various sources such as GPS, Wi-Fi
or cellular radio. The correct device for obtaining the position is determined automatically by the
system based on the required accuracy set in the DesiredAccuracy property of Geolocator object.
This approach helps to keep battery life longer when high accuracy is not vital. When obtaining the
position, the developer may also set maximumAge for the same reason.

Location-tracking applications can also run in background as described in the chapter about
multitasking. This is useful for voice navigation as well as for collecting location data.

Maps in Windows Phone 8 were also enhanced. Applications can use the Map control directly,
which enables displaying maps in the same manner as built-in applications. Both two and three-
dimensional views are available and also different modes can be displayed. Further, this control
supports overlays, so custom data can be displayed above the map itself.

As mentioned in the tasks chapter, there are also tasks available for location and maps. These
include launchers such as MapsTask for searching specified items within current location or
MapsDirectionsTask to get route directions for given destination.

If there is a need for navigation in the application and Tasks are not sufficient for this purpose,
applications can make use of the RouteQuery and MapRoute APIs to obtain driving instructions or

information about a computed route. [1]

44

3.16 Tasks

When users of an application are required to perform a standard task, such as making a phone call to
someone on whose picture they are looking within a custom application, or when they wish to upload
a picture in a custom application, it would be very difficult and sometimes impossible to include such
feature within this application due to the restrictions of the Windows Phone operating system.
However, Windows Phone provides a way, how to achieve such functionality within third-party
applications in a way that it is OS-wide consistent. Developer might make use of Tasks. Tasks are of
two types, Launchers and Choosers and each of them has a slightly different concept of use [3].
When running a task from an application, the currently running application is put into dormant state
and might be tombstoned as described in the chapter about application’s life cycle. This means that
different application is launched and brought to the foreground and when the task is completed, the
calling application is activated again, but user should have the feeling as if he was still within the
calling application all the time. As a subsequence, if the application is terminated during the task by

the system and is not able to restore its state, it will not be made automatically by the system either.

3.16.1 Launchers

The first type of tasks is launchers. These tasks launch selected built-in application such as web
browser or maps and let the user perform the selected task. User can, of course, choose not to perform
any task and return to the calling application.

Examples of these tasks would be: opening a specific link within a browser, showing a location
within maps, sharing statuses on social networks or writing and sending an email message or text

message, search for a specific text, play music, perform a call or search a contact.

3.16.2 Choosers

Choosers are very similar to launchers, but after the task is launched and user performs some action
such as taking a picture with camera, calling application is activated and supplied with data from the
completed task. If the user, however, leaves the task by going to the Start Screen, the application may
never be activated again, so must be prepared for this use case.

Examples of choosers are: obtaining address of a contact selected by the user, get a picture
taken by the user, obtain phone number or email address from a contact selected by the user or save

contact or ringtone to the device.

45

3.17 Globalization and localization

Since Windows Phone now supports many languages and applications are available in many different
countries, globalization and localization play significant role in application development. In Windows
Phone managed applications, most of the functionality is simplified and assisted by the .NET
framework, so developers do not have to create their custom approached [7].

Globalization in applications helps display all data such as numbers, dates or phone numbers in
a way that users from specific region are used to. A concept to help dealing with globalization is
using Culturelnfo objects. These objects can be assigned to CurrentCulture property of current
thread. Instead of hard-coding values such as dates, CurrentCulture can then be used for formatting
date or time values. Globalization also affects currency format and symbol and of course the sort
order of items.

Localization of the application takes globalization to a next level, where all strings are
presented in user’s language. Special attention must be paid to the App bar and application title, as
their localization process is slightly different. The most important is to move all text information from
the code into resource files. Application can be easily modified by copying every string to the
resource file and using a reference to it such as:

{Binding Path=LocalizedResources.ApplicationTitle, Source={StaticResource LocalizedStrings}}

instead of hard-coded text. For localization purposes, every single culture supported by the
application needs to have its own resource file. The App bar can be localized by uncommenting the
BuildLocalizedApplicationBar method call in basic application template’s files. More cultures must
be specified within project’s properties.

With Windows Phone 8, there is the Multilingual App Toolkit. This toolkit helps localizing
application to more languages if standard globalization and localization concept is used. If this
condition is met, the toolkit provides an efficient way of localizing the application into different
cultures, providing user interface for choosing languages, integrating with Visual Studio 2012 and
even providing connection to Microsoft Translator to suggest translations. This feature also permits

machine translations as a starting point for more precise localization. [7]

46

3.18 Network

As Windows Phone devices are almost constantly connected to a network, networking plays a
significant role in most applications. Due to the requirement of responsive user experience, Windows
Phone networking features only support asynchronous calls. This way, event without complex
programming, the user interface stays responsive as network calls are handled in different thread and
cannot therefore lock the interface up.

The basic class for asynchronous networking is the WebClient class. Using the asynchronous
pattern, most asynchronous calls end with the word Async and the events that occur upon finishing the
call end with the word Completed. An example would be the DownloadStringAsync and
DownloadStringCompleted, which allow getting data from a webserver. Other classes that can be
used instead of the WebClient class are HttpWebRequest and HttpWebResponse. Their combination
can be used to take deeper control of the networking calls; however, it is worth noting that these
classes also only support asynchronous calls unlike their desktop equivalents. [3]

As devices can be connected to the network using technologies with very different download
speeds and pricing, Windows Phone provides an API, which can supply information about current
connectivity attributes. The DeviceNetworkInformation class has several useful properties such as
IsNetworkAvailable, IsCellularDataEnabled or IsWifiEnabled. Based on these information,
applications can decide not to download some content, or for example download image previews only
if no Wi-Fi connection is present. [3]

There are also other useful classes such as NetworkinterfaceType, NetworkInterfaceSubType or
NetworklInterfacelnfo, which provide additional information about the network interface, so that the
application can determine the network speed, characteristics or even SSID of a wireless network.
These information can help the application determine not only what data it can download, but also if
the device is present on home cellular network or even home wireless network and perform adequate

actions.

47

3.19 Camera

An application can work with device’s cameras in certain ways. The first approach is using
CameraCaptureTask chooser. Once activated, the built-in camera user interface is launched and upon
taking the picture, it is saved to the camera roll and also returned to the application as a result. This
approach is suitable for most scenarios when a photo needs to be taken. It is both user friendly and
memory efficient [6].

Another approach is using the camera directly. This way, application can directly access the
camera stream for taking both pictures and videos. In Windows Phone 8, there are two sets of APIs —
the PhotoCamera and the PhotoCaptureDevice. The PhotoCaptureDevice API is newly introduced in
Windows Phone 8. It is available for both managed and native applications and is supposed have
better performance in managed applications comparing to PhotoCamera API. [13]

Using these APIs, the application can set camera settings as well as capture the live feed and
work with it. This can be useful for camera like applications or for augmented reality applications.
However, Windows Phone 8 also supports a new concept of using camera within applications called
Lenses. Lenses are applications that can be launched directly from the built-in camera application and
can provide extensions such as filters, instant sharing of pictures or overlaying additional information
on top of the camera preview [13]. However, they are not limited to such functions and could be also

used for interacting with other devices based on the camera image processing.

BUILT-IN CAMERA APP

Tap lens button.

LENS PICKER I

Tap back button.

find more lenses

i i Select lens.

Figure 3.13 — Lenses scheme [13].

48

3.20 Sensors

Multiple types of sensors are supported in Windows Phone. These sensors can be used for obtaining
device’s orientation or even motion. Windows Phone supports accelerometer, compass and gyroscope
sensors, but developers can also make use of the combined motion API [6]. Sensors cannot be used
while applications run in background as mentioned in the multitasking chapter.

The first sensor is the accelerometer. Accelerometer sensor is required to be present in all
Windows Phone devices and it is the basic sensor for determining device’s orientation. The
accelerometer can provide information about orientation in all 3 axes and expresses its readings as a
three-dimensional vector, where each is represented in gravitational units. If the device is put on a flat
surface, the readings will produce -1g in the Z-axis, which represents the gravity force.

Another sensor is the gyroscope. Gyroscope is not required in all devices. This sensor
provides information about device’s orientation is space. The gyroscope returns rotational velocity of
the device in all axes. Last supported sensor is the compass. This sensor is also not essentially part of
each Windows Phone device. The compass sensor provides information about angles between the
device orientation and the Earth’s magnetic field. As this sensor is able to detect changes in magnetic
field around the device, it can also be used for detecting metals to certain extent. It is important to

note that applications must count with the possibility of devices not having this sensor [2].

3.20.1 Combined motion

Since raw sensor data might be difficult to use, developers can make use of the Motion class. This
class handles low level sensor calculations as well as geometrical transformations and presents data in
more ready-to-use format. Applications can than easily use information about device’s movement,
orientation or acceleration without the need to combine different sensors and calculate the data
themselves. Normal motion API uses only accelerometer and compass sensors, while the enhanced
API also adds the gyroscope and is therefore more accurate [2]. However, as mentioned, not all

devices support gyroscope sensors, so the application must be aware of such possibility.

49

3.21 Proximity

In Windows Phone 8, the Near Field Communication (NFC) functionality is based on the proximity
APIs. Using these APIs, developers can include in their apps features such as establishing a
connection to other device by putting devices close to each other or sending and receiving content
from other devices or markers. Not all devices running Windows Phone 8 do support proximity
features, as it is not a required hardware accessory.

“Near Field Communication (NFC) is an international standard for short-range wireless
connectivity that provides intuitive, simple, and safe communication between electronic devices. NFC
is the technology on the phone that makes Proximity scenarios possible. ” [13]

Although NFC might be useful in certain scenarios, it also has its limitations. In order to
communicate, devices must be very close. This range is usually around at maximum around 4
centimeters. Also, the maximum transfer speed is usually in tens of kilobits per second.

Given the abovementioned limitations, there are three possible usage scenarios for proximity in
applications. The first scenario is using proximity for establishing connections via other wireless
technologies such as Wi-Fi or Bluetooth, which provide much higher transfer rates. This scenario
enables users to touch devices, which will then try to use Bluetooth connection if enabled on either
devices; or Wi-Fi connection if both devices are connected to the same infrastructure and can ping
each other. The second scenario is based on using the device as a reader of NFC tags. In this scenario,
when device is moved within a range of such NFC tag, its information can be obtained. The last
scenario is direct communication using NFC technology. This requires both devices to stay within
close range and allows them to exchange messages directly. As states before, the transfer rate is very
limited and is not therefore suitable for multimedia content [13]. However, for simple messages, such
as configuration files in simple strings, this method might be the best choice as it does not require any

further configuration on the devices other than running the application and have NFC enabled.

50

3.22 Windows Phone Store

Windows Phone applications can be uploaded to Windows Phone Store. Windows Phone Store is also
the only official way for other users to obtain applications to their phones. There are also other ways
such as loading apps to developer unlocked phone or company phones, but these are only targeting
limited user groups.

In order to publish application within the Windows Phone Store, there are certain steps and
requirements that will be described below. Firstly, registration within the Windows Phone Dev Center
must be made and annual registration fee of $99 must be paid. This fee is not required for students
enrolled in Microsoft DreamSpark program. After joining the Dev Center, Windows Phone
applications can be submitted for the certification process and if successfully passed, application is
signed and moved to the Windows Phone Store, so that users can download or purchase it. If the
application cannot pass the certification process, failure results are sent back to the developer. It is

worth mentioning that 70 percent of money paid by the user goes to the developer and 30 goes to

Microsoft.
Start
Y
Receive
You Develop Failure
Your App Results
F 3
Y
Submit to
Marketplace
) 4
No
Pass Testing/

Verification?

Yes
k. J
Signed by
Marketplace
Y

Deployed to
Marketplace

h 4
Ready to Purchase

Figure 3.14 — The certification process diagram [3].

51

To ensure that the application passes the certification process, the developer has to make sure
that his application meets certain requirements. The application must be reliable [3], so if the there is
any possible instability, the app can be refused. Also, applications must make efficient use of
resources [3]. If the app should fully discharge the battery because of non-efficient use of sensors, it
might be another reason not to pass the certification process. Another requirement is that applications
must not interfere with the phone functionality [3], meaning that if changing settings or working with
other phone data, user must be notified accordingly. Lastly, applications must be free of malicious
software [3], so it must be safe to use them.

These were general restrictions, but there are also many more rules and restrictions along the
way while publishing the application. For example, the whole package cannot be bigger than 400
MB; also adequate images must be supplied for the application, which are used within the Windows
Phone Store and on the device itself. Applications must have a title and information about version and
technical support. [13]

Also, regarding the application itself, it cannot override or ignore any system notifications,
cannot use forbidden APIs, promote or distribute any content through alternate stores. Also,
applications which are not fully functional or use advertising and music sales through different
channels, other than those provided by Microsoft, will not be accepted. Applications that send user
data without notifying them will break the certification process as well.

It might seem to be very complex to publish the application while complying with all the
rules and it certainly is for more sophisticated designs. However, Microsoft provides well written
guides and also new version of developer tools for Windows Phone makes it much easier to fulfill
those requirements.

One more thing worth mentioning in this context is the concept of trial apps. Although it is
possible to develop both free and paid versions of an application, developers can also develop only
one version and provide the possibility to download the application as trial. Then, within the
application, it is possible to make use of the IsTrial method to check whether user has purchased the

application and is therefore eligible to use extended features. [6]

52

3.23 Development tools

Applications for Windows Phone are developed using the Windows Phone SDK, which includes many
essential tools, such as Visual Studio Express 2012 for Windows Phone, Microsoft Blend for Visual
Studio 2012, Windows Phone Emulator, Developer Registration tool and others.

Visual Studio is the place, where most of the coding is done. It is well connected to other tools,
so there is mostly no need to run other parts of the SDK separately. The Express edition is provided
free of charge and includes all necessary features that are required for Windows Phone development.

TARGET DEVICE SOLUTION EXPLORER
L i =
NN L ,)
X
+ 3 oy >R
B T S’
Q Py ——"
a MY APPLICATION a R
B + DA
o - » D™
‘. page name i
Q
an
="
Q
a oA
2 T »
a :
o
o
@ v ~
o =
o
O
o
P '
J L J L J | J
TOOLBOX DESIGN VIEW XAML VIEW PROPERTIES WINDOW

Figure 3.15 — The Microsoft Visual Studio 2012 for Windows Phone [13].

53

Another supplied developing environment is Blend for Visual Studio 2012. Blend is a design
tool for designing interactive user interfaces based on XAML and provides many features of a
graphical editor. It also supports importing of various formats and creating many graphical and
animation effects.

PivotApp1.sin - Blend for Visual Studio = B
File Edit View Object Froject Tools Window Help

n Projects Assets X S Device L x MainPage.xaml X " Properties X Resources Data
H := || [Button - @ Mame <o Mame>
o Q

= Type Button

gackgrouna[_—_________[m

Media ’ BorderBrush

b Categories Foreground

[_ Rz
€ b Lotions] =
% R iNELS CONTROL CENTRE m

control

-

“ Objects and Timeline.

pplicationPage]

pplicationBar

4 a- [Pivof]

b & [Pivotitem]
b &l [Pivotitem]
b & [Pivotitem]

4 Appearance
Opac

Visibility \

BorderThickness * 3
+3
v
4 Common
CacheMade

ClickMode Release

CNo 0 & 0|08 @& 00 0 0

&, 2R
I

Content Export
I DataContext (MainViewM...
v
4 Layout
Width 100

000000

Height 100

Figure 3.16 — The Microsoft Blend

As mentioned, one of the tools obtained is the Windows Phone 8 emulator. This new version
of Windows Phone emulator has a new architecture and therefore different hardware requirements. As
most of the other tools, Windows 8 or Windows Server 2012 is required. Further, as Windows Phone 8
emulator is based on Hyper-V virtualization technology, Hyper-V features must be enabled within the
operating system. Also, Hardware-assisted virtualization, Second Level Address Translation (SLAT)
and Hardware-based Data Execution Prevention (DEP) must be supported by the system’s hardware
and enabled in BIOS. In order to check the development system, Microsoft has provided a tool called
Coreinfo, which can provide information about the system. More detailed guide about the system

checking process is described in [23].

54

3.24 Third-party libraries

Windows Phone 8 comes with default components and controls. Some of the most phone specific
controls were already described. However, there are also third-party libraries providing some of the
controls that might be useful while developing Windows Phone applications. Libraries can be often
downloaded as a source code or as compiled libraries. A great tools, which may help with
downloading these libraries and including them within the application is called NuGet. NuGet is a
Visual Studio extension, which provides easy way of downloading libraries from its gallery and also

manages their updating and referencing within an application [24].

3.24.1 Windows Phone Toolkit

Probably the most used library for Windows Phone project is the Windows Phone Toolkit. This is an
open source library provided by Microsoft, which includes many useful controls such as WrapPanel,
ContextMenu and DateTimePickers, as well as Effects, such as SlideInEffect and Tilt effect.

These controls are unique as they perform similar functions like the Windows Phone itself uses
and therefore applications using them fit nicely within the overall user experience concept. The
library also provides sample codes within its source and can be modified. All parts are published
under the Microsoft Public License (Ms-PL) [15] [Attachment C].

3.24.2 XML-RPC.NET

Another useful library is the XML-RPC.NET. Although this library does not provide any controls, it
provides functionality for implementing XML-RPC services and clients. The interesting part for this
project is the client side of this library and its features supporting asynchronous calls. Since most of
the functionality of this project is based on XML-RPC communication with the server, XML-
RPC.NET is an essential part, which cannot be omitted.

XML-RPC.NET is released under MIT X11 license [14] [Attachment B].

55

4 Home Control application

In this chapter, we will describe the application, which was developed during this project. The aim
was to develop an application for controlling iNELS devices over EPSNET protocol and also over
XML-RPC protocol. Our goal was also to build user interface, which would correspond to guidelines
defined by Microsoft [13] and also fulfill common usability requirements as presented in [11]. Firstly,
we will focus on the content of project’s folder, subsequently on the user interface and also on the

extensions that were implemented, or could be implemented in the future.

4.1 Project description

In this section, we will describe the content of the whole project and also functionality of the files
included. All code files will be discussed in details, together with most of the included methods.

4.1.1 Properties

AppManifest.xml

No modifications were required to this file and it does not differ from the standard project.
AsseblylInfo.cs

Asseblyinfo is a file, where all assembly information can be specified. The most important are
information such as title and description and also application version number and default language for
resources. Assembly information must be specified in order for the application to pass the
certification process.

WMAppManifest.xml

In Visual Studio, this file is opened using a custom user interface and allows specifying essential
properties of the application. The first tab within this allows specifying Ul details that identify the
application such as its display name, the page the application should navigate upon launching and
most importantly all the tiles used for this application and supported resolutions. Next tab sets the
capabilities of the application such as ID_CAP_ISV_CAMERA, which allows the application to use
camera-related APIs. Third tab can be used explicitly telling the user that the app requires certain
hardware to be present. These are not set as our application does not explicitly require any specific
hardware for its base functionality. On the last tab, default language together with all supported

languages can be set and additional package information is present as well.

56

4.1.2 References

Apart from the standard references (.NET for Windows Phone and Windows Phone), our application
requires references to the following libraries:

CookComputing.XmIRpcPhone

This is a reference to the mentioned XML-RPC.NET library [14], which is essential for most of
application’s communication with iMM server.

Microsoft.Phone.Controls. Toolkit

Reference to the Windows Phone Toolkit library [15] is essential for some user interface components,
such as the WrapPanel, which is used for displaying in-app tiles, the TiltEffect for tiles and also the

ContextMenu, which allows system-like editing of places within settings.

4.1.3 Assets and images

These two folders contain all images used within our application. Images are supplied in white color
with transparent background, so they can be used as an opacity mask. Instead of assigning our Ul
elements the image directly, we can set their foreground to use a static resource such as the system’s
currently selected foreground color, the background to use current system accent color and set their
opacity mask to use our image. This scenario results in the application changing colors according to
user selected system themes and the application therefore becomes more system integrated from the
users prospective.

Images that should serve as icons for the Application Bar do no need to have the circle
included, as when used within the Application Bar configuration, the outer circle will be added
automatically. However, as our application also used some of these icons outside the Application Bar,

the circles must be supplied.

4.1.4 Resources and other files

The Resources folder contains resource files for individual cultures supported by the application. The
App.xaml and App.xaml.cs files are the base for our application and contain methods for application’s
lifecycle handling as described in the chapter Application life cycle. Apart from the methods,
App.xaml.cs also contains a definition for static object of type Places, which is used in our application
to access all model data. The RoomsVCD.xml file is used for speech recognition and will be described

within the extension.

57

415 Devices

This folder contains the whole hierarchy of the application representation of devices, rooms and
places. Place represents one location, such as home or an office, with one configuration. Places
consist of rooms and rooms contain several devices.

Places class

This class lies on the top of the hierarchy. It contains list of Place items and also index of the active
item. The activeltem property returns the active item based on the activeltemIndex. Places class is
used as a container within application wide model.

Place class

The Place class is the one that holds all information related to a specific location. The main properties
are PlaceName, PlaceType specifying the type of connection used for this place, Host and Port and
ConfiglD, which serves as an identifier for downloading configuration files from public server. All
these properties are employing the concept of INotifyPropertyChanged as described within the data
binding chapter to allow two-way binding with the user interface. The class also holds
PivotRoomCollection object, which contains rooms as explained later.

PivotRoomCollection class

This class contains an ObservableCollection of PivotRoom objects. Other than that its constructor,
which accepts ExportPub and RoomsCfg objects as its arguments, fills the collection with PivotRoom
objects with devices according to certain rules. For each room in the RoomsCfg object, all types of
items are iterated over and for each of these items; suitable device is added to the collection. Each of
these devices is configured so that it contains a proper name and also link to the relevant icon.
PivotRoom class

The PivotRoom class represents a specific room. It contains an ObservableCollection with devices
belonging to the room and also has a RoomName feature that is displayed within user interface. The
class itself needs KnownType attributes with all types of Devices, so that it can be serialized when
storing data within isolated storage.

Device class

The Device class is a basic class representing devices, i.e. iconic items within rooms, in our
application. This base class implements INotifyPropertyChanged interface and contains three basic
properties: Value, Name and ImagePath that are inherited by all child classes. Also, there is a virtual
method getStateDevice, which should be overridden in child classes.

Device child classes

Classes that inherit from the Device class represent different types of devices within the application.
DeviceReal and DeviceBool represent simple devices, while DeviceScenes, DeviceShutters or

DeviceThermals bring specific methods.

58

416 EPSNET

This folder contains classes for complete EPSNET protocol and communication over this protocol
with the central unit of INELS setup. [25]

EpsnetClient class

This class is the essential part for communicating over the EPSNET protocol. Instance of this class is
directly used to send and receive messages from the central unit.

Once the instance is created, it is essential to call the StartClient method. This method sets the
endpoint for communication and creates a new instance of the SocketAsyncEventArgs object, which is
used for asynchronous network communication using sockets, and also source and destination
addresses for EPSNET communication. Both timers are also initialized. The timeOutTimer serves for
the time out of sent messages and its interval is set using the TIME_OUT _INTERVAL constant. This
timer is only started after a message is sent and when time out occurs, the client socket is closed. The
second timer is called tasksTimer and is used for processing requests to send messages. This timer’s
interval is specified by the REFRESH_INTERVAL constant. The tasksTimer is started before the end
of the StartClient method.

When the OnTasksTimerTick method is started as a result of tasksTimer tick event and the
client is not currently processing any task, the peak of the queue called tasks, which contains all
scheduled tasks, is checked and when a task is present, it is started. In case the queue is empty, the
active room is searched for devices and the reading of their statuses is queued using eREADB and
eREADN methods for devices with bool values and real values respectively.

The execution of a task starts one of the methods such as EpsnetCONNECT, EpsnetIDENT,
EpsnetGETSW, EpsnetREADB, EpsnetREADN, EpnetWRITEB or EpsnetWRITEN. These methods
correspond with types of EPSNET messages as discussed in the chapter about iNELS. Each of these
methods creates an EpsnetUDPPackage with relevant EpsnetMessage, sets the handler for
EpsnetCompleted event as discussed later and starts sending it by calling the ConnectAsync method,
which setups the asynchronous socket and starts the timeOutTimer.

After every ansynchronous socket operation is completed, the event is handled by
Operation_Completed method. This method checks the type of the completed operation and calls one
of the SendAsync, which sends the actual data asynchronously, ReceiveAsync, which receives data
asynchronously into a buffer, or ReadClose methods.

The ReadClose method stops the timeOutTimer and tries to get data from the buffer. Also, the
socket is closed so that it can be reused again. When data is copied, the OnEpsnetCompleted method
is called, which invokes any associated handler and passes the data as an array of byte values. The
handler to be invoked is always set in advance by the calling method such as EpsnetCONNECT and
other methods mentioned earlier. Handler methods are named in the same manner as the calling

methods with the _Completed suffix, such as EpsnetCONNECT_Completed. These methods provide

59

textual feedback, or in cases like the EpsnetREADB_Completed and EpsnetREADN_Completed can
directly set values of relevant devices. Before each of these methods is ended, the Completed event is
fired by calling OnCompleted method with a string parameter. This is useful as by handling this
event, we can monitor the incoming data.

EpsnetClientEventArgs class

This class defines two types of parameter for event arguments, which are used within EpsnetClient.
The EpsnetResult provides data in an array of bytes, while the Message can be used for passing a
string value.

EpsnetMessage class

The EpsnetMessage class resembles the structure of EPSNET messages as described in the chapter
about EPSNET protocol. All common constants are defined such as start delimiters SD1 and SD2 or
end delimiter ED. Properties such as the length (LE) and frame check sum (FCS) are automatically
calculated from the object content. The Message virtual property is supposed to be overridden in child
classes and its purpose is to return an array of bytes with relevant structure based on the type of
EPSNET message.

EpsnetMessage child classes

Classes such as EpsnetMessageCONNECT, EpsnetMessageGETSW and EpsnetMessagelDENT only
consist of two parts — the constructor and the overridden Message method. The constructor is simple
and takes only source and destination EPSNET addresses. The Message method returns the complete
EPSNET message of a specific type. Messages such as EpsnetMessageREADB,
EpsnetMessageREADN, EpsnetMessageWRITEB and EpnsetMessageWRITEN are more complex as
they contain two constructors. One constructor accepts ExportPubltem object directly and the other
allows whole collection of Device objects to be supplied.

EpsnetUDPPackage class

This class is responsible for constructing complete EPSNET packages that can contain multiple
EPSNET messages. The constructor accepts the package counter and array of EpsnetMessage objects.
The structure is described in the EPSNET protocol chapter. The data represented as an array of bytes

can be obtained by accessing the dynamic Package property.

60

417 XMLRPC

Classes in this folder serve for the communication over XML-RPC protocol [14] with the INELS
server. This protocol is described in the INELS chapter.

XMLRPCClient class

This class is represents the communication client over XML-RPC protocol. Its constructor needs to be
passed a string representing the URL of the server to connect to and also Dispatcher object, which is
used for invoking methods on the Ul thread and NavigationService object, which can be used for
navigating from the current Ul page. Within the constructor, new instance of the
XMLRPCCLientProxy class is created. This server as a mediator for the communication and is
described later in this chapter.

The client can be started by calling the pingStart method. This method calls the ping method of
the proxy object and if the result is a true value, the refreshTimer is initialized and started. Otherwise,
the navigation service object is used to navigate to PlacesPage in order to allow the user to choose a
place with different configuration as the server could not be reached using the current one. The
refreshTimer is set so that on the Tick event, the readAll method is called. The readAll method is
used to obtain values of all devices from the currently selected room. The method processes the
collection of devices and calls the read method, passing all relevant device names within a string
array.

The read method calls the proxy.read method, passing the device names and also and specifies
the required AsyncCallback object as lambda expression. This approach is used among the whole
XMLRPCClient class. Within the declared callback, the UlDispatcher object is used to invoke an
anonymous delegate on the Ul thread. This delegate consists of converting the result of
proxy.general_completed method to an XmIRpcStruct object, which is a type object define within the
XML-RPC.NET library [14] and provides a way of storing key-value dictionary-like recursive objects.
For each key, which represents a device by its iINELS name, we take its value and update the main
collection stored within App.places and respective room based on searching for the device with given
name. The concept of using ObservableCollection objects together with INotifyPropertyChanged
based properties takes care of updating the Ul.

Other methods work in similar way. The writeValues method accepts an XmIRpcStruct object
consisting of key-value pairs, where key is the device name and value is the desired value to be set. If
only one device is supposed to be set, the writeValue method can be used for creating the
XmIRpcStruct. The method to be called after response a response from server is obtained is
XmIRpcStructDelegate. This method serves for general data processing and can also handle null
results. The showMessage parameter indicated, whether the user should be informed about the result
within user interface. If the result is not null and messages should be presented, list of key and value

pairs is shown. We use this method for null type results and basic result listings.

61

There are also other methods such as playlfPaused, pause, volumeUp, volumeDown or
eManTotalSumsAndPrices and also other methods for processing results. However, as these belong to
multimedia and energy manager extensions, they will be described later.

XMLRPCClientProxy class

This class is used as a proxy for the communication with over XML-RPC protocol and is required by
the XML-RPC.NET library when using Windows Phone platform. As stated in the documentation
[14]:

“For cases where a manually implemented proxy is required, such as with Windows Phone, it
is possible to make asynchronous calls via the Begininvoke and Endinvoke methods of
XmIRpcClientProtocol.

In both cases two new methods must be implemented in the proxy class for each XML-RPC
method. ”

Therefore, each method used is defined separately:
[¥mlRpcBegin("writevalues")]

Eublic IasyncResult writeValues(AsyncCallback ach, ¥mlRpcStruct devNameAndValue)
}

return this.BeginInvoke(MzthodBase.GetCurrentMethod(), new object[] { devNameAndvalue }, ach, null);

Figure 4.1 — A sample of XmIRpcBegin marked method.

However, most of XmIRpcEnd methods can be merged under one definition as the result can be
passed in type of common object and casted and processed later:

[¥mlRpcEnd]

public cbject general completed(IAsyncResult iasr)

{
}

Figure 4.2 — A sample of XmIRpcEnd marked method.

return this.EndInvoke(iasr);

Methods defined within the proxy class correspond to those defined in the XMLRPCClient class and

mostly use the exact same names.

62

4.1.8 ExportPub

For parsing and working with the export.pub configuration files, which is described in the EPSNET
section of INELS description, two classes were implemented.

ExportPubltem class

Class is representing a single device, which corresponds to a single line of the configuration file. The
constructor accepts a string and tries to construct the whole object. Firstly, the line is split by spaces
which are present in the line string. As some configuration files have spaces on the beginning of some
lines this issue must be fixed as well.

Subsequently, according to the structure of export.pub configuration file, each substring is
handled individually. The first substring corresponds to the type of register. There was a custom
enumerable type created called REG_Options with values corresponding to the possible values
supplied in the substring. Second substring is matched in a similar way and this approach is also used
for most of the following values such as TYPE, PUB_INOUT or CF properties. Also, in each
enumerable type, there is a value of UNKNOWN, which is assigned when no match could be found.

For items of type REAL and BOOL have slightly different structure, if the .B substring is found,
an offset is set so that all other values are read from the correct positions. The constructor can throw
an exception if format is not valid.

ExportPub class

This class represents the whole configuration extracted from export.pub file throughout the
application. The class holds a dictionary of ExportPubltems, which can be accessed by their names. If
there are more items with same name supplied within the configuration file, the next item is ignored.
Initially there was an exception thrown, but in order to provide better user experience, this exception
is being ignored, so that the user gets to control as many items as possible even when the
configuration file is not completely without minor errors.

The constructor of this class needs to be provided with isolatedStorageFile instance and also
the name of the configuration file located within the isolated storage. Custom
FileUtilities.GetFileReader method is then used to get the reader of the file and each line is

subsequently supplied to the ExportPubltem class for processing.

63

4.1.9 RoomsCfg

The RoomsCfg consists of multiple classes that help with the deserialization of rooms.cfg
configuration file, which uses XML format and is described in the chapter about iNELS.

RoomsCfg class

The RoomsCfg class is the basic class, which represents deserialized data of rooms.cfg file. It holds
only one property which is of type Rooms. The constructor of this class must be supplied with
isolated storage file object and also the name of the configuration file, which is usually rooms.cfg.
Using FileUtilities.GetFileReader method and XmlSerializer.Deserialize method, the complete
structure of Rooms is constructed.

Rooms class

The Rooms class represents the root node from the configuration file and contains list of child rooms.

Room class

The Room class represents the actual room node from the configuration files and contains definitions
for all devices that might appear under this node. An example of such device is:

// HeatControl: heat-control / heat control

[#¥mlarray("heat-contral™)]
[¥mlarrayItem("item™})]
public List¢HeatControlItem» heatcontrol { get; set; }

Figure 4.3 — A sample of a device type.

The comment line describes the names of the device used in the XML configuration file and also
within the INELS control centre. The first parameter specifies that the item should be considered to be
an array with the respective name and the second that the items of the array are called item. The last
line defines the representation within the application, which should be a List of one of the custom
classes defined later.

Basicltem class and other item classes

The Basicltem class is used for all items with node that consist of the inels name, column, row and
read_only attributes and text representing the name of the device. For other types of items, custom
classes are defined, such as HeatControlltem for heat-control, Meterltem for meter, OnOffltem for
on_off, Scenesltem for scenes, Shuttersitem for shutters, Thermalsitem for thermals or Zonesltem for

Zones.

64

4.1.10 Helpers

This folder contains several classes providing methods used across whole project. Among these
classes, there are classes with common functionality as well as converters, described in the chapter
about data binding.

ArrayUtilities class

This class only provides one static method called concatAll. This method is used within various
constructors of classes derived from EpsnetMessage class. The method allows concatenating any
number of supplied arrays of objects into one array and returning it back.
ConverterClassToTemplate class

This class is one of the converters that are used within this project. Based on the class of the calling
object, the Convert method return a template which is defined within the RoomsPage resources. This
converter is used on the RoomsPage to select according template for each displayed device of the
selected room.

ConverterPlaceTypeToEnabled

This converter is used within PlacePage.aspx and is described in PlacePage chapter.
ConverterValueToOpacity class

This converter is used for converting provided value to adequate opacity values. For zero values,
which correspond to a device that is turned off, the opacity value is 0.5, whereas for values greater
than zero the opacity is equal to 1. This converter is used within templates for displaying devices, so
that devices, which are off are not as bright as those that are turned on.

ErrEventArgs class

This class is based on EventArgs and is used for handling errors across the application. These error
arguments only contain one filed for a string error message.

FileUtilities class

FileUtilities class is essential for working with configuration files within our application. It provides
two public methods DownloadTwoFiles and GetFileReader. DownloadTwoFiles serves for
downloading two files one by one. The method must be passed the URIs and names under which the
files should be stored, IsolatedStorage instance and also handlers for ready and error events.
Downloading files is performed using asynchronous WebClient calls and files are stored within
IsolatedStorage of the application. The GetFileReader method returns a StreamReader object for a file
from isolated storage, specified by its name.

InitClient class

The InitClient class provides two static methods that are used for downloading and parsing
configuration files. The DownloadFiles method calls internaly the FileUtilities.DownloadTwoFiles
method. The GetFiles method return ExportPub, RoomsCfg and PivotRoomCollection objects based

on the provided file names of configuration files.

65

4.2 Application’s pages

In this section, we will describe the main application’s pages. These are the main user interface parts
that are presented to the user. There are also other pages and Ul element within the application, but
only pages from the basic application’s functionality will be described in this chapter. The rest will be
described in following chapters separately, as they belong to application’s extensions and are
therefore not part of the its core.

4.2.1 Main page

Our application only supports primary tile, which can be pinned to the Start screen. This tile is static
and launches the application.

The MainPage is the default page of the application, which is navigated to upon launching. It
consists of a title of currently active place, tiles that navigate to RoomsPage and various extension
pages and also an application bar. The application bar is semi-transparent, so it does not take screen
space and it holds two buttons — one for accessing the list of places (PlacesPage) and the other for
navigating to settings. When a user navigates to the MainPage and there is no active place selected,
the selected place has invalid configuration or server is not accessible with current network
connection, he is automatically navigated to the PlacesPage, so that he could choose a different place

configuration to be used.

v
Fake GSM Network

.f.ﬂ S
- 9 @

INELS HOME CONTROL

Showroom

o | AR

Media

fncl

Thu 1 6 IHC_WP8
v

=

oo

Energy Manager

?‘\.‘ ~e
ONO,

Figure 4.4 — Start screen tile and main page of the application.

66

4.2.2 Rooms page

The RoomsPage is the most important part of our application. The page presents all rooms and
devices that belong to the currently selected place within a Pivot element. The title of the page
consists of the active place name and its connection type, while the title of each Pivotltem is the name
of the room. Within the content, devices are listed in form of icons. The ListBox uses WrapPanel
element from the Windows Phone Toolkit as its ItemsPanel to enable advanced arranging options.
Each icon type is defined as DataTemplate within the page resources. The types used within our
application are lconBool, IconReal, IconShutters, lconThermals, IconScenes and lconZones.

IconBool is the basic type and represents a device, which can be turned on and off by a short
tap on the icon. The icon consists of a StackPanel, Rectangle, ImageBrush and a TextBlock. The
StackPanel wraps the icon and its Tag property is directly bound to the respective device object, its
Tap property is set to IconTap method, Background property is got from the PhoneAccentBrush,
which is the color selected by user in OS settings, and also TiltEffects is used, which provides a more
responsive behavior of the icon. The Rectangle holds the icon image, which is set as OpactityMask
using ImageBrush, whose ImageSource property is bound to ImagePath property of the device and
the TextBlock is then bound to the Name property of the device. Upon the tap action, an animation is
started to fade out and fade in the icon and also corresponding method is called based on the type of
connection used. The animation is defined within page resources as a Storyboard with
DoubleAnimation and CubicEase easing function. It animates the opacity of the icon,

The IconReal is very similar to the IconBool, however, it adds a ProgressBar, since these
devices using this type of icon support progressive turning on and dimming. Also on Hold event, a
pop-up control is displayed allowing changing the value of the device. While changing the value,
timer is running to ensure that values are sent to the server every five hundred milliseconds. The
method used is also different for each type of connection. Other types of icons behave in a similar
way, although some do not have the Tap event enabled.

This page also includes application bar with Places and Settings buttons, which is minimized
by default to provide as much screen space as possible for the icon listing. The RoomsPage contains
instances of all the clients it can communicate with. In our application the EpsnetClient and
XMLRPCCLient are used.

When navigated to the page, firstly, App.places is checked and when no data is present, the
user is navigated to the Places page is a similar way to the MainPage. Also, handler for
SelectionChanged event is set to notify adequate client about the room change. In this method, we
also check the type of active place and start corresponding client by calling either StartXMLRPC or
StartEPSNET method. Lastly, title is set to the name of room and also application extensions such as
the Speech extension and Reminder extensions are handled by checking the querystring and searching

for the device to be turned on.

67

The StartXMLRPC method has to check the App.places again in a more specific way. The
activeltem must be set as well as the collection of rooms, which also must not be empty in order to
start the client. Otherwise, user is once again navigated to the PlacesPage. The client is started based
on the data contained within the active place by creating new instance of the XMLRPCClient class
and calling the pingStart method, which tests the connection. If successful, the client starts
periodically refreshing the state of all displayed devices.

The StartEPSNET methods works in a similar way, but creates an instance of EpsnetClient
class and also sets handlers for events of the EpsnetClient object such as Completed, Error or Log.
When navigating away from this page, all active clients are stopped.

Showroom (XML-RPC)

ROOMT

ﬁ 2544 fﬁhﬂ 28.24

teplota teplota

e

Figure 4.5 — The RoomsPage and pop-up for progressive value control.

68

4.2.3 Places page

The PlacesPage serves for selecting the active place, which defines connection to the server and also
rooms with devices to be shown. The page lists places that can be selected, enables the user to delete
or edit a place upon holding a finger longer on one of the places and also provides an application bar
for adding a new place.

When navigating to the page, places are checked within App.places and if none are present,
settings are loaded from the isolated storage settings. If there are no places within isolated storage
settings either, new set of settings for the application is created. When navigating from the page,
places are stored within the isolated storage settings.

When selecting a place, active place index is changed and user is navigated back. After
pressing the application bar add button, user is navigated to the PlacePage. Meanwhile, new place is
created and its index passed in the querystring. The Edit function works similarly and Remove simply
removes the place from collection.

The PlacePage enables users to edit the properties of a place and also download the
configuration files. Properties such as Place name, Host, Port and 1D are two-way bound; the Place
type uses ConverterPlaceTypeToEnabled, which sets the radio button according to the Place type
property string. The Download configuration button gets configuration files from the public server
based on ID specified and processes them into pivotRoomCollection, which is then stored within

App.places and also isolated storage settings.

INELS HOME COMNTRCH

place

® xmirec O epsner O ResT

Haost (without hitpo/

217.197.144.56

Port

(1§}

Fill default data
Download configuration

Figure 4.6 — List of places and place editing.

69

4.2.4 Settings page

As the configuration of places was moved out of settings, the SettingsPage itself currently only
consists of three buttons.

The Clear Isolated Storage button calls the IsolatedStorageSettings.ApplicationSettings.Clear
method. This method clears settings, not files stored within isolated storage. Clearing these settings
enables the user to put the application into a state similar to the one when installed without the need to
reinstall the application from the Phone Store or via developer Kit.

Other two buttons are related to the Speech extension of this application. The first registers the
command set by calling VoiceCommandService.InstallCommandSetsFromFileAsync and supplying
the RoomsVCD.xml file, which is described later. The other enables the user to manually update the
voice command definition. As the Speech extension only works with a specified room, the function
looks for that room in App.places and updates the command set phrase list with list of devices from
this room by calling the VoiceCommandSet.UpdatePhraseListAsync.

INELS HOME CONTROL

settings

Clear Isolated Storage

Register Voice Command Definition

Update Voice Command Definition

Figure 4.7 — The page with application’s settings.

4.2.5 Extension pages

As mentioned earlier, other pages, which are directly related to the application’s extension functions,
such as CameraPage, EManPage, MediaPage, MielePage, PhotoPage and ReminderPage, are

discussed separately in the following section.

70

4.3 Extensions and suggested features

In this section, we will discuss extensions that can provide more functionality to the application than
controlling standard INELS devices. In the first part of this section, we will discuss extensions that
were implemented into the user interface; in the second section, we will focus on possible features
that would create added value to the application, but would need further cooperative development
with iNELS server.

4.3.1 Multimedia

The multimedia extension is implemented within the MediaPage. It consists of buttons that launch
media methods such as playlfPaused, pause, volumeUp, shuffle and others and also of three fields for
entering text. This test environment can communicate with the iMM server over methods specified in
XMLRPCClient (and XMLRPCCLientProxy respectively). Two first fields are used for setting the
parameters of connection, which can be obtained by using the getPlayersList button. Not all functions
are meant to be used with all types of devices, so in the graphical user interface of possible
multimedia extensions, different types of device will need to be shown separately.

The multimedia extension also has to be integrated with zones that are obtained from the
Rooms.cfg configuration file. This way, media devices can be assigned to certain rooms. However, by

having the multimedia separately, the user experience might become better.

IMELS HOME COMTRONL

r'|"| |a 10.10.5.53 : Videozonel
= 0.3.111: Lara

10.10.5.53

Audiozonel
0.5.56 : Audiozone?

O@RAQ)

getPlayersList

getVolume setVolume

getStatus getStatusExt

Figure 4.8 — The multimedia extension page and list of connected players.

71

4.3.2 Voice commands

Voice commands can be a very useful feature within Windows Phone applications, especially for
home automation. Not only can a user start the application, but also more sophisticated commands
can be constructed as described in the Speech chapter. This way, it is even possible to control single
devices within a room.

Our application has been provided with such functionality, where devices from the sample
room can be controlled using voice commands. It is important to download configuration for
showroom and also register voice commands and update definition at the SettingsPage.

Subsequently, the voice command feature can be invoked by holding the Start button. Once the
listening screen is shown, the command if form specified within the RoomsVCD.xml file can be used.
The format is like: Home control, turn on, device_name. Home control is the name of the application
for voice command purposes. For testing purposes, only the turn on action is used. Device can be any
of those that are present within the ROOM1 of Showroom.

After saying the phrase, our application is launched, user is automatically navigated to the
RoomsPage and device passed in the querystring is looked up and turned on.

The voice command functionality could be also extended by using speech within the
application itself, but from our point of view, the voice command feature is more useful at the
beginning, as it can also be used in a car’s handsfree for opening a garage or unlocking the house

even before exiting the car itself.

WHAT CAN | SAY?

apps

Some apps support voice
commands, you can explore
these in the list below.

Listening...

IHC_WP8

Figure 4.9 — The voice command initialization from the Start screen.

72

4.3.3 Reminder

The reminder extension allows users of our application to set an action, such as turning on lights, to
be executed in the future. As Windows Phone multitasking model, which is described in the
Multitasking chapter, is not able to provide a scenario, where the task would be executed
automatically, the feature was implemented using reminders. After setting a device from the sample
ROOML and selecting the duration in minutes, the reminder is set using ScheduledActionService.Add
method. Title, content, time of the action and also page to which the application should navigate
(including querystring) can be set within the Reminder object. The application can be exited and
when the time comes, reminder is shown to the user with default alarm sound. After tapping on the
reminder, the application is launched and navigated to the RoomsPage, where the preprogrammed
action is launched in a similar way to the voice command feature.

Also scenes can be launched this way and custom slow process of turning devices, which
support continuous turning on could be added. Another approach would be using other forms of
execution; however, none seems to be much more suitable for this scenario.

Similar approach could be used for combining this feature with applications that function as
alarm clock with sleep monitoring features. Those could benefit of this approach and instead of
playing sounds, it could be interesting to slowly open blinds and play music from the home audio

system in the morning, or automatically turn on the coffee machine.

INELS HOME CONTROL IHC_ WP8

rem | nder iINELS HOME CONTROL

teplota

teplota

Lampa it

g
zarivka

led

—

all off

Tap here to begin the wake up sequence

zaluzie

Figure 4.10 — The reminder setup page and the reminder notification.

73

4.3.4 Intelligent camera

Intelligent camera feature provides an experimental way of adjusting the lighting conditions
automatically in intelligent buildings. Our feature uses the device’s camera and based on the average
lighting, can turn lights in a room on and off dynamically. This can be used in situations, where the
room’s lighting conditions are not sufficient enough for taking pictures. The device can then tell
lights to slowly turn on, so that higher quality pictures can be taken.

PhotoPage is the sample implementation of this feature. After pressing the Go button, a timer
is started, which processes the camera’s image. GetPreviewBufferY method is used to obtain the
image from camera. Only luminance data is necessary for this application. Average is then calculated
and if the level is below or above empirically obtained thresholds, lighting is changed.

This feature could also be integrated into a Lenses application, which is described in the
Camera chapter. This way the application could be launched directly from the Camera built-in

application and provide light-adjusting capabilities in more user friendly way.
AN Y T

83072917 settinglongl

Zo 21

v 9

‘. 7
- . e

Figure 4.11 — The user interface of the intelligent camera extension.

74

4.3.5 Wi-Fi identification

Another extension to our application is Wi-Fi based place identification. In the WifiPage, we provide
a code for the application to identify, whether there is active Wireless connection. This is done using
the information from NetworkInterfaceList object. This object includes information about all network
connections, so by choosing those that are of type Wireless80211, subtype WiFi and are connected,
we can obtain the name of the currently active Wi-Fi connection, as two cannot be active at a time.
Using this approach, places within our application could be extended to include the Wi-Fi
connection name and upon launching the application, we could check the active connection name and
change active place if matching name is found. This could greatly increase user experience, as in
most scenarios for end users; only one server (and also place) will be associated with one network.
For final implementation, however, further functionality would have to be implemented for
scenarios, where more places include the same network name. For those scenarios, list of those places

should probably be shown.
I 19:57

iNELS HOME CONTROL

wifi

Wifi connection name:

Figure 4.12 — The Wi-Fi identification page.

75

4.3.6 Accelerometer

As most Windows Phone devices provide accelerometer support, we implemented its support within
the application. The sample implementation can be found on the MotionPage. This page mimics the
behavior of devices with values of type real, which can be smoothly controlled. Using the
accelerometer, when device is turned around the X axis, the progress bar values can be changed. This
behavior is achieved using Accelerometer object and handling the CurrentValueChanged event.
Within the handler, we check the SensorReading.Acceleration value of the X axis and update the
progress bar values accordingly. For better user experience, threshold value is set, so that the user
does not have to hold the device steadily.

Apart from using this feature in the way presented, accelerometer could also be used for
switching between single rooms, or zones within multimedia. However, since these functions use the
Pivot Ul element, which is standard element for Windows Phone, users would have to be notified
about this inconsistent behavior. Other possible use could be to use the shake motion to turn on or off

all devices within active room.

INELS HOME CONTROL

motion

Figure 4.13 — Example of the accelerometer usage for controlling a progress bar.

76

4.3.7 Energy manager

This extension enables the user to get information about energy manager readings. We have
implemented a Pivot-based page, which displays information of the usage of energy, water and gas
consumption.

The page creates an instance of the XMLRPCClient class and uses energy manager related
methods from that class. These methods include the eManTotalSumsAndPrices for all-time data,
eManTodaySumsAndPrices for today’s data and also respective methods for reading week, month and
year data. As some of these methods require the current year, month or week as a parameter, the
DateTime.Now is used.

For obtaining the current week, however, more complicated approach needs to be taken.
Current week can be obtained using the Culturelnfo.CurrentCulture.Calendar.GetWeekOfYear
method supplied with DateTime.Now, System.Globalization.CalendarWeekRule.FirstDay and
DayOfWeek.Monday parameters. This should, however, be changed for other cultural settings.

As another extension to this feature, graphs could be added. In the time of implementing this
feature, however, the Silverlight Toolkit, which contains charts and graphs, could not be used for
Windows Phone 8 projects.

iNELS HOME CONTROL - eMan

Month

Energy
Consumption: 169142 kWh
Price: 169142 CZK

Water
Consumption: 150890 |
Price: 150890 CZK

Gas
Consumption: 148236 m3
Price: 148236 CZK

Figure 4.14 - Energy manager user interface.

77

4.3.8 Additional extensions

Miele devices

Our application supports reading the list of Miele [26] devices connected to the server. These devices
can be of various types such as washing machines or dishwashers. However, more functionality can
be added, such as reading the action that can be performed for each device. In our application,
MielePage is the sample implementation. It uses getMielelnfo method from the XMLRPCClient class.
Online data

As mobile devices are usually connected to the internet, either using Wi-Fi or using the cellular
network, they have access to various sources of information. In our application, we could benefit of
the fact, that devices also feature GPS. We could, for example, extend our place definition to include
GPS position information and use online data source, such as weather forecast from sources as yr.no,
which provide weather data service. Combining these functions, we could obtain weather forecast for
our place (defined by GPS) and based on the data, we close blinds or disable garden watering in case
it is going to be rainy.

Near field communication

Within our application, we could also make use of the proximity API, which is described in the
Proximity chapter. A great scenario would be sharing place definitions with other phones by touching
devices. This would enable new phones to be added easily as control devices, without the need for
manual configuration.

Secondary tiles

As our application uses tile-like environment, it would make sense, to make use of the new feature of
Windows Phone platform — the secondary tiles. Using secondary tiles, users could select any device
or scene and pin them directly to their Start screen. This would greatly simplify the process of turning
on or off the most used devices. After tapping the secondary tile, user would be redirected to the
RoomsPage and action would be performed automatically like in the Speech and also Reminder case.
Push notifications

The application now uses polling method to get states of all devices. Using the Push notifications
feature, as described in the chapter Push notifications, could make the network communication much
more effective. Using raw messages, the application could be informed directly and using the tile
update messages, secondary tiles could reflect the real state of the device they represent. This feature,
however, would require setting up a custom server, which would create such notifications for all

registered devices and communicate with the Microsoft Push Notification Service.

78

IP Camera control

The iMM system also supports IP cameras. Their configuration is provided via iMM server, but the
stream is access directly. So far, all attempts to capture the MIJPEG stream using available libraries
failed on the Windows Phone platform. Future research needs to be done in this field and
alternatively, custom implementation of the streaming functionality must be created. This will,
however, require longer period of time.

Intelligent action predictions

Our application could also make use of intelligent prediction of user’s actions. In order to achieve
such functionality, our application would need to be extended with action logging features. For each
action, current state, desired change, time and also possibly other features such as connection type
and GPS position could be logged. Based on analysis of the log file and current conditions (again
time, state, ...), actions that the user might want to perform would be presented on the MainPage for
example, to be quickly accessible. Actions could be selected based on all the logged information and
also be rated by the count of successful predictions, i.e. how many times they were actually executed
when offered to the user.

Appointments integration

Since Windows Phone supports read access to the calendar appointments, our application could be
also extended with similar functionality to the one used for setting ringtone profiles on some mobile
phone platforms. This scenario also counts on some of the in background running features. This way,
our application could check the upcoming appointments and perform set actions.

Device-based presence

When the application is launched on a device and connected to the server, we could assume that the
user of that device is located at the same position as the device itself. Therefore, we could extend this
assumption and merge the device and its user. This would allow scenarios like locking the home
automatically when no more devices (users) are present within the wireless network. Also adequate
scenes could be launched when users were leaving or coming back home. This could feature

functions such as automatic light switching, securing the building or setting the heating system.

79

5 Conclusion

The aim of this thesis was to examine the iNELS intelligent electrical installation and Windows
Phone 8 platform and also to develop an application, which would be able to control the iNELS
intelligent electrical installation using the Windows Phone 8 platform-based device.

The application we have developed can control various iNELS devices by communicating with
the central unit over the EPSNET protocol, which was fully implemented. Also, we have implemented
the ability to communicate with the iMM server over XML-RPC protocol. For this communication,
the XML-RPC.NET library was used. This communication method proved to be much more efficient
and reliable.

The basic functionality has been tested on multiple configurations. However, in order to
publish the application, more testing will be necessary, so that all scenarios are covered. So far, there
were no performance issues even on the HTC Windows Phone 8S [22], which has low hardware
specifications comparing to other available devices.

Apart from controlling iNELS devices, we have also implemented several extensions to our
application. These extensions are proof of concept of various functionalities and give an indication of
the possible future development and some of these extensions would certainly create added value to
the final production application. Among these extensions, there are: voice commands, which enable
the user to turn on a device from start screen; reminder, which enables users to set up turn on action
for a specific time; intelligent camera, which enables adjusting lighting using device’s camera; wi-fi
identification to select appropriate place to be controlled based on the SSID of connected wireless
network; accelerometer, which provides alternative way of setting values; or multimedia and energy
manager sample pages.

As discovered during the implementation, Windows Phone platform has several limitations
regarding deep feature integration within the OS, especially when it comes to multitasking. Even
though relatively wide range of multitasking scenarios is provided, for more advance functionality,
the full multitasking experience would be beneficial. Another limitation is the impossibility to
communicate with self-signed servers. This is a limitation made for security reasons and requires
changes on the server side of iMM system. Either non-secured communication can be used (as in our
scenario) or the certificate must be verifiable.

As future development, the application will be extended with additions discussed in the
previous chapter, such as Multimedia and Miele devices control or Secondary tiles, as well as with
other features of the iNELS home control system like controlling IP cameras and air conditioning.
Some of those features require further testing and also more reference iNELS setups in order to be

published.

80

Bibliography

[1]

[2]

3]

[4]

5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

WHITECHAPEL, Andrew, MCKENNA, Sean. Windows Phone 8 Development
Internals. S.I.;: Microsoft, 2013. ISBN 0-735-67623-2.

NATHAN, Adam. 101 Windows Phone 7 Apps:Volume I: Developing Apps 1-50.
Indianapolis: Sams, 2011. ISBN 978-0-672-33552-5.

WILDERMUTH, Shawn. Essential Windows Phone 7.5: Application development with
Silverlight. Upper Saddle River, N.J: Addison-Wesley/Pearson Education, 2012. ISBN
03-217-5213-9.

PETZOLD, Charles. Programming Windows Phone 7. Redmond, WA: Microsoft, 2010.
ISBN 978-073-5643-352.

FARRACCHIATI, Fabio Claudio, GAROFALO, Emanuele. Windows Phone Recipes: A
problem-solution approach. 2nd ed. New York: Apress, 2011. ISBN 978-143-0241-379.

LEE, Henry, CHUVYROV, Eugene. Beginning Windows Phone App Development. 3rd
ed. New York, N.Y.: Apress, 2012. ISBN 978-143-0241-348.

CAMERON, Rob. Pro Windows Phone 7 development. Berkley, CA: Apress, 2011.
ISBN 978-1-4302-3219-3.

SHENGWEI, Wang. Intelligent Buildings and Building Automation. London: Spon
Press, 2010. ISBN 0-203-89081-7.

RILEY, Mike. Programming Your Home: Automate with Arduino, Android, and Your
Computer. Dallas, TX: Pragmatic Bookshelf, 2012. ISBN 978-1-9343-5690-6.

JANOUSEK, Vladimir. Intelligent systems: Intelligent Buildings Lecture Notes. Brno,
Brno University of Technology, 2013.

ANDREWS, Keith. Human-Computer Interaction: Lecture Notes. Graz, Graz University
of Technology, 2012.

MINAR, Michal. Creation of Multimedia Control System in GNU/Linux. Brno, Brno
University of Technology, 2010.

Windows Phone Dev Center [online]. [cit. 2013-02-20]. Accessible from URL:
<http://developer.windowsphone.com>

XML-RPC.NET [online]. [cit. 2013-03-14]. Accessible from URL.: <http://xml-rpc.net>

The Windows Phone Toolkit [online]. [cit. 2013-01-04]. Accessible from URL: <http://
http://phone.codeplex.com>

Home automation. In: Wikipedia: the free encyclopedia [online]. San Francisco, CA:
Wikimedia Foundation [cit. 2013-04-05]. Accessible from URL.:
<https://en.wikipedia.org/wiki/Home_automation>

Windows Phone. In: Wikipedia: the free encyclopedia [online]. San Francisco, CA:
Wikimedia Foundation, [cit. 2013-04-05]. Accessible from URL:
<https://en.wikipedia.org/wiki/Windows_Phone>

81

[18]

[19]

[20]

[21]
[22]
[23]

[24]
[25]

[26]
[27]

[28]

Nova Prezentace spole¢nosti ELKO EP 2013 [online]. HoleSov. ELKO EP, s.r.0., 2013,
[cit. 2013-05-15]. Accessible from URL.:
<http://www.elkoep.cz/downloads/promotion_materials/Prezentace_spolecnosti.ppsx>

INELS BUS Systém Prezentace [online]. Holesov. ELKO EP, s.r.o., 2012, [cit. 2013-05-
15]. Accessible from URL.:
<http://www.elkoep.cz/downloads/promotion_materials/PREZENTACE_IiNELS_2012_
CZ.ppsx>

iMM Prezentace [online]. Holesov. ELKO EP, s.r.0., 2012, [cit. 2013-05-15]. Accessible
from URL:
<http://www.elkoep.cz/downloads/promotion_materials/Prezentace_iMM_FINAL.ppsx>

Nokia [online]. [cit. 2013-05-18]. Accessible from URL.: <http://www.nokia.com>
HTC [online]. [cit. 2013-05-18]. Accessible from URL.: <http://www.htc.com>

BENNET, Jay T. Windows Phone 8 Emulator runs as a virtual machine on Hyper-V. In:
Windows Phone Central [online]. 2012 [cit. 2013-01-05]. Accessible from URL.:
<http://lwww.wpcentral.com/windows-phone-8-emulator%E2%80%99s-hardware-
requirements>

NuGet [online]. [cit. 2013-01-20]. Accessible from URL: <http://nuget.org>

Seriova komunikace programovatelnych automatii Tecomat — model 32 bitii [online].
Kolin. Teco as., 2012, [cit. 2013-01-15]. Accessible from URL:
<http://www.tecomat.com/wpimages/other/DOCS/cze/TXV00403_01_Comm_Serial32_
cz.pdf>

Miele [online]. [cit. 2013-05-12]. Accessible from URL.: <http://miele.com>

Wikipedia: the free encyclopedia [online]. San Francisco, CA: Wikimedia Foundation,
[cit. 2013-05-15]. Accessible from URL.: <https://en.wikipedia.org>

Intelligent Building Dictionary [online]. [cit. 2013-05-01]. Accessible from URL:
<http://intelligent-building-dictionary.com>

82

List of attachments

Attachment A: Content of the CD
Attachment B: The MIT License (MIT) for the XML-RPC.NET
Attachment C: Microsoft Public License (Ms-PL) for the Windows Phone Toolkit

83

Attachment A: Content of the CD

thesis.pdf

thesis.docx

src folder A folder containing source code of the application.
doc folder A folder containing supplied documentation.

84

Attachment B: The MIT License (MIT) for
the XML-RPC.NET

Copyright (c) 2006 Charles Cook

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software™), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

85

Attachment C: Microsoft Public License
(Ms-PL) for the Windows Phone Toolkit

This license governs use of the accompanying software. If you use the software, you accept this
license. If you do not accept the license, do not use the software.

1. Definitions

The terms "reproduce,” "reproduction,
here as under U.S. copyright law.

derivative works," and "distribution” have the same meaning

A "contribution" is the original software, or any additions or changes to the software.

A "contributor" is any person that distributes its contribution under this license.
"Licensed patents" are a contributor's patent claims that read directly on its contribution.
2. Grant of Rights

(A) Copyright Grant- Subject to the terms of this license, including the license conditions and
limitations in section 3, each contributor grants you a non-exclusive, worldwide, royalty-free
copyright license to reproduce its contribution, prepare derivative works of its contribution, and
distribute its contribution or any derivative works that you create.

(B) Patent Grant- Subject to the terms of this license, including the license conditions and limitations
in section 3, each contributor grants you a non-exclusive, worldwide, royalty-free license under its
licensed patents to make, have made, use, sell, offer for sale, import, and/or otherwise dispose of its
contribution in the software or derivative works of the contribution in the software.

3. Conditions and Limitations

(A) No Trademark License- This license does not grant you rights to use any contributors' name,
logo, or trademarks.

(B) If you bring a patent claim against any contributor over patents that you claim are infringed by the
software, your patent license from such contributor to the software ends automatically.

(C) If you distribute any portion of the software, you must retain all copyright, patent, trademark, and
attribution notices that are present in the software.

(D) If you distribute any portion of the software in source code form, you may do so only under this
license by including a complete copy of this license with your distribution. If you distribute any
portion of the software in compiled or object code form, you may only do so under a license that
complies with this license.

(E) The software is licensed "as-is." You bear the risk of using it. The contributors give no express
warranties, guarantees or conditions. You may have additional consumer rights under your local laws
which this license cannot change. To the extent permitted under your local laws, the contributors
exclude the implied warranties of merchantability, fitness for a particular purpose and non-
infringement.

86

