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ABSTRAKT 

Za špatně obtékanými tělesy vzniká v určitém rozsahu rychlostí pravidelné odtrhávání 

vírů známé jako von Kármánova vírová stezka. Tento fenomén může mít nepříznivý 

vliv na obtékanou konstrukci, neboť způsobuje periodickou změnu tlakového pole 

a silově tak na konstrukci působí. Je-li frekvence odtrhávání vírů blízká vlastní 

frekvenci obtékané konstrukce, může dojít k samobuzenému kmitání a v extrémním 

případě až k únavovému lomu. V případě vodních turbín je tento jev častý u výztužných 

lopatek. Tvarem odtokové hrany lopatky lze ovlivnit jak frekvenci odtrhávání vírů, tak 

amplitudu vztlakové síly působící na lopatku. Cílem této diplomové práce je pomocí 

CFD výpočtu najít optimální tvar odtokové hrany výztužné lopatky pro konkrétní 

Francisovu turbínu. 

 

ABSTRACT 

In the flow past bluff bodies for a certain range of velocity a periodical vortex shedding 

emerges which is known as von Kármán vortex street. This phenomenon causes 

the periodical alteration of pressure field which affects the body. Should the vortex 

shedding frequency be similar to the body natural frequency, the amplitude of vibration 

significantly increases which can lead to fatigue cracking. In the case of water turbines, 

this phenomenon often affects the stay vanes. Both the vortex shedding frequency and 

the lift force amplitude can be influenced by the modification of the trailing edge 

geometry. The aim of this thesis is to use CFD computation in order to find the optimal 

geometry of the stay vane trailing edge for the specific Francis turbine unit. 
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1 INTRODUCTION 

 Some solid bodies cause, when placed into a stream of a fluid, the separation of 

boundary layers on their surfaces which continues to be present in their wake. These are 

usually referred to as bluff bodies. At very low Reynolds number the flow past such 

bodies is stable, however when the critical value of Reynolds number is reached, 

instability develops. The instability is caused by two shear layers formed by the 

detachment of boundary layers on both upper and lower surfaces. These shear layers 

generate a vortex shedding from alternate body surfaces creating row of vortices in the 

body wake. This alternate vortex shedding is known as von Kármán vortex street. Since 

the asymmetric formation of vortices causes periodic alteration of pressure field, it is 

responsible for fluctuating lift force transverse to the flow that affects the body. [4] 

Such vibration of a structure is particularly dangerous when the frequency 

of vortex shedding coincides with the natural frequency of the structure or more 

precisely with the natural frequency of fluid-structure system. In that case the amplitude 

of vibration significantly amplifies which can cause fatigue cracks and lead 

to premature failure of the structure. 

 In case of hydro power plants the potentially most endangered parts (when 

speaking of vortex streets) are runner blades and stay vanes. Dörfler [7] mentions that 

vortex induced vibration of guide vanes is more seldom, but has also been observed in 

some machines. The vortex shedding frequency and the lift amplitude, concerning vanes 

and blades, can be changed by the modification of their trailing edge geometry. The aim 

of the modification is to reduce the lift coefficient and change the vortex shedding 

frequency so that it would not coincide with the natural frequency of the fluid-structure 

system. 

Such an optimization of the stay vane trailing edge geometry is the subject 

of this thesis. As Gummer [13] says: “One of the first reported incidents of stayvane 

cracking was described by Goldwag and Berry in 1968; since then, every year more 

literature on various aspects of the subject has been published. It would appear, 

therefore, that the problem of vortex-induced cracking of stayvanes is one long since 

resolved: however, this is not the case.” 

The thesis is written in cooperation with ČKD Blansko Engineering, a.s., 

the member of Litostroj Power group, who provided the stay vane geometry and 

the inlet-velocity profile necessary for computing.  

 The thesis is divided into three parts. The first part (The Problem Overview) 

describes the current state of art concerning von Kármán vortex street phenomenon and 

the resulting stay vane cracking in a qualitative way. 

The second part (CFD Simulations) describes the problem in rather quantitative 

way. It consists of two test cases and of the solution of the ČBE (ČKD Blansko 

Engineering) assignment. The test cases should serve as an instrument for suitable CFD 

solver setting. The first test case is a simple one, dealing with the flow past square 

cylinder based on Lyn’s experiment [17]. The second test case which deals with 

the flow past NACA 0009 hydrofoil is based on Zobeiri’s experiment [24] and primarily 

examines the solver’s sensitivity towards the trailing edge geometry modification. 

The solution of the ČBE assignment is subsequently carried out on the basis of 

the results from these two test cases. 

 The last part (Conclusion and Perspectives) resumes the results and presents 

possibilities for further study and research. 
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I THE PROBLEM OVERVIEW 

 

2 VON KÁRMÁN VORTEX STREET 

In the flow behind a bluff body there is pair of counter-rotating vortices formed, 

which stays just behind the body. When the velocity of the flow increases, the vortices 

begin to shed and are carried away with the flow. With increasing velocity the flow 

becomes turbulent and the structure of eddies irregular. At a certain span of velocity (for 

the Reynolds number Re ≈ 10
2
) the periodic shedding of vortices is present which forms 

a stable pattern of two rows of alternating vortices that are carried downstream with 

the flow. Such a pattern is termed von Kármán vortex street after Theodore 

von Kármán, Hungarian mathematician and physicist (1881 – 1963). [1] [3] 

 

 

 

 
 

Fig. 2.1 Sketch of von Kármán vortex street [8] 

 

 

However, von Kármán was not the first one who described the phenomenon. 

Already in 1878 Czech physicist Vincenc Strouhal (1850 – 1922) observed the flow of 

wind past telegraph lines and described the relation between the vibration frequency and 

the wind velocity. Strouhal defined the dependency of the pitch of the tunes produced 

by the lines on the wind velocity and the wire diameter. The oscillations of the wires 

were formerly known as Strouhal’s frictional tunes. Later the vortex structure was 

described and the pictures of it were published in 1908 by French physicist Henri 

Bénard (1874 – 1939), who observed the phenomenon in viscous fluids. Finally in 1911 

Theodore von Kármán proposed the mathematical theory of the vortices and contributed 

to the knowledge of the topic. He found that the vortex structure is stable only for 

a certain ratio of cross-stream and stream-wise vortex spacing. This ratio being 

b / a ≈ 0.2806, where b is the cross-stream distance of the two rows and a is the stream-

wise distance of juxtaposed vortices, see Figure 2.1. [1] [3] 

Von Kármán vortex street is a widespread phenomenon that can be found 

in a wide range of situations and scales. The core diameter of a vortex can range from 

millimeters in case of flow past narrow air/hydrofoil to hundreds of meters in case 

of wind that blows past solitary island in the ocean and leaves a picturesque vortex track 

in the clouds. This can be observed e.g. in case of Guadalupe Island which is situated 

about 240 km off the west coast of Mexico, see Figure 2.2. 

However, von Kármán vortex street does not impact only on airfoils or islands. 

It can affect smokestacks, broadcast towers, tall buildings, bridges, marine propellers 
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and last but not least runner blades, guide vanes and stay vanes of hydropower plants. 

Usually the phenomenon is accompanied by loud noise that is often referred to as 

“singing”. [7] 

 

 

 
 

Fig. 2.2 Vortex street behind Guadalupe Island [14] 

 

 

Despite rather peacefully looking structure of the vortex street and the singing 

mentioned above, von Kármán vortices are, at least in technical applications, unwanted 

and potentially dangerous. 

 The vortex street pattern is caused by the separation of the boundary layer on 

both upper and lower surfaces of the body. According to Gerrard, a key factor in the 

formation of a vortex-street wake is the mutual interaction between the two separating 

shear layers. It is said that a vortex continues to grow, fed by circulation from its 

connected shear layers, until it is strong enough to draw the opposing shear layers 

across the near wake. The approach of oppositely signed vorticity, in sufficient 

concentration, cuts off further supply of circulation to the growing vortex, which is then 

shed and moves off downstream. [11] 

 

 
 

Fig. 2.3 Sketch of vortex-formation model [11] 

 

 Gerrard’s sketch (Figure 2.3) shows the vortex-formation model in which 

the entrainment processes play an important role. Entrained fluid (a) is engulfed into 

the growing vortex while (b) finds its way into the developing shear layer. The near-
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wake region between the base of the body and the growing vortex oscillates in size, and 

some further fluid, (c), is temporarily entrained to it. Bearman says that it is the 

presence of two shear layers, rather than the bluff body itself, that is primarily 

responsible for vortex shedding. [4] 

 The potential danger of the phenomenon is a consequence of the asymmetric 

formation of the vortices behind the body. As a result of the alternating eddy formation, 

the body – a rod, a plate or in case of water turbines, stay vanes, or runner blades – 

behind which the vortex street occurs is a subject to a periodical reaction force (caused 

by pulsating pressure field) transverse to the flow pulsating with the frequency of eddy 

detachment. The frequency of vortex shedding may coincide with a natural frequency of 

the body producing it, resulting in a resonant vibration and this may cause large 

amplitudes. The frequency is generally high and as a result a large number of cycles 

may occur leading to a mechanical damage from high cycle fatigue. [7] 

 Vortex shedding frequency and the shape of eddy formation depends on the 

body dimensions, the fluid density ρ, the fluid dynamic viscosity µ and the free stream 

velocity Cref. These factors are usually presented in the form of dimensionless Reynolds 

number Re: 

 

 

𝑅𝑒 =  
𝜌∗𝐶𝑟𝑒𝑓∗𝐷

𝜇 
=  

𝐶𝑟𝑒𝑓∗𝐷

𝜐
      (2.1) 

 

 

 where D is a characteristic body dimension (e.g. diameter in case of a circular 

cylinder) and υ is a kinematic viscosity of the fluid. Different patterns for specific 

Reynolds numbers are presented in Figure 2.4. 

 

 

 
 

Fig. 2.4 Vortex street regimes for specific Reynolds numbers [6] 

 

In a number of sources there can be found that the vortex shedding frequency 

also depends on the body surface roughness Ra and recent studies have shown that also 

cavitation has an influence on the shedding frequency and the resulting vibration 

behavior. [7] [1] 
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2.1 Flow past Circular Cylinder 

 Theodore von Kármán presented his work on the case of a cylinder with circular 

cross-section and the majority of following experimental work in this area is related to 

vortex shedding from cylinders. Therefore the uniform flow past a circular cylinder 

is the “benchmark configuration” for investigation of vortex shedding and has been 

extensively studied experimentally by different authors. [1] [4] [7] 

 Here, Figure 2.5 shows the overview of the regimes for incompressible flow 

presented by Schlichting. [19] 

 

 
Fig. 2.5 Incompressible flow regimes at circular cylinder [19] 
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2.2 Strouhal Number 

 The shedding frequency is often presented by means of normalized frequency, or 

Strouhal number, which is defined as: 

 

 

𝑆𝑡 =  
𝑓𝑠 ∗𝐷

𝐶𝑟𝑒𝑓
                                                     (2.2) 

 

 

 where St (sometimes labeled Sh or Sth) is dimensionless Strouhal number, fs is 

a vortex shedding frequency, Cref  is a free stream velocity and D a characteristic body 

dimension. [16] 

 Strouhal number has been measured experimentally by various authors. 

According to these authors the Strouhal number values are usually in the range 0.15 – 

0.3 [23] or more precisely 0.18 – 0.24 [7] or possibly 0.16 – 0.19 [13]. 

According to Lockey [16], Strouhal number depends on: 

- geometry (cylinder or blade) 

- local Reynolds number (laminar flow, transition range or fully turbulent flow) 

- trailing edge geometry (main effect is on the amplitude of shedding) 

- boundary layer thickness 

- lock-in condition of shedding frequency (see Chapter 2.3) 

 

As can be seen there is some ambiguity in the estimation of Strouhal number 

in hydraulic turbines, because: first, most of the experiments are done for cylinders; 

and, second, the Reynolds numbers in the experiments are usually significantly lower 

than the Reynolds number in a hydraulic machine. [16] 

There is also ambiguity concerning the characteristic body dimension; some 

authors, e.g. Dörfler, take only the body “thickness” into account: In case of simple 

objects as a cylinder, D would be the diameter; in case of turbine blades, the trailing 

edge thickness is the appropriate characteristic length, as the thickness of the trailing 

edge determines the scale of the eddies. [7] 

 While other authors prefer to include also the boundary layer thickness into the 

body dimension definition. Then the Strouhal number (for blunt trailing edge hydrofoil) 

is defined as: 

 

 

𝑆𝑡 =  
 𝑓𝑠 ∗ (ℎ𝑡+2𝛿)

𝐶𝑟𝑒𝑓
                                                      (2.3) 

 

 

 where ht is a hydrofoil trailing edge thickness and δ is a boundary layer 

thickness. [1] 

 In Figure 2.6 there is the relationship between Reynolds and Strouhal number for 

the flow past circular cylinder presented by Schlichting which indicates constant 

Strouhal number for some intervals of Reynolds number. St = 0.21 for 400 < Re < 6000 

and St = 0.19 for 2x10
4
 < Re < 10

5
. 
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Fig. 2.6 Reynolds number – Strouhal number relationship [19] 

 

 

2.3 Lock-in Condition 

 As mentioned above, the body placed in a flow experience a fluctuating lift force 

transverse to the flow caused by the asymmetric formation of vortices. This lift force 

may cause the vibration of the structure. The coincidence of the vortex shedding 

frequency with the natural frequency of the fluid-structure system over a range of 

velocity is referred to as a lock-in phenomenon, for the shedding frequency is “locked” 

onto the natural frequency of the system. The ability of the fluid-structure system 

to synchronize the shedding frequency with its natural frequency is one of 

the fundamental features of flow-induced vibration. [24] 

 Such a condition is usually accompanied by significant increase of noise and 

results in the resonant vibration of the structure, which leads to considerably high 

amplitudes. Since the frequency is usually high, large number of vibrational cycles is 

reached in relatively short time which can lead to high-cycle fatigue of the structure and 

eventually to its premature failure. [7] Gummer [13] says: assuming a typical natural 

fundamental frequency in bending of 70 Hz in water for the stay vane of a large turbine, 

we arrive at 2.52 x 10
5
 cycles per hour of operation. 

 For the understanding of the lock-in phenomenon the Figure 2.7 (presented by 

Dörfler [7]) can help. It shows the behavior of frequency and amplitude (in this case 

the torque amplitude, however the lift amplitude behaves equally) depending on 

increasing flow velocity. As the velocity grows, the Strouhal number (Equation 2.2) 

remains constant which is represented in the diagram by straight black line. Once 

the vortex shedding frequency reaches the natural frequency of the structure (in this 

case about 300 Hz), the Strouhal number is no longer constant. For a considerably wide 

range of flow velocity, the shedding frequency remains “locked” onto the natural 
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frequency, until the difference between the shedding frequency and the natural 

frequency becomes too large. 

 As for the amplitude, the only condition with noticeable vibrations is near the 

resonance between vortex shedding frequency and a natural frequency of the vane. 

Under the lock-in condition, the amplitude is considerably higher and that is the main 

reason, why the lock-in condition is so dangerous in terms of fatigue life 

of the structure. 

 

 

 
 

Fig. 2.7 Lock-in condition, acc.[7] 

 

 

 It was already mentioned that the vortex shedding induces vibration of the 

structure transverse to the flow and that this vibration is most apparent in case of lock-in 

condition. It should be mentioned, however, that each time a vortex is shed, a weak 

fluctuating drag is generated, and oscillations can be induced also streamwise with 

the fluid flow. Streamwise vibrations caused by this effect have not been observed for 

bodies in air, but in denser fluids such as water, where the ratio of the mass of fluid 

displaced to the mass of the body is substantially greater, serious oscillations can occur. 

However the maximal amplitudes of streamwise vibration are much smaller than those 

of vibration transverse to the flow and hence streamwise vibration is not so dangerous 

and less attention is paid to it. [7] 
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3 STAY VANE CRACKING 

 Despite the long history of stay vane cracking (one of the first reports of 

the incident was published in 1968 by Goldwag and Berry [12]) and profound 

theoretical and experimental investigation of the phenomenon, the vortex induced 

cracking still occurs nowadays. 

 In Figure 3.1 there is a cross-section of typically arranged Francis turbine unit. 

From this figure, it is clear how the water flows in the unit: it comes via penstock, 

passes the cascade of stay vanes (fixed ones that close the force loop of pressurized 

spiral case) and guide vanes (mobile ones that control the flow rate through the unit), 

transmits the power to the runner and leaves the unit via draft tube.  

 

 

 
 

Fig. 3.1 Cross-section of Francis turbine unit [20]  
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The stay vanes have three basic functions: 

- to act as a bracing of the spiral case 

- to transmit any vertical loads from the concrete and headcover 

- to direct water at the correct angle from the spiral case to the guide vanes  

 

To meet such requirements, the stay vanes are exposed to the forces from 

pressurized spiral case, vertical forces from the weight of the generator and 

the hydraulic thrust transmitted through the concrete and headcover, and hydraulic 

forces caused by the water passing through the vanes. [13] 

 Since the spiral case with the stay ring is fixed part of the erected unit and hence 

any repair is difficult and expensive, it is essential to avoid any possible situation that 

would cause the damage. Repairs also imply the loss of generating hours which in case 

of large hydro-power plants is an expensive problem. Therefore the vortex induced 

vibration in hydraulic machines should be a subject of concern. 

 The actual wave of cracking caused by vortex-induced vibration started in mid-

1960s when for the first time many large Francis and Kaplan turbines were built and 

as Brekke [5] says, one of the reasons was the weight reduction of turbine units: 

The traditional way of producing high head turbines was to use steel castings in 

the pressure carrying part like spiral casings, head cover and bottom cover. Then 

the turbines became very heavy requiring a labor consuming production in foundries 

and workshops. Because of relatively small units this design was used up to around 

1960 for the pressure carrying parts. The reason for the possibility of a weight reduction 

to around 1/3 for the spiral casings was the improved welding technology and 

the introduction of high tensile stress plates with yield point of 460 MPa. The main 

advantage of the weight reduction was the decrease of production costs, because less 

man hours were needed to produce the turbines. In addition the transport costs were 

reduced. The draw back with the lighter turbines was that a lighter turbine gives less 

damping of pressure pulsations. [5] 

 Concerning the vanes at that time, they often were fragile profiles not much 

different from a flat plate with very simple trailing edges, usually rounded which is the 

worst possible shape from the fluid-mechanical point of view [7] [5] 

 The report by Goldwag and Berry [12] mentioned above discusses the specific 

case of stay vane cracking that occurred at the Little Long Generating Station of Ontario 

Hydro which is situated about 800 km north of Toronto on the Mattagami River which 

flows into Hudson Bay and at the time of the report delivered 500 MW of power. 

However, it can well serve as an example of a typical development of such situation: 

Shortly after the first unit was being commissioned and operated under load, 

abnormally high level of noise and vibration on the generator stator, the relay floor and 

the tailrace deck were reported to be present. Similar situation repeated when the second 

unit came into service. About six months after commissioning, the units were drained 

and the detailed inspection indicated that the stay vanes contained numerous and serious 

fatigue cracks. The diagnosis indicated the damage to be the result of von Kármán 

vortices. [12] 

 Gummer [13] remarks in his review that in most cases there was noise and 

vibration with the turbine operating at loads above approximately 70 % guide vane 

opening. Sometimes the operation was not possible above certain output, in other cases, 

however, neither noise nor vibration was high enough (or it was obscured by other 

noises and therefore overlooked) to consider any further investigation. In such cases 

the turbine went into operation, but the inspection after only a short operating period 

(about 2000 h) revealed cracks in the welds securing the vanes to the stay ring.  
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 In most cases the damage was clearly due to fatigue caused by resonance. 

The cracks typically originated at or close to the welds at both ends of the trailing edge. 

Some crack originated also from the leading edge and some of these joined with the 

cracks from the trailing edge and so penetrated through the whole vane. The cracks of 

the stay vanes are illustrated in Figure 3.2a. [12] [13] 

 

 

 
 

 
Fig. 3.2 Little Long Generating Station: a – sketch of stay vane cracks; 

b – modification of stay vane trailing edge  [12] 

 

 

 It is well known (see e.g. [16] [18]) that the trailing edge geometry has a strong 

influence on the amplitude of the vane oscillation and that rounded trailing edge is the 

worst shape from the fluid-mechanical point of view. Such trailing edges were used at 

Little Long Generating Station and as mentioned above, it did not work well. The 

trailing edge was reshaped into a “dove tail” form which considerably reduced the 

vibration (see Figure 3.2b). According to Dörfler [7], however, the solution was not 

absolutely faultless and in following years additional modifications had to be done. 

 Nowadays, the “dove tail” shape is usually no longer used; it is replaced by 

asymmetric trailing edges. One of the common shapes is an oblique cut of the blunt 

trailing edge with the angle of 30°. Such an edge causes that the vortices do not shed 

symmetrically and therefore the upper and lower vortices are not in perfect anti-phase 

and partly eliminate each other. The disorganization of von Kármán vortex street leads 

to vibration and fluctuating lift reduction. [18] [25] 

 Various authors (see e.g. [16] [13] or [7]) agree upon the way how to avoid 

the problem of resonant vibration. There are basically two principles: 

- modification of the trailing edge  

- altering of the natural frequency of the stay vanes 

 

The former was already mentioned above; the latter can be done either by 

slotting the vane longitudinally, replacing the vane by stiffer one, or by dividing the stay 

vane channel in two by installing damping plates in the middle plane of the spiral 

casing. The plates de-tune the structure, especially of the vibration in the torsional 

mode, so that no further resonance occurs. [16] 
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 Considering the complexity of these two approaches, the trailing edge 

modification is always the “first choice” method and only after it proves insufficient, 

the damping plates are installed or other steps are taken. 

 This thesis in the next part discusses the CFD prediction of the suitable trailing 

edge shape for the reduction of stay vane resonant oscillation. 
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II CFD SIMULATIONS 

Some forty seven years ago, Goldwag and Berry [12] wrote: “The prediction of 

the likelihood of hydroelastic resonance by calculation has not yet been realized, and 

only a qualitative approach appears possible. In the case of a water turbine stay ring or 

runner blade, no amount of calculations would allow prediction of the critical 

frequencies with any certainty”. [12] 

 This part of the thesis should prove their statement to be no longer valid; it 

consists of two test cases (for suitable CFD solver setting) and the assignment provided 

by ČBE which is solved in accordance with the test cases. Both the test cases and 

the ČBE assignment were spatially discretized by means of Gambit 2.4.6 and only 

structured grids were used since they should provide better convergence and higher 

accuracy than the unstructured ones. The computation was carried out in ANSYS 

Fluent 15.0. The shedding frequency was in both test cases and the ČBE assignment 

obtained from the monitoring of y-velocity in a specific point behind the body. 

The time-varying monitor values served to identify the shedding frequency by means of 

Fast Fourier Transform algorithm (FFT). 

 Since the nature of the turbulence is three-dimensional, the attempt was to carry 

out the simulations three-dimensionally. From the results it will be apparent, however, 

that it did not show any considerable improvement in the accuracy of frequency values. 

Moreover, the 3D solution was much more time-consuming. The 2D solution was 

usually obtained in the order of hours, while the 3D solution computational time was in 

the order of days. 

 Von Kármán vortex street needs the transitional approach, however the unsteady 

calculation requires a steady state solution as initial condition. After switching to 

unsteady calculation mode, the solution can take a large number of time steps before the 

fully developed unsteady shedding phenomenon begins. So in all cases it was proceeded 

as follows: 2 000 iterations were computed as a steady state and after switching to 

unsteady state at least 10 000 time steps were computed. In some cases even after 

10 000 time steps the vortex shedding was not fully developed and therefore more time 

steps were added to the computation. 
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4 FLOW PAST SQUARE CYLINDER 

This case should serve as a test case for finding the optimal setting of CFD 

solver that would later be used for the solution of the ČBE problem. The computational 

results are compared with the experimental data recorded by Lyn during an experiment 

performed in 1992. Detailed description of Lyn’s experiment can be obtained via 

ERCOFTAC database under the title “Vortex Shedding Past Square Cylinder”. [17] 

 

4.1 Experiment by Lyn 

 The experiment was performed on a square cylinder with side length d = 40 mm 

in a closed water channel supplied by a constant–head tank. At the measurement station, 

the channel had a 39 × 56 cm cross-section. A reference velocity in the channel was 

cref = 0.535 m/s. This is estimated to be within 2-3 % of the average cross-sectional 

velocity. The Reynolds number, based on cref and D was Re = 21400. The shedding 

frequency, f, was determined as 1.77 ± 0.05 Hz. This estimate agreed within 

experimental error with an estimate based on spectral analysis of the raw pressure 

signal. The resulting Strouhal number was St = f D / cref = 0.132 ± 0.004. 

A two-colour LDV forward-scatter system measured two components 

of instantaneous point velocities. A reference phase was defined from a low-pass-

filtered pressure signal taken from a tap at the midpoint of cylinder sidewall. The time 

of occurrence of an LDV velocity realization was marked in relation to the pressure 

signal, permitting the association of the velocity data with a particular phase of the 

vortex shedding cycle. All velocity realizations occurring within the same phase bin or 

interval constituted an ensemble at constant phase, such that statistic at constant phase 

could be evaluated.  

Measurements were confined to the upper half of the flow region in order to 

reduce the number of measurements needed. It was assumed that the flow in the lower 

half could be obtained by reflecting the measured upper flow about the centerline. [17] 

 

4.2 CFD Simulation of flow past Square Cylinder 

The simulation of transient flow past square cylinder was performed in two- and 

three-dimensional spatial discretization. For both 2D and 3D simulation two 

computational models were used: the realizable k-ε model and the Reynolds Stress 

model (RSM). 

Both k-ε model and RSM are primarily valid for turbulent core flows (i.e., the 

flow in the regions somewhat far from walls). Therefore it should be considered how to 

make these models suitable for wall-bounded flows. 

Traditionally, there are two approaches to modeling the near-wall region. In one 

approach, the viscosity-affected inner region is not resolved. Instead, semi-empirical 

formulas called "wall functions'' are used to bridge the viscosity-affected region 

between the wall and the fully-turbulent region. The usage of wall functions prevents 

the need to modify the turbulence models to account for the presence of the wall. 

In another approach, the turbulence models are modified to enable the viscosity-

affected region to be resolved with a mesh all the way to the wall, including the viscous 

sublayer. For purposes of discussion, this will be termed the "near-wall modeling'' 

approach. These two approaches are depicted schematically in Figure 4.1. [9] 
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Fig. 4.1 Two approaches to near-wall region treatment [9] 

 

 

 In most high-Reynolds-number flows, the wall function approach substantially 

saves computational resources, because the viscosity-affected near-wall region, in 

which the solution variables change most rapidly, does not need to be resolved. 

The wall function approach is popular because it is economical, robust, and reasonably 

accurate. It is a practical option for the near-wall treatments for industrial flow 

simulations. [9] 

 There are basically two types of wall functions: Standard wall functions and 

non-equilibrium wall functions. The latter are recommended for use in complex flows 

involving separation, reattachment, and impingement where the mean flow and 

turbulence are subjected to severe pressure gradients and change rapidly. Therefore 

when modeling von Kármán vortex street, the non-equilibrium wall functions are 

suitable. 

 

4.2.1 2D Simulation 

Spatial discretization: 

The origin of the coordinate system of the computational domain is located 

in the center of the cylinder, and all distances are non-dimensionalized by d (side length 

of the cylinder d = 40 mm). Inlet is placed 10.d in front of the cylinder, while outlet is 

20.d behind the cylinder. The width of the computational domain is 14.d (i.e. 560 mm) 

which corresponds with the experiment. Dimensions and boundary conditions of 

the computational domain are depicted in Figure 4.2. 
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Fig. 4.2 Sketch of the computational domain, acc. [22] 

 

 

For proper description of the vorticity, the computational mesh should be dense 

near the cylinder walls. The actual mesh and its detail near the cylinder wall are in 

Figure 4.3 and Figure 4.4 respectively. 

 

 

 
 

Fig. 4.3 Spatial discretization of the domain 
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Fig. 4.4 Detail of the mesh near the cylinder walls 

 

 

The mesh consists of 82 500 quadrilateral cells; the Map meshing type that 

creates a regular, structured grid of mesh elements is used. Maximum Aspect ratio (ratio 

of longest to the shortest side in a cell) is 24.881, however such a high ratio could only 

be find at both inlet and outlet area; values of ratio around the cylinder walls range 

between 1 and 7. 

 

Solver setting: 

 Boundary conditions are based on Lyn’s experiment. 

On the velocity-inlet bc the velocity magnitude is cref = 0.535 m/s, turbulent 

intensity 5 % and hydraulic diameter D = 0.04 m. (Hydraulic diameter is the size of the 

biggest possible vortex, which in this case corresponds with the cylinder side length.) 

On the pressure-outlet bc the gauge pressure is p = 0 Pa, turbulent intensity 10 % 

and hydraulic diameter D = 0.04 m. 

Sides of the computational domain are defined as symmetry bc which means 

there is no friction and the normal velocity cn = 0 m/s. 

Sides of the square cylinder are defined as wall bc. 

In the first case, the realizable k-ε model was used as a turbulence model 

together with the non-equilibrium wall functions. 

 

Solution methods: 

Gradient – Least Squares Cells Based 

Pressure – Standard 

Momentum – QUICK 

Turbulent Kinetic Energy k – Second Order Upwind 

Turbulent Dissipation rate ε – Second Order Upwind 

Discretization of the unsteady term – Second Order Implicit 
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In the second case the Reynolds Stress model (RSM) was used as a turbulence 

model together with the non-equilibrium wall functions. 

 

Solution methods: 

Gradient – Least Squares Cells Based 

Pressure – Standard 

Momentum – QUICK 

Turbulent Kinetic Energy k – Second Order Upwind 

Turbulent Dissipation rate ε – Second Order Upwind 

Reynolds Stresses – Second Order Upwind 

Discretization of the unsteady term – Second Order Implicit 

 

For both cases the time step was Δt = 0.00565 s. 

 

 

4.2.2 3D Simulation 

Spatial discretization: 

To the existing geometry the third dimension was added in the extent of 50 mm. 

The three-dimensional mesh consists of 550 000 hexahedral cells. Maximum Aspect 

ratio is 11.726. The computational mesh for 3D simulation is depicted in Figure 4.5, 

where the boundary conditions are also indicated by colors: blue means velocity-inlet, 

red is pressure outlet, yellow is symmetry (on the front surface of the domain the 

symmetry bc is not depicted for higher clearness) and white is wall bc. 

 

 

 
 

Fig. 4.5 3D mesh with boundary conditions color indication 
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Wall y+ values: 

y+ is a dimensionless distance from the wall for wall-bounded flow and its value 

limits the usage of wall functions. It is defined as follows: 

 

 

𝑦+ =  
𝑢𝜏∗𝑦

𝜈
      (4.1) 

 

 

 where y is the distance to the nearest wall, ν is the local kinematic viscosity of 

the fluid and uτ is friction velocity at the nearest wall defined as: 

 

 

𝑢𝜏 =  √
𝜏𝑤

𝜌
      (4.2) 

 

 

 where τw is a wall shear stress and ρ is the fluid density. [9] 

 The recommended value of y+ for the use of wall functions (i.e. for both 

realizable k-ε and RSM models) lies between 20 and 120. The distribution of wall y+ 

values for 3D flow past square cylinder is depicted in Figure 4.6. 

 

 

 
 

Fig. 4.6 Distribution of wall y+ values 

 



Dept. of Fluid Engineering                                                  VUT-EU-ODDI-13303-07-15 

37 

 

 The setting of the solver was identical with the 2D approach and equally so 

the solution methods and the time step. 

 

4.3  CFD Results 

 The y-velocity was monitored in the point downstream of the square cylinder 

with the coordinates x, y, z = [0.15; 0; 0] m. The obtained values of shedding frequency 

for individual models and approaches are presented in Table 4.1; the contours of static 

pressures are presented in Figures 4.7 to 4.10 and the contours of vorticities are 

presented in Figures 4.10 to 4.14. The difference presented in Table 4.1 refers to Lyn’s 

value 1.77 Hz, the experimental error (± 0.05 Hz) is not taken into account. 

 

 

  k-ε dif. RSM dif. 

  Hz % Hz % 

2D 1.89 6.78 1.93 9.04 

3D 1.85 4.52 1.97 11.30 

 
Tab. 4.1 Computed values of shedding frequency 

 

 

 From the table 4.1 it is apparent that realizable k-ε model is slightly more 

accurate than the Reynolds Stress model; although in the absolute value of 

the frequency the difference is not so profound, when the percentage is taken into 

consideration, the difference is more significant, particularly in 3D approach. 

The comparison between 2D and 3D simulation for both realizable k-ε model and RSM 

does not show any relevant differences. From the figures below it can be seen that the 

RSM predicts higher turbulence in the flow past square cylinder. 

 On the basis of these results it is decided that for the second test case (Flow past 

NACA 0009 Hydrofoil, Chapter 5) primarily the realizable k-ε model will be used. 
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Fig. 4.7 Contours of static pressure for 2D realizable k-ε 

 

 

 

 
 

Fig. 4.8 Contours of static pressure for 2D RSM 
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Fig. 4.9 Contours of static pressure for 3D realizable k-ε 

 

 

 

 
 

Fig. 4.10 Contours of static pressure for 3D RSM 
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Fig. 4.11 Contours of vorticity for 2D realizable k-ε 

 

 

 

 
 

Fig. 4.12 Contours of vorticity for 2D RSM 
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Fig. 4.13 Contours of vorticity for 3D realizable k-ε 

 

 

 

 
 

Fig. 4.14 Contours of vorticity for 3D RSM 
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5 FLOW PAST NACA 0009 HYDROFOIL  

 The second test case should verify the ability of the solver to respond to 

the hydrofoil trailing edge modification. The computation results are confronted with 

the experimental data assembled and presented in 2012 by Zobeiri in his PhD. thesis 

at École Polytechnique Fédérale De Lausanne (EPFL) in Switzerland. [24] 

 

5.1 Experiment by Zobeiri 

5.1.1 Test Rig 

 The measurements were performed in the EPFL high-speed cavitation tunnel, 

with a test section of 150 x 150 x 750mm; maximum inlet velocity, cmax = 50 m/s, and 

maximum static pressure, pref = 16 bar. The high-speed cavitation tunnel is depicted 

in Figure 5.1. A nozzle with reduction in area 46 to 1 is used to obtain a uniform 

velocity distribution in the test section. A long diffuser, installed downstream of the test 

section, is used to recover the dynamic pressure by reducing the flow velocity to 3% of 

its value at the test section inlet. The bubble trap section collects bubbles in the flow. 

They tend to rise due to the buoyancy effect until they reach one of the plates and then 

are convected along the plate. The double suction pump provides a total head of 36.5 m 

for the flow rate of 1.125 m
3
/s at 885 rpm and it is directly driven by a 500 KW power 

DC-electric motor. A constant air pressure is kept over the free surface in the pressure 

vessel to control the pressure. [24] 

 

 

 
 

Fig. 5.1 EPFL high speed cavitation tunnel: a – whole rig, b – test section [24] 

 

 

5.1.2 Experimental Hydrofoil 

 The tested hydrofoil is based on NACA 0009-7.845/1.93 with the maximum 

thickness equal to 9% of the chord length. The hydrofoil is made of stainless steel with 

chord and span lengths of 110 mm and 150 mm respectively. As a reference hydrofoil 

NACA 0009 blunt truncated at L = 100 mm with trailing edge thickness of 3.22 mm is 

selected. The reference hydrofoil is presented in Figure 5.2. The geometry is defined in 

x; y; z coordinate system with the origin placed at the hydrofoil leading edge. 
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Fig. 5.2 Reference hydrofoil NACA 0009 blunt truncated [24] 

 

 

 The curve of the hydrofoil is defined by following equations: 
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 where L0 is the original chord length and 

 

 a0 = + 0.1737  b0 = + 0.0004 

 a1 = - 0.2422  b1 = + 0.1737 

 a2 = + 0.3046  b2 = - 0.1898 

 a3 = - 0.2657  b3 = + 0.0387 

 

The test case hydrofoils are based on reference hydrofoil NACA 0009. The only 

difference is the modified trailing edges. The first case study is an oblique trailing edge 

hydrofoil with the trailing edge cut at about 93% of the chord length at an angle of 30˚. 

Its trailing edge thickness is quarter of blunt trailing edge thickness. The second case 

study is a Donaldson trailing edge hydrofoil. This hydrofoil is shaped by modifying the 

blunt trailing edge with a combination of a straight line with an angle of 45˚ and a 3rd 

polynomial curve. All three hydrofoil trailing edges are depicted in figure 5.3. 

 

 

 
 

Fig. 5.3 NACA 0009 hydrofoil trailing edges: a – truncated, b – oblique, c – Donaldson [24] 
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5.1.3 Experiment Results 

 Zobeiri measured the shedding frequency for two modes of the boundary layer 

for each hydrofoil: the hydrofoils are made from stainless steel and polished to mean 

surface roughness, Ra = 0.15 µm. The hydrofoil surface is therefore considered to be 

hydraulically smooth over the entire experimented free-stream velocity range. A natural 

turbulent transition can occur beyond a certain distance from the leading edge. So called 

tripped transition is artificially reached by means of a distributed roughness made of 

glue and 125µm diameter sand placed on both sides of the hydrofoil, 4mm downstream 

from the stagnation line and 4 mm wide, Figure 5.4. The glue and sand combination 

create a 150 µm high, two-dimensional flow obstacle while the sand strip itself provides 

multiple three dimensional protuberances. Hence forth, this configuration is designated 

as the tripped transition. In contrast, the case without rough strips is designated as the 

natural transition. [1] 

 

 

 
 

Fig. 5.4 Distributed roughness on the leading edge [1] 

 

 

 
 

Fig. 5.5 Shedding frequency values for truncated trailing edge [1] 
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 The measured values for truncated, oblique and Donaldson trailing edges are 

recorded in diagrams in Figure 5.5, 5.6 and 5.7 respectively. The Reynolds number 

values in these figures are based on the boundary layer thickness. 

 

 

 
 

Fig. 5.6 Shedding frequency values for oblique trailing edge [1] 

 

 

 
 

Fig. 5.7 Shedding frequency values for Donaldson trailing edge [1] 
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5.2 CFD Simulation of flow past NACA 0009 Hydrofoil 

 The simulation is based on data assembled by Zobeiri: since the CFD simulation 

predicts the boundary layer as fully turbulent, it is compared with the data recorded for 

the tripped transition mode. And since it is unable to cover the lock-in phenomenon 

[16], five values of velocity were chosen (7, 13, 20, 22 and 28 m/s) that do not lie in the 

region affected by the lock-in. For the reference hydrofoil (with blunt truncated trailing 

edge) the computations were carried out using realizable k-ε model both in 2D and 3D 

to verify the conclusion from the previous test case. Besides realizable k-ε model the 

SST k-ω model (shear stress transition) was used in 2D for the comparison of the 

results. The other two hydrofoils (oblique and Donaldson) were computed only by 2D 

realizable k-ε model. 

 

5.2.1 2D Simulation 

Spatial discretization: 

 The origin of the coordinate system of the computational domain is located 

at the leading edge of the hydrofoil. The inlet is placed 220 mm in front of 

the hydrofoil. The domain is 150 x 750 mm which corresponds to the dimensions of 

the test section of EPFL test rig. The sketch of the domain with labeled boundary 

conditions is presented in Figure 5.8. 

 

 

 
 

Fig. 5.8 Sketch of the computational domain 

 

 

 In the first case, the realizable k-ε model was used as a turbulence model 

together with the non-equilibrium wall functions. For this case the spatial discretization 

of the reference hydrofoil domain and the details of all three trailing edges are in 

Figure 5.9 and 5.10 respectively. All the meshes consist of 36 758 quadrilateral cells; 

the Map meshing type is used. The attempt was to make all the meshes as identical as 

possible so that the results could be subsequently compared.  

 

 

 



VUT-EU-ODDI-13303-07-15                                                                              VUT FSI 

48 

 

 

 

 
 

Fig. 5.9 Spatial discretization of the domain 

 

 

 
 

Fig. 5.10 Detail of trailing edges: a – truncated; b – oblique; c - Donaldson 

 

 

Solver setting: 

 Boundary conditions are based on Zobeiri’s experiment. 

On velocity-inlet bc the velocity magnitude is successively cref = 7, 13, 20, 22 

and 28 m/s, turbulent intensity 5 % and hydraulic diameter D = 0.01 m, based on 

maximal hydrofoil thickness. 

On pressure-outlet bc the gauge pressure is p = 0 Pa, turbulent intensity 10 % 

and hydraulic diameter D = 0.01 m. 

Sides of the computational domain are defined as symmetry bc which means 

there is no friction and the normal velocity cn = 0 m/s. 

The hydrofoil is defined as wall bc. 

 

Solution methods: 

Gradient – Least Squares Cells Based 

Pressure – Standard 

Momentum – QUICK 

Turbulent Kinetic Energy k – Second Order Upwind 

Turbulent Dissipation rate ε – Second Order Upwind 

Discretization of the unsteady term – Second Order Implicit 

 

In the second case the SST k-ω model was used as a turbulence model. For this 

case the spatial discretization of the domain differs from the first case, because SST k-ω 

model was designed to be applied throughout the boundary layer (i.e. does not use the 

wall functions) and so the mesh had to be considerably denser. For the models that 

do not use wall functions the recommended value of y+ is around 1. [9] Therefore 

the mesh consists of 432 960 quadrilateral cells; again the Map meshing type is used. 

Such a density of the mesh causes noticeably longer computational time. 

The distribution of y+ value along the hydrofoil is in Figure 5.11. 

a) b) c) 
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Fig. 5.11 Distribution of y+ values along the hydrofoil 

 

 

Solution methods: 

Gradient – Least Squares Cells Based 

Pressure – Standard 

Momentum – QUICK 

Turbulent Kinetic Energy k – Second Order Upwind 

Turbulent Dissipation rate ε – Second Order Upwind 

Reynolds Stresses – Second Order Upwind 

Discretization of the unsteady term – Second Order Implicit 

 

For both cases the time step was Δt = 5e-6 s. 

 

 

5.2.2 3D Simulation 

Spatial discretization: 

To the existing 2D mesh for k-ε model the third dimension was added in 

the extent of 150 mm so that the computational domain corresponds with the test 

section of the EPFL test rig. The mesh consists of 2 205 480 hexahedral cells; the Map 

meshing type is used. 

 

 The setting of the solver was identical with the 2D approach and equally so 

the solution methods and the time step. 
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5.3 CFD Results 

 The y-velocity was monitored in the point downstream of the hydrofoil with 

the coordinates x, y, z = [0.12; 0; 0] m. In addition to the y-velocity, the lift coefficient 

was monitored to determine the lift force affecting the hydrofoil. The Reynolds number 

values in the following tables (for all three hydrofoils) are based on the free stream 

velocity and the maximum hydrofoil thickness tmax = 10 mm. 

 At first, let us deal with the reference (blunt truncated) hydrofoil and the impact 

of different solution approaches on the results. The obtained values of shedding 

frequency for 2D and 3D realizable k-ε and 2D SST k-ω models are presented 

in Table 5.1 and Figure 5.12.  

 

 

Truncated               

cref Re experiment 2D k-ε dif. SST k-ω dif. 3D k-ε dif. 

m/s - Hz Hz % Hz % Hz % 

7 69665.0 357 385 7.8 397 11.2 366 2.5 

13 129377.9 689 747 8.4 794 15.2 758 10.0 

20 199042.9 1097 1175 7.1 1224 11.6 1154 5.2 

22 218947.2 1184 1303 10.1 1282 8.3 1282 8.3 

28 278660.0 1531 1666 8.8     1671 9.1 

 
Tab 5.1 Values of shedding frequency for truncated trailing edge 

 

 

 
 

Fig. 5.12 Velocity dependent shedding frequency values for truncated trailing edge 
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 From the presented results of the shedding frequency it can be seen that neither 

the denser mesh nor the 3D approach to the problem provides significantly more 

accurate results. Strictly speaking the vortex shedding phenomenon is three dimensional 

and the CFD solver is able to predict this fact (see Figure 5.13 where the “deformation” 

of the vortices in the third dimension is visible); however, when the computational time 

is taken into consideration, it is clear that the wall functions 2D approach is sufficiently 

accurate, robust and economical. Both 3D realizable k-ε and 2D SST k-ω models need 

the computational time in the order of days, whereas 2D realizable k-ε is able to provide 

reasonable results in the order of hours. The contours of vorticity for the individual 

approaches are presented in Figures 5.14 to 5.16. 

 

 

 
 

Fig. 5.13 3D nature of the vorticity 

 

 

 
 

Fig. 5.14 Contours of vorticity, 3D realizable k-ε 
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Fig. 5.15 Contours of vorticity, 2D realizable k-ε 

 

 

 
 

Fig. 5.16 Contours of vorticity, 2D SST k-ω 

 

 

From the figures above, it is apparent that concerning the vorticity, there is no 

considerable difference between 2D and 3D k-ε models; however the SST k-ω model 

predicts significantly stronger vorticity. 
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 The values of the lift force affecting the trailing edge for individual approaches 

are presented in Figure 5.17. The values were obtained from the amplitude of the lift 

coefficient which is defined as: 

 

 

𝑐𝐿 =  
𝐹𝐿

1

2
∗𝜌∗𝐶𝑟𝑒𝑓

2 ∗𝐴
     (5.1) 

 

 

 where FL is the lift force, ρ is the fluid density, cref is the free stream velocity and 

A is the area of the hydrofoil. [9] 

  The results of the lift force values show a significant difference between 

individual approaches. This corresponds with Dörfler [7] and other authors who claim 

that the shedding frequency prediction is neither significantly dependent on the grid, nor 

strongly influenced by the choice of the turbulence model, whereas the prediction 

of the amplitude strongly depends on both.  

 

 

 
 

Fig. 5.17 Velocity dependent lift force amplitude for truncated trailing edge 

 

 

Unfortunately  it is not possible to verify which of the approaches predicts the lift 

force amplitude more exactly because in Zobeiri’s experiment only the vibrational 

amplitude was observed. Although the absolute value of the lift force is not known, 

the qualitative comparison of the hydrofoils with different trailing edges is possible. 

Due to the time-efficiency, the comparison of the individual hydrofoils is based 

on 2D realizable k-ε model computation. 
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 The obtained data for the oblique trailing edge are presented in Table 5.2 and 

in Figure 5.18. Compared with the truncated trailing edge, the CFD results of this case 

considerably differ from the experimental results. Whereas for the truncated trailing 

edge the difference from the experiment was around 10 %, this case reveals 

the difference around 40 %. The question is whether the experimental data are correct; 

the data assembled by Zobeiri show the decrease in the shedding frequency for 

the oblique trailing edge, various articles, however (see e.g. [18], [13]), show on 

the contrary the increase of the shedding frequency with which correspond the CFD 

results. 

 

 

Oblique         

cref Re experiment 2D k-ε dif. 

m/s - Hz Hz % 

7 69665.0 337 491 45.7 

13 129377.9 667 949 42.3 

20 199042.9 1026 1457 42.0 

22 218947.2 1154 1603 38.9 

28 278660.0 1500 2073 38.2 

 
Tab. 5.2 Values of shedding frequency for oblique trailing edge 

 

 

 
 

Fig. 5.18 Velocity dependent shedding frequency for oblique trailing edge 
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 The CFD results for the Donaldson trailing edge are presented in Table 5.3 and 

in Figure 5.19. Concerning the difference from the experiment, this case is similar to 

the truncated trailing edge: it shows the difference of about 10 % from the experiment. 

 

 

Donaldson       

cref Re experiment 2D k-ε dif. 

m/s - Hz Hz % 

7 69665.0 395 437 10.6 

13 129377.9 781 859 10.0 

20 199042.9 1234 1351 9.5 

22 218947.2 1367 1489 8.9 

28 278660.0 1784 1923 7.8 

 
Tab. 5.3 Values of shedding frequency for Donaldson trailing edge 

 

 

 
 

Fig. 5.19 Velocity dependent shedding frequency for Donaldson trailing edge 
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 The comparison of CFD results for shedding frequencies of all three hydrofoils 

as a function of free stream velocity is presented in Table 5.4 and in Figure 5.20. 

It shows the increase of the frequency for both oblique and Donaldson trailing edges 

as compared to the reference hydrofoil. The Figure 5.20 shows quasi-linear relationship 

between the shedding frequency and the free stream velocity in all three cases. 

 

 

cref Re truncated oblique Donaldson 

m/s - Hz Hz Hz 

7 69665.0 385 491 437 

13 129377.9 747 949 859 

20 199042.9 1175 1457 1351 

22 218947.2 1303 1603 1489 

28 278660.0 1666 2073 1923 

 
Tab. 5.4 Values of shedding frequency for truncated, oblique and Donaldson trailing edges 

 

 

 
 

Fig. 5.20 Shedding frequency comparison for truncated, oblique and Donaldson trailing edges 

 

 

 Since the shedding frequency of the oblique trailing edge differs the most from 

the shedding frequency of the reference hydrofoil, this trailing edge appears to be 

the most suitable choice from the frequency point of view. 

 The relationship between Reynolds number and the normalized frequency, or 

Strouhal number, for the three trailing edges is presented in the Figure 5.21. In all three 

cases the Strouhal number is based on the reference hydrofoil trailing edge thickness 

tref = 3.22 mm. It can be seen that Strouhal number remains almost constant for 

the whole range of the Reynolds number. 
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Fig. 5.21 Strouhal – Reynolds number relationship 

 

 

 
 

Fig. 5.22 Lift force comparison for truncated, oblique and Donaldson trailing edges 
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 The comparison of the lift force amplitude of the three trailing edges is presented 

in Figure 5.22. Both oblique and Donaldson trailing edges cause significant decrease in 

the amplitude of the lift force which is positive from the fatigue-life point of view. 

Particularly the Donaldson trailing edge significantly reduces the amplitude, which is in 

agreement with literature. Fontanals [10] remarks that hydrofoils with this type of 

trailing edges generate a low amplitude vortex shedding which makes them quite 

interesting to avoid vortex induced vibrations and strong fluid-structure couplings.  
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6 ČBE ASSIGNMENT 

 The assignment by the company ČKD Blansko Engineering concerns 

the specific Francis turbine unit. Therefore the company provided the geometry of 

a model turbine stay vane, the inlet radius of the stay ring and the value of velocity on 

this inlet: The suction diameter of model turbine runner is Ds = 322.5 mm, the whole 

stay ring consist of 20 stay vanes, the stay ring inlet radius is Rin = 272 mm, 

the maximal thickness of the stay vane is tmax = 6.15 mm, the tangential inlet velocity 

ct = 6.9 m/s and the radial inlet velocity cr = 2.7 m/s. 

 

6.1 CFD Simulation of ČBE Assignment 

Spatial discretization: 

 The origin of the computational domain coordinate system is placed in the center 

of the stay ring. The inlet radius is Rin = 272 mm, the outlet radius is Rout = 185 mm. 

Since the whole stay ring consists of 20 stay vanes, the segment of the computational 

domain has the span of α = 18°. The shape of the computational domain is presented in 

Figure 6.1.  

 

 

 
 

Fig. 6.1 Computational domain and the detail of trailing edges: a – original, b – oblique, c – Donaldson 
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 In Figure 6.1 there are also the boundary conditions indicated by color: dark blue 

means velocity-inlet (the green arrows indicate the inlet-velocity profile), pale blue is 

the periodic boundary condition, red is pressure-outlet and white is wall. The periodic 

boundary condition significantly reduces the computational time, since it allows 

computing of only a segment of the whole geometry. ANSYS Fluent treats the flow at 

a periodic boundary as though the opposing periodic plane is a direct neighbor to 

the cells adjacent to the first periodic boundary. Therefore, when calculating the flow 

through the periodic boundary adjacent to a fluid cell, the flow conditions at the fluid 

cell adjacent to the opposite periodic plane are used. Periodic planes are always used in 

pairs. [9] There are basically two types of periodic boundary conditions: transitional and 

rotational. In this case the rotational one is used. 

 The Figure 6.1 also shows the details of individual trailing edges: a – the original 

ČBE stay vane trailing edge geometry; b – the first modification, oblique: the edge was 

chamfered at the angle 30° and the remaining trailing edge thickness is 0.8 mm; c – the 

second modification, Donaldson: the edge was chamfered at the angle 45° right from 

the upper edge and the connection to the vane profile is not sharp as in the case of first 

modification but round. 

The point right behind the stay vane indicates the position where the y-velocity 

is monitored. 

 The solution of the assignment has some simplifications: since the flow in 

the spiral casing is three dimensional, the incoming flow angles differs for each stay 

vane and also the velocity varies from top to bottom of the spiral casing. Moreover 

the stay vane – guide vane cascade is not taken into account, which makes 

the computation somewhat dissimilar from the reality. However we believe that such 

a simplification is sufficiently accurate and allows the computation to be much more 

time-efficient. 

 For all the trailing edge geometries the realizable k-ε model was used as 

a turbulence model together with the non-equilibrium wall functions. All the meshes 

consist of 139 300 quadrilateral cells; the Map meshing type is used. The attempt was to 

make all the meshes as identical as possible so that the results could be subsequently 

compared. 

 

Solver setting: 

 Boundary conditions are based on ČBE assignment. 

On velocity-inlet bc the tangential velocity is ct = -6.9 m/s and the radial velocity 

is cr = -2.7 m/s; since the solver does not allow to define the tangential and radial 

component of the velocity, these components were transformed into cx and cy velocity 

components and read into the solver by means of .prof file. The turbulent intensity on 

velocity-inlet is 5 % and hydraulic diameter D = 0.006 m, based on maximal hydrofoil 

thickness. 

On pressure-outlet bc the gauge pressure is p = 0 Pa, turbulent intensity 10 % 

and hydraulic diameter D = 0.006 m. 

Sides of the computational domain are defined as rotational periodic bc. 

The hydrofoil is defined as wall bc. 
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Solution methods: 

Gradient – Least Squares Cells Based 

Pressure – Standard 

Momentum – QUICK 

Turbulent Kinetic Energy k – Second Order Upwind 

Turbulent Dissipation rate ε – Second Order Upwind 

Discretization of the unsteady term – Second Order Implicit 

 

The time step was Δt = 5e-6 s. 

 

6.2 CFD Results 

 The y-velocity was monitored in the point downstream of the hydrofoil with 

the coordinates x, y, z = [0.085; 0.2; 0] m. In addition to the y-velocity, the lift and 

the drag coefficients were monitored to determine the lift force affecting the hydrofoil.  

The Reynolds number based on the free stream velocity and the maximum 

hydrofoil thickness tmax = 6.15 mm is Re = 45 353.  

The comparison of shedding frequencies and the amplitude of the lift force is 

presented in Table 6.1. The Strouhal number values presented in this table is based on 

free stream velocity and the reference hydrofoil trailing edge thickness tref = 2 mm. 

Since the chord of the hydrofoil is not parallel with the x-axis but at an angle of 36.9°, 

the values of the lift force amplitude were obtained from the equation: 

 

 

𝐹 =  𝐹𝐿 ∗ cos 36.9° + 𝐹𝐷 ∗ sin 36.9°    (6.1) 

 

 

 where FL is obtained from the equation (5.1) and FD is obtained from similar 

equation for drag coefficient: 

 

 

𝑐𝐷 =  
𝐹𝐷

1

2
∗𝜌∗𝐶𝑟𝑒𝑓

2 ∗𝐴
     (6.2) 

 

 

 where FD is drag force, ρ is the fluid density, cref is the free stream velocity and 

A is the area of the hydrofoil. [9] 

 

 

  fs St dif. F dif. 

trailing edge Hz - % N % 

original 576 0.155 0.00 53.5 0.00 

oblique 714 0.193 23.96 1.25 -97.66 

Donaldson 606 0.164 5.21 25.5 -52.34 

 
Tab. 6.1 Comparison of shedding frequency and lift force amplitude for individual trailing edges 

 

 

 The comparison of vorticity and static pressure for the individual trailing edges 

is presented in Figure 6.2 and Figure 6.3 respectively. 
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 From the presented results it can be seen that both oblique and Donaldson 

trailing edges causes significant reduction of the lift force amplitude which is positive 

from the fatigue-life point of view. The Donaldson trailing edge, however, does not 

change the shedding frequency much. The difference of only 5 % does not guarantee 

the absence of lock-in phenomenon, which could be dangerous. It would be necessary to 

examine the natural frequency of the stay vane in the water to claim whether 

the difference of 5 % is sufficient. 

 The oblique trailing edge shows good results for both the shedding frequency 

and the lift force amplitude. The lift force amplitude is significantly reduced and 

the shedding frequency differs more than 20 % from the reference shedding frequency 

which definitely guarantees the absence of the lock-in phenomenon and so the lift force 

should not be further amplified. 
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III CONCLUSION AND PERSPECTIVES 

 

7 CONCLUSION 

 The aim of the thesis was to find the optimal geometry of the specific stay vane 

trailing edge. The reason for this optimization is the fact that the original trailing edge 

geometry causes the periodic shedding of the vortices with the shedding frequency 

similar to the natural frequency of the stay vane. This coincidence which often presents 

itself by vane “singing” requires drainage of the unit and detailed inspection; in 

the worst case, it may cause severe damage to the stay vane and potentially to the 

runner. 

 The thesis is divided into three parts. The first part provides a qualitative 

description of periodic vortex shedding which is widely known as von Kármán vortex 

street and of the related topics such as Strouhal number, lock-in phenomenon and 

hydro-turbine stay vane cracking caused by vortex induced vibration. This part serves as 

an introduction to the problem. 

 The second part consists of two test cases and the ČBE assignment. The test 

cases serve as a tool for the CFD solver tuning: the first test case employs 

the experiment of vortex shedding past square cylinder executed by Lyn in 1992. 

The result of the experiment is accessible in the ERCOFTAC database. There were two 

turbulence models used for CFD analysis of this test case: realizable k-ε and Reynolds 

Stress model. Both of these were used in two- and three-dimensional approach. 

The closest agreement with the experiment showed 2D realizable k-ε model. 

 The second test case is based on the flow past NACA 0009 hydrofoil executed 

by Zobeiri in 2012. This test case should prove that the CFD solver is sensitive to 

the trailing edge geometry modification. Zobeiri measured wide range of velocities on 

hydrofoils with three different trailing edges: blunt truncated (which was chosen as 

a reference one), oblique (beveled at 30°) and Donalson (beveled at 45°). It is believed 

that asymmetric trailing edges cause a spatial phase shift of the upper and lower vortex 

at their generation stage which leads to their partial elimination. Since the CFD is 

unable to respond to lock-in condition, five values of velocity that are not affected by 

the lock-in were chosen for the CFD computation. For the nature of the vortex shedding 

is three-dimensional, the 3D approach of realizable k-ε model was employed. It has not 

given, however, any better results and equally so the SST k-ω model has not proven to 

be any better. Moreover, these two approaches are very time consuming. Therefore, in 

order to obtain time-efficient computation, the 2D realizable k-ε model was employed 

which showed good agreement with the experimental results. 

 On the basis of these two test cases, the ČBE assignment was resolved. ČBE 

company provided the geometry of a specific stay vane for a model Francis turbine with 

the runner suction diameter Ds = 322.5 mm. maximum thickness of the stay vane 

tmax = 6.15 mm. The computation was carried out by means of 2D realizable k-ε model. 

Two trailing edge modifications were compared with the original ČBE geometry. 

The first modification is oblique: the edge is chamfered at the angle 30° and 

the remaining trailing edge thickness is 0.8 mm; the second modification is Donaldson-

like: the edge is chamfered at the angle 45° right from the upper edge and 
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the connection to the vane profile is not sharp as in the case of first modification but 

round. The details of the individual trailing edges are presented in Figure 6.1. 

The modifications were subsequently evaluated from two points of view: first, 

the shedding frequency was obtained by means of Fast Fourier Transform (FFT) of 

monitored time-varying y-velocity values. And second, the lift force amplitude was 

determined from time-varying lift coefficient values. 

 As for the lift force amplitude, both modifications showed considerable 

reduction of the amplitude, but as for the shedding frequency, the Donaldson trailing 

edge showed only 5 % difference from the original trailing edge which could prove 

insufficient. Such a small difference does not guarantee the absence of lock-in 

condition, which causes the amplification of the resulting lift force. The oblique trailing 

edge showed more than 20 % higher shedding frequency than the original trailing edge 

and so the lock-in most likely will not occur. Therefore the oblique trailing edge 

modification proves to be optimal from both shedding frequency and lift force 

amplitude points of view. 
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8 PERSPECTIVES 

 There is also a more profound approach to the solution of vortex shedding: 

the stay vanes or guide vanes can be drilled through from the upper to the lower side, so 

that the lower side boundary layer would move to the upper side of the vane similarly as 

it is done in case of airfoil slotted flaps. 

 Another approach is discussed by Lewis et al. [15]: he suggests the usage of 

additional water jets in the vanes. The water should be supplied via vane pivot and led 

through the channels to the trailing edge as shown in Figure 8.1. 

 

 

 
 

Fig. 8.1 Water jets in a vane [15] 

 

 

 Such water jet can partially eliminate the vortices downstream the vane and so 

have a positive impact on vortex induced vibration. However, the question is whether 

such a solution would be economical, since the channels demand additional workshop 

effort and the chamfering of the trailing edge seems to be sufficient. 

 These can be the directions of further vane investigation. 
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ABBREVIATIONS AND SYMBOLS USED 

Abbreviation: 
 

bc  boundary condition 

CFD Computational Fluid Dynamics 

ČBE ČKD Blansko Engineering 

EPFL École Polytechnique Fédérale De Lausanne  

ERCOFTAC European Research Community On Flow, Turbulence and Combustion 

FFT Fast Fourier Transform  

LDV Laser Dopler Velocimetry 

NACA National Advisory Committee for Aeronautics 

QUICK Quadratic upstream interpolation for convective kinematics 

RSM Reynolds Stress Model 

SST Shear Stress Transition 

 

Symbol: Name: Unit: 

 

a stream-wise distance of nearby vortices m 

b cross-stream distance of the two vortex rows m 

cD drag coefficient 1 

cL lift coefficient 1 

cmax maximum inlet velocity m/s 

cn  normal velocity m/s 

cr radial inlet velocity m/s 

cref free stream velocity m/s 

ct tangential inlet velocity  m/s 

cx x-velocity m/s 

cy y-velocity m/s 

d side length m 

D characteristic body dimension m 

Ds suction diameter of a runner m 

FD drag force N 

FL lift force N 

fs vortex shedding frequency Hz 

ht hydrofoil trailing edge thickness m 

L chord length m 

p pressure Pa 

pref static pressure Pa 

Ra surface roughness µm 

Re Reynolds number 1 

Rin inlet radius is  m 

Rout outlet radius is m 

St (Sh/ Sth) Strouhal number 1 
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tmax maximal thickness of the stay vane m 

tref reference hydrofoil trailing edge thickness m 

y distance to the nearest wall m 

y+ dimensionless distance from the wall 1 

δ boundary layer thickness m 

µ dynamic viscosity Pa.s 

τw wall shear stress Pa 

uτ friction velocity m/s 

υ  kinematic viscosity m
2
/s 

ρ density kg/m
3
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