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BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
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Abstrakt
Diplomová práce se zabývá optimalizací systému pro sledování letadel, využívaného pro
řízení letového provozu. Je popsána metodika vyhodnocování přesnosti sledovacího systému
a přehled relevantních algoritmů pro sledování objektů. Dále jsou navrženy tři přístupy k
řešení problému. První se pokouší identifikovat parametry filtrovacích algoritmů pomocí al-
goritmu Expectation-Maximisation, implementací metody maximální věrohodnosti. Druhý
přístup je založen na prostých odhadech parametrů normálního rozložení z naměřených a
referenčních dat. Nakonec je zkoumána možnost řešení pomocí optimalizačního algoritmu
Evoluční strategie. Závěrečné vyhodnocení ukazuje, že třetí přístup je pro daný problém
nejvhodnější.

Abstract
This Master’s thesis deals with a configuration optimization of an aircraft surveillance sys-
tem, which is being used in the air traffic control. We survey commonly used methodology
for a performance evaluation of such surveillance systems and review relevant algorithms for
target tracking. Three optimization approaches are explored. The first solution attempts to
identify parameters of employed filtering algorithms by using the Expectation-Maximisation
algorithm to find corresponding maximum likelihood estimates. The second approach em-
ploys a simple distribution fitting to the available measured and reference data. Evolution
strategies are examined as the third option. Experimental evaluation shows that the third
approach is the most suitable for the problem in hand.
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Chapter 1

Introduction

Air transport is nowadays undoubtedly the fastest and the most comfortable way to trans-
port people or freight on longer distances. Every day thousands of aircrafts cruise the skies
all around the world. Surely, our airspace is becoming much more crowded than ever be-
fore and especially around the airports the concentration of airplanes is reaching its limits.
In such a dense traffic, one cannot expect the pilots of the airplanes to do without any
navigational assistance. This assistance or service is called Air Traffic Control (ATC) and
is provided by ground controllers to the pilots not only in order to prevent collisions, but
also to guide aircrafts through controlled airspace, organize the flow of air traffic, as well
as provide the pilots with information on weather or other types of support. As such it is
an area of great importance where any failure might be life-threatening.

ATC controllers are utilizing to work a great variety of devices that provide them with
all necessary information – Air Traffic Management (ATM) systems. An essential part of
this set of tools is a unit for tracking targets (aircrafts) called tracker in short. This device
is used to visualize the current position and heading of an aircraft, which is then a subject
for further evaluation.

The input data used for ATC trackers comes from primary and secondary surveillance
radars – devices measuring the distance of an object by detecting reflected radio signals, and
thus suffering from high measurement noise due to physical limitations of such a measuring
principle; to name a few beam path, range, signal noise or interference with other signals.
Sometimes the radar signal might be reflected by other objects than aircrafts causing false
detections or outliers. Moreover, the measurement noise usually changes with the distance
of the aircraft from the radar. The noise of such measurement can reach a magnitude
of several hundred meters and these measurements are often the only information about
the position of an aircraft the ATC controller has.

Significantly more precise position measurements can be extracted from the data pro-
vided by the Automatic Dependent Surveillance-Broadcast system (ADS-B). ADS-B is
a modern surveillance technology enabling an aircraft equipped with such system to pe-
riodically broadcast its position determined via satellite navigation (GPS). Nevertheless,
even these measurements might be inaccurate though their error is much lower.

Naturally, one can ask why air traffic control still uses radars instead of switching to
modern systems such as ADS-B. The answer to this question lies in the key differences
between these technologies. Whilst radar technology (used in primary surveillance radars)
is non-cooperative, the ADS-B system relies on cooperation with the target. If the target
does not reply to the ADS-B request sent by a ground station, there is no other way of
determining the position of the aircraft. Total reliance on cooperative surveillance tech-
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nology would be obviously a risky affair as the transponders might malfunction, can be
turned off or the aircraft is simply not equipped with appropriate ADS-B unit although it
is slowly becoming a common equipment. Moreover, due to the low receiving power of GPS
signal and resultant susceptibility to either intentional jamming or unintentional radiofre-
quency interference, the whole ADS-B system can easily experience service interruptions.
To maintain the reliable operation of air traffic surveillance systems, the use of primary
radars, accompanied by secondary radars, is still a vital source of data.

Needless to say, we cannot directly use raw measurements supplied by radars and project
it on the tracker screen. Such a trajectory would inevitably be very bumpy and all calcu-
lations using the raw data would give very imprecise results. For such scenarios, there
are filtering algorithms that try to estimate the true state (position and other kinematic
characteristics) of the observed process. The input data for these algorithms are noisy raw
radar measurements from which they compute estimates that are more precise, robust to
false detections, smoothed and follow more closely the motion patterns observed during
flights. These algorithms are based on statistical theory so one needs to supply necessary
parameters describing the examined phenomena. Correct identification of these statisti-
cal values have a great influence on trackers overall performance. However, it is not clear
how one can derive these parameters. In this thesis, we compare different approaches to
the problem of parameter estimation.

The purpose of this Master’s thesis is an optimization – in a horizontal plane – of
the ATC tracker that is currently being deployed at Keflavik airport (Iceland) implemented
by Tern Systems ehf1. Tern Systems also supplied radar recordings along with correspond-
ing ADS-B data that were used throughout the thesis.

The configuration of the tracker consists of various parameters that greatly influence
the performance of the tracker. However, there is no analytical solution or another system-
atic approach to determine the best value for these parameters. The current configuration
was hand-optimized by examining various trajectory plots and fiddling with these param-
eters in nearly ad hoc manner. Despite that researchers in Tern Systems managed to find
a configuration that is good enough for the needs of ATC controllers. Moreover, the tracker
fulfils all requirements of the ESASSP specification (see section 2). However, by employ-
ing the techniques of machine learning we aim to find even better configurations without
the tedious trial-and-error approach.

This work covers three different approaches we applied to the problem of ATC tracker’s
performance optimization. The first approach is based on a separate optimization of
the very core parts of the tracker – Kalman filters. For the optimization of these filters we
intended to use the Expectation–maximization (EM) algorithm – an algorithm for finding
the most likely estimates of parameters.

Besides that, we carried out the estimation of the parameters statistically describing
the process and measurement model from the available data (radar measurements and
corresponding reference values) – we shall refer to this method as an empirical parameter
estimation – by fitting normal distributions to the samples of the process disturbances and
measurement noise.

The last method investigates an application of a stochastic black-box optimization using
Evolution Strategy algorithm – a versatile derivative-free evolutionary algorithm.

The thesis is organized as follows. In chapter 2 we give a brief overview of common
performance evaluation methods for ATC trackers. Chapter 3 describes algorithms used in

1www.tern.is
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the tracker or in the thesis. The current implementation of the tracker is examined in chap-
ter 4. In the chapter 5 we defined the problem of ATC tracker optimization. Chapters 6, 7
and 8 elaborate on the proposed solutions. The implementation of the used approach is
described in 9 and in 10 we present achieved results with the conclusions in 11.
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Chapter 2

ATC Tracker Evaluation Methods

The assessment of tracker’s quality can be carried out on recorded datasets1 of radar mea-
surements. The output of the tracker is then compared to the corresponding ADS-B data,
which are then considered to be a ground truth – as we are unable to observe the true
states directly.

Standards provide the minimum performance that an ATM surveillance system has to
fulfil. The most recent one is the Eurocontrol2 Specification for ATM Surveillance System
Performance (ESASSP, EUROCONTROL-SPEC-0147)3. The performance requirements
are expressed in terms of statistical measures (mostly Root Mean Square Error – RMSE)
dependent on the specific situation of an aircraft. For all requirements, both mandatory
and recommended performance measures are given4.

The definition of the Root Mean Square Error reads:

RMSE =

√∑n
i=1E

2
i

n

where n is the total number of samples and Ei is the error of the i-th sample.

2.1 Considered requirements for optimization

For the optimization process it would be impractical and cumbersome to consider all re-
quirements specified in the ESASSP for the evaluation, therefore only the following were
recognized to be the main tuning metrics for the tracker configuration, i.e., they serve as
a cost-function in the optimization process.

Outlier criteria Outlying target reports and false positives are excluded from the eval-
uation. The horizontal position outlier criteria for cooperative surveillance is horizontal
position error greater than 1690 m.

1also referred to as opportunity traffic
2www.eurocontrol.int
3available from https://www.eurocontrol.int/articles/atm-surveillance-system-performance-esassp-

specification
4The ATC tracker that is to be optimized mainly operates in the area with 3 NM horizontal separa-

tion with data from secondary surveillance radars (cooperative surveillance) – all requirements taken into
consideration account for 3 NM horizontal separation with cooperative surveillance system
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2.1.1 Horizontal position RMSE

The error on the provided horizontal position is the 2D Euclidian distance between the hor-
izontal position provided by the surveillance system and the reference horizontal position
of the corresponding aircraft at the time when the updated position was output/delivered.
For each target report, we calculate horizontal position error which is later used for calcu-
lation of root mean square error for the whole track and the whole dataset. The required
values are to be found in the table 2.1.

Table 2.1: Specification of the maximum RMSE in the horizontal position.

for every track globally (whole dataset)
mandatory performance 330 m 300 m
recommended performance 230 m 210 m

2.1.2 Track velocity characteristics RMSE

The error calculation for track velocity includes error for velocity amplitude and velocity
angle (commonly referred to as heading) and follows the same principle as for horizon-
tal position error, i.e., the tracker provided value is compared with the reference value.
Here the ESASSP specification distinguishes between straight-line motion and manoeu-
vres. These types of motion are differentiated by the value of transversal acceleration
whose threshold value is set to 1.5 m/s2. Note that the specification again does not men-
tion mandatory performance and both measures are defined globally for all tracks (whole
dataset). Track velocity error characteristics are listed in the table 2.2.

Table 2.2: Recommended performance requirements for the track velocity vector. Specified
as the maximum RMSE in the vector components.

straight-line manoeuvre
amplitude (speed) 4 m/s 8 m/s
angle (heading) 10◦ 25◦

9



Chapter 3

Employed Methods and
Algorithms

In this chapter, we provide an overview of the theoretical basics a reader should be familiar
with. This covers broad fields of classification, optimal filtering (and corresponding motion
models) and evolutionary optimization as they comprise the core parts of this thesis.

3.1 Used Motion Models

When tracking a manoeuvring target the main objective is to precisely estimate the target’s
trajectory, i.e., its kinematic state. Many of these tracking methods are model based – they
represent the target’s motion and its observations (measurements) by some mathematical
models, usually state-space models of the following form:

xk+1 = fk(xk, uk) + wk

zk = hk(xk) + vk

where

• xk, uk and zk are the target state, control input and target state observation corre-
spondingly, at the discrete time tk,

• wk and vk are process and measurement noise sequences,

• and fk and hk are functions defining the evolution of the state and its relation to
the measurement (observation).

However, the usability of these models is very limited without coupling with appropriate
estimation (filtering) algorithm. Depending on the nature of the functions fk and hk,
these models might be classified as linear or non-linear models and, consequently, for their
estimation a linear or non-linear estimation algorithm is used.

In the available literature dealing with tracking algorithms, one can find a great variety
of motion models applicable to the problem of a manoeuvring target tracking. Several are
described in [34], [36] and [5], most of them are also summarized in a survey [24]. These
models differ in their complexity, characteristics of the motion they represent, organization
of a state vector, type of observations and in the way how is the process noise injected.
Generally, the process noise can be modelled as a continuous-time white noise signal or

10



a discrete-time random variable with a normal distribution. In the continuous-time domain,
the process noise magnitude is expressed by corresponding Power Spectral Density (PSD),
while in the discrete-time counterpart by its variance.

The motion models used throughout this thesis are described in the next sections. We
note that all motion models use Cartesian coordinate frame in their state representations
as well as observations.

3.1.1 Constant velocity model

The most basic model is a Constant Velocity (CV) model that assumes the object is moving
at nearly constant velocity on a straight track. The process noise can be injected using
random acceleration inputs that accounts for changes in speed. In such models the state
usually constitutes of the object’s position and velocities and can be organized as follows:

xk =
[
x̂k ŷk v̂xk v̂yk

]T
where xk is a state vector at time step k, x̂k and ŷk are estimates of the position in
XY coordinates; and v̂xk and v̂yk are estimates of the velocities in the X and Y direction
correspondingly.

Since our observations are taken in a discrete-time domain and the motion model is
linear, the discrete-time state and measurement models develops to:

xk+1 = Axk + wk

zk = Hxk + vk

where

• A is a state transition matrix,

• H is a measurement model,

• wk and vk are process and measurement noise samples with covariance matrices Qk

and Rk, correspondingly.

We intentionally left out the term counting for the control input as it is in the most
cases unknown. A common approach is to assume there is no control input, even though
an actual thrust is, obviously, at certain times present. The effect of such inputs is uniformly
modelled as a process noise.

The measurements (observations) in our scenario consist of a position in X and Y
coordinates, therefore, the measurement model (linear) is defined as:

H =

[
1 0 0 0
0 1 0 0

]
The state transition matrix and process noise covariance matrices are obviously time-

varying since we observe the process via irregularly sampled measurements. Such irregu-
larity makes the transition matrix and process covariance matrix dependent on the length
of the interval between measurements. The dynamics of the process is thus modelled in
continuous-time domain and for every iteration of the filtering algorithm the continuous-
time model is discretized.

11



Discretization of a random process

The continuous-time linear model is described by the differential equation:

dx(t)

dt
= Fx(t) + Lw(t),

where

• F is a constant matrix characterizing the behaviour of the model,

• L is a constant noise effect matrix denoting which state components are corrupted by
the process noise,

• w(t) is a white process noise with power spectral density Qc.

With CV motion model and process noise entering the state as a random acceleration
inputs, the matrices F and L read:

F =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

L =


0 0
0 0
1 0
0 1


In order to obtain a discrete-time equivalent (suitable for use with discrete time esti-

mation algorithm), we first need to discretize/sample the continuous model. The matrices
Ak and Qk are then given as

Ak = exp(F∆tk)

Qk =

∫ ∆tk

0
exp(F(∆tk − τ))LQcL

T exp(F(∆tk − τ))Tdτ

where ∆tk is the stepsize of the discretization. Numerical evaluation of Qk can be computed
by a matrix fraction decomposition. How these equations were derived and for further
details the reader is referred to [19].

In the current implementation of the tracker, it is assumed that the disturbances in
both axes have the same magnitude and, thus, white noise with the same power spectral
density is perturbing estimates of the both velocities v̂xk and v̂yk .

3.1.2 Constant turn model

The Constant Turn motion model (often referred to as Coordinated Turn model) aims at
describing the turning motion with a constant turn rate, which also augments the state
vector by a corresponding estimate ω̂k. On contrary to the CV model, the CT model is not
linear – the evolution of a state is governed by a non-linear dynamic function ([19]).

xk+1 =


1 0 sin(ω̂k∆t)

ω̂k

cos(ω̂k∆t)−1
ω̂k

0

0 1 1−cos(ω̂k∆t)
ω̂k

sin(ω̂k∆t)
ω̂k

0

0 0 cos(ω̂k∆t) −sin(ω̂k∆t) 0
0 0 sin(ω̂k∆t) cos(ω̂k∆t) 0
0 0 0 0 1

xk +


0
0
0
0
1

 vk
where ω̂k is the turn rate estimate at the time step k and vk is a sample from univariate
normal distribution with a variance Qω.
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As the process noise is perturbing only the turn rate estimates, noise covariance is
defined as:

L =
[
0 0 0 0 1

]T
Qk = LQωL

T∆t

On account of non-linear dynamic function, one cannot use linear estimation algorithm,
but a non-linear one instead. We note that the measurement model H is still the one
introduced with the CV motion model, i.e., a linear one.

3.2 Optimal filtering

The term optimal filtering is herein in the meaning of a methodology used for state es-
timation of a process, which is observed indirectly via noisy measurements. The state of
this process is constituted of the physical state, in our case described by the position of
a moving object and its derivatives such as velocity or acceleration. Our observation of this
state is often incomplete (for example we observe only position) and noisy as the sensor
is encumbered by errors of various origin. The process of filtering then refers to removing
the noise from measurements and computing estimates for the state given these corrupted
measurements.

Several different estimators applicable to target tracking (alpha-beta, adaptive Kalman
filter, IMM algorithm) are compared in [22]. In this experiment, the IMM clearly outper-
formed other state estimators examined and as such is still a prevailing algorithm for target
tracking in the ATC domain.

In this section, we give an overview of the Kalman filter algorithm and the Interacting
Multiple Mode (IMM) algorithm. Both present core parts of the tracking algorithm so their
understanding is essential for the rest of the project.

State smoothing Another method for estimating the true state of a process is smooth-
ing. Unlike filtering, it estimates the current state based on the complete sequence of
process observations, i.e., to estimate a state it incorporates not only past but also future
observations. It follows that this kind of estimation can only be performed off-line, when
all process observations are available.

3.2.1 Kalman filter

The (linear) Kalman filter (originally introduced in [21]) is an optimal recursive algorithm
to estimate the state of a process1 based on noisy measurements observed over time. Thanks
to its computational efficiency it is widely used in technology; especially engineering and
econometric applications.

The Kalman filter operates in iterations that are usually referred to as time and mea-
surement update iterations (or predictor and corrector accordingly). In the time update
iteration we project the state estimate forward from time step n to step n+ 1 – to obtain
an a priori estimate and compute the estimated error covariance. In the measurement
update step, we incorporate the actual measurement and get a posteriori estimates.

The process which is being estimated by the filter is assumed to be governed by a linear
dynamic system – such as CV model introduced in 3.1.1 – of the following form:

1sometimes referred to as a latent variable
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xk = Axk−1 + wk−1

zk = Hxk + vk

Thanks to the recursive equation describing the underlying state dynamics, the Kalman
filter can use the whole history of previous states without the need of explicitly storing
them. This allows the filtering to be optimal, but still computationally feasible.

All of the above indicates that the underlying system of Kalman filters can be seen as
a hidden Markov model with a continuous latent variable. Specifically,

• the true state xk is unobservable,

• the current state xk is dependent only on the previous state xk−1,

• the visible outputs of the system zk are dependent only on the current state xk.

This can be expressed by the following equalities:

p(xk|x1:k−1, z1:k−1) = p(xk|xk−1)

p(zk|x1:k, z1:k−1) = p(zk|xk)

Computational background of the Kalman Filter

We assume that from our knowledge about the system and the state of the system in
the previous time step we can predict the state for the current time step without the need
for any measurement. We denote this a priori state estimate by x̂−k . The error of the a
priori estimate is defined as e−k = xk − x̂−k , whose expected value is referred to as a priori
error covariance. The predicted state is distributed as follows:

p(xk|xk−1) ∼ N (Axk−1 +Buk−1, Qk−1)

In the next step, we obtain a noisy measurement zk as a form of feedback which we
use to make our prediction of the current state more precise. To blend in the actual
measurement we compute the Kalman gain or blending factor which expresses how much
we trust the sensor that provided the measurement. This computation of Kalman gain is
based on the a priori estimate covariance and measurement noise.

By incorporating the
”
weighted“ measurement we obtain an a posteriori state estimate;

a sum of the a priori state estimate and a weighted term called residual or innovation re-
flecting the discrepancy between the predicted measurement Hx̂−k and actual measurement
zk.

x̂k = x̂−k +K(zk −Hx̂−k )

Finally, we compute the a posteriori error covariance as expected value of the a posteriori
estimate error ek = xk − x̂k. The objective of the filtering is then to minimize the a
posteriori error covariance so that the difference in the estimated and actual state is low.

Further reading on the rationale of the Kalman filter is to be found in [27] and [11].
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Discrete Kalman filter algorithm

As stated earlier, the algorithm works in two iterations. In the time update iteration, we
compute the a priori state and error covariance estimates as follows. If we do not know
the initial state of the system, we can

”
make a guess“ and set the error covariance large

enough to reflect this uncertainty.

x̂−k = Ax̂k−1 +Buk−1

P−k = APk−1A
T +Q

In the measurement update iteration, we begin by computing the Kalman gain, which is
later used to integrate the actual measurement into the estimate. The value of the gain Kk

is such, that it minimizes the a posteriori error covariance. How this equation was derived
is explained in [7, p. 216].

Kk = P−k H
T (HP−k H

T +R)−1 =
P−k H

T

HP−k H
T +R

x̂k = x̂−k +Kk(zk −Hx̂−k )

Pk = (I −KkH)P−k

From the equation for computing the Kalman gain, we see that as the measurement
error covariance R approaches zero, the Kalman gain weights the residual more heavily. On
the other hand, as the a priori estimate error covariance P−k approaches zero, the residual
is weighted less heavily.

lim
Rk→0

Kk = H−1

lim
P−
k →0

Kk = 0

3.2.2 Extended Kalman filter

As soon as the underlying system (described by a dynamic function f) – as in the case of
CT motion model (see section 3.1.2) – and/or the relationship between measurement and
the process state (described by a function h) are not linear the linear Kalman filter is no
longer capable of estimating the process state accurately. For such an estimation, one might
use an Extended Kalman filter, which approximates the joint distribution of state and/or
measurement by a Taylor series based transformations (usually first or second order).

xk = f(xk−1) + wk−1

zk = h(xk) + vk

The (possibly) non-linear functions f and h are used for computing the predicted state from
the previous state estimate and the predicted measurement from the current state estimate.
However, they cannot be used for estimation of the respective covariance matrices. Instead,
one needs to compute matrices of partial derivatives (Jacobians), which are then used in
the equations of the Kalman filter.

For further description of the algorithm refer to [6] or [4].
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3.3 Estimation of Multiple Model Systems

The motion of a commercial aircraft can be usually segmented and classified into several
classes corresponding to basic motion models in the literature referred to as Modes-Of-
Flight (MOF). Most of the time, constant velocity is sustained and the aircraft is moving
straight with only occasional turns. During landing and take-off, the aircraft performs
considerably more manoeuvres and accelerates.

We see that the modes-of-flight an aircraft undergoes during a single flight can differ
significantly. Thus, a precise description of the motion using single motion model is not
possible. By using more models, we can describe different modes-of-flight more precisely.

Multiple model systems are considered to be systems with a discrete set of n models
denoted by M = {M1,M2, ...,Mn}. We also know probabilities pij = P{M j

k |M
i
k} of

switching from model M i to model M j and prior probabilities µj0 for each model M j . From
the probabilities pij we can construct a transition probability matrix of corresponding first
order Markov chain that characterizes the mode transitions. The equations describing such
a linear system are:

xk = Aj
k−1xk−1 +Bj

k−1uk−1 + wj
k−1

zk = Hj
kxk + vjk

where A, B, H are a state transition matrix, a matrix relating input to state and a measure-
ment model matrix, respectively, and w and v are process and measurement noise. They
have the same meaning as in section 3.2.1, but are related to a model that is being active
in the specific time step. The meaning of xk and zk stays the same.

However, a wide range of multiple model algorithms have been developed, we herein deal
with Interacting Multiple Model algorithm only as it is currently implemented in the ATC
tracker of our interest. For a comprehensive exploration of another applicable algorithms
the reader is referred to [25].

3.3.1 The Interacting multiple model algorithm

The IMM algorithm is a suboptimal algorithm to filter multiple model systems. Optimality
could be achieved by applying optimal filters for every possible model sequences. For n
models nk optimal filters would have to be run to process the k-th measurement; which is
computationally infeasible.

The IMM algorithm itself is divided into 3 consecutive computational steps.

Interaction During the interaction phase mixing probabilities µ
j|i
k for each model are

calculated – expressing the probability of model M j being active in the time step k − 1
conditioned on model M i being active in the current time step k.

c̄j =
n∑

i=1

pijµ
i
k−1

µ
j|i
k =

1

c̄j
pijµ

i
k−1
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where

• c̄j is equal to marginal probability P (M j
k) of model M j in the time step k; also referred

to as normalization factor,

• pij is a probability of switching from model M i to model M j ,

• µik is a probability of model M i being active in the time step k,

• µj|ik is a probability of model M j being active in the time step k, conditioned model
M i was active in the time step k − 1.

These mixing probabilities serve to estimating the initial means and covariances for each
filter. For the j-th filter we compute the initial state mean x̂0j

k−1 as a sum of means from

previous iteration weighted by the mixing probability µ
i|j
k . The initial covariance P 0j

k−1 is
estimated similarly.

x̂0j
k−1 =

n∑
i=1

µ
i|j
k x

i
k−1

P 0j
k−1 =

n∑
i=1

µi|j × {P i
k−1 + [xik−1 − x̂

0j
k−1][xik−1 − x̂0jk − 1]T }

where xik−1, P i
k−1 are the a posteriori estimates of state covariance at time step k− 1 after

measurement update

Filtering Next we perform the filtering with mixed inputs x̂0j
k−1 and P 0j

k−1. We denote

the outputs (state mean, covariance) of Kalman filters x̂jk and P j
k correspondingly. During

the filtration we also compute the likelihood of the measurement for each filter as:

Λi
k = N (ωi

k; 0, Si
k)

where ωi
k is the measurement residual (innovation) and Si

k it’s prediction covariance for
model M i in the measurement update step. The measurement prediction covariance Si

k is
the denominator in the equation for computing the Kalman gain Si

k = HP−k H
T +R.

Combination In the last phase of the algorithm we combine the estimates for the state
mean xk and its covariance Pk according to µik; the probability of model M i being active
at current time step k.

c =

n∑
i=1

Λi
k c̄i

µik =
1

c
Λi
k c̄i

xk =

n∑
i=1

µikx̂
i
k

Pk =

n∑
i=1

µik × {P i
k[x̂ik − xk][x̂ik − xk]T }
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3.3.2 IMM Smoother

The IMM smoother can be thought of as two instances of the IMM algorithm. One instance
runs forward estimating the current state based on the past evidence p(xk|z1:k−1); while
the second instance runs backward and incorporates the future measurements p(xk|xk+1:N ).
However, this approach is restricted to systems having the state transition matrix A invert-
ible.

3.4 Evolutionary optimization

In this thesis, the evolutionary optimization is employed to optimize parameters of the IMM
algorithm. In the following subsection, we give a general description of algorithms from
the algorithm family of evolutionary optimization and introduce Evolution Strategy (ES)
algorithm and its particular derivative – Covariance-Matrix-Adaptation ES – which is being
used in this research.

3.4.1 Introduction

By the term evolutionary optimization one usually refers to an optimization technique in-
spired by a natural phenomenon such as selection, reproduction or mutation. For the evo-
lutionary algorithms is characteristic their randomness – we categorize them as stochastic
algorithms. They are being successfully applied in a variety of engineering tasks (mathe-
matics, biology, finance) where they are rapidly becoming more and more popular [2].

The success of evolutionary optimization algorithms might be justified by their favourable
properties:

1. They do not require the objective function to have continuous derivatives which is ad-
vantageous as real-world complex engineering problems often have discontinuities [2].

2. The evolutionary algorithms can be implemented to perform a parallel search of
the search space – by evaluating multiple solutions at a time.

The second advantage is also important when an optimizer is initialized to a local
optimum as a serial optimizer might not be able to get out of that local optimum. This
issue can be usually dealt by multiple restarts. However, the gathered information about
the search space is not shared among the optimization runs and thus this approach cannot
be regarded as efficient. On the other hand when searching in parallel we sample and
evaluate the search space at multiple points and use the acquired information to drive
the optimizer to the most promising regions of the search space. Moreover, such a robustness
makes the evolutionary optimization an appropriate tool for rugged objective functions with
possibly many local optima [16].

Populations of individuals

The evolutionary algorithms operate on populations of individuals. An individual is, in this
case, an arbitrary potential solution to the problem – a point in the search space. However,
in order to utilize the evolutionary optimization the solution to the actual problem typically
needs to be transformed into a representation suitable for evolutionary optimization. This is
achieved by a mapping from the original problem context (phenotype) onto an individual’s
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genotype within the context of evolutionary optimization. With evolutionary algorithms,
the phenotype can be encoded into real numbers, binary code or a tree structure [3].

In our scenario, the IMM algorithm parameters are real-valued number and, therefore,
no encoding needs to take place. However, if we would have subjected for the optimization
also the choice of motion models, then we would have to encode the chosen models into the
corresponding genotype.

Reproduction

In every iteration2, the evolutionary algorithm generates a new offspring population by
selecting the best individuals (parents), with respect to the fitness function, as a seed for
the production of new individuals. These descendants are randomly generated by processes
representing mutation or recombination. Mutation herein stands for a randomly corrupted
replication of the genotype and by recombination we refer to an exchange of randomly
selected genotype information among the parents (two or more).

The rationale behind the mutation is to find potential better solutions based on the cur-
rent best solutions. While by performing recombination we assume that by combining
individuals with promising phenotype also the offspring will evince good phenotype; but
since we cannot tell which genotype information is responsible for the specific phenotype
we exchange the genotypes randomly.

Selection

To determine how good a particular individual is one defines a fitness function, which is
based on the objective function whose optimum is to be found by the optimizer. This
objective function is typically bound to the problem solved, and thus decoding the solution
to the corresponding phenotype is often applied.

After evaluation of the individuals is finished, the algorithm selects either determinis-
tically or probabilistically the parents for the next population – this selection is relative to
the actual fitness value or the acquired ranking with respect to the fitness value.

Initialization and termination

Before running the optimization, one usually needs to define the first generation of the evo-
lutionary process. Commonly, this is done randomly in order to cover the complete search
space. On the other hand, if the human designer has some prior knowledge about the lo-
cation of the optimum he can initialize the algorithm to search around that location.

To terminate the algorithm several stopping criterions can be set. Reaching the optimum
is the most trivial one. Unfortunately, very often the optimal value is not known and
therefore it is not possible the set such a criterion right. It is also hard to claim that
the found solution represents the global optimum as one can never be sure there is not
a better solution. What’s more due to the stochastic nature of the algorithm the optimum
might never be reached. Generally for these cases one can set a limit on the iteration count,
fitness function evaluations count or investigate if the fitness value or value of phenotype
does not stagnate.

2also referred to as generation in Evolution strategies
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3.4.2 Covariance-Matrix-Adaptation ES

The CMA-ES algorithm is a stochastic, iterative technique for real-valued parameter op-
timization. It was first introduced by Nikolaus Hansen in [17] in 1996. Since then it
has gained great popularity and nowadays is regarded as the state-of-the-art optimization
scheme for noisy, rugged, multimodal and ill-conditioned functions with possible discontinu-
ities. The algorithm, as other evolutionary algorithms, does not need the objective function
to have continuous derivatives. Moreover, it is a parameter-free algorithm. Finding good
parameters for the optimization process is a part of the algorithm design. The only pa-
rameter that is left for the user to define is the population size. The other parameters are
adjusted during the optimization or their default values are set appropriately for most of
the applications.

Population distribution

The main difference to a classic evolutionary algorithm is the representation of the popu-
lation. In the CMA-ES we represent the population by a multi-variate normal distribution
N (m,C), where

• m ∈ Rn is the mean of the sample distribution,

• C is corresponding symmetric n× n covariance matrix.

The sample distribution can be geometrically interpreted as an ellipsoid whose position
is determined by the mean value m and shape by the covariance matrix C.

This is the driving idea of CMA-ES, that the evolutionary operators of selection, recom-
bination, and mutation comprise an implicit distribution for sampling the next generation.
The optimization scheme then follows the sequence of steps:

1. Sample distribution N (m,C) to generate a population.

2. Evaluate individuals from the current population.

3. Update parameters m and C of the sampling distribution.

The mean value m and covariance matrix C are updated after evaluation of the current
population is finished. For this update only the best – newly generated – individuals are se-
lected; CMA-ES is therefore referred to as non-elitist evolution strategy algorithm. The up-
dated mean value m is computed as a weighted average of the best points. The weights
are assigned by a ranking position in the population with respect to the defined fitness
function. Similarly, the value of the covariance matrix C is updated in such a way that it
fits the distribution of the best points.

Stepsize control

The value stepsize σ influences how far from the mean value m new individuals are sampled.
Its value is automatically adjusted during the optimization via a technique called cumulative
step-size adaption which is based on the evolution path method from evolution strategy
algorithms. This technique employs the information on the correlation between consecutive
generations. It increases the stepsize σ when the population mean m gets updated in
the expected direction based on the direction of previous updates letting the algorithm make
bigger steps in the direction towards the optimum. On the other hand, when the mean m
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is updated in another direction the value of stepsize σ is decreased in order to carry out
a finer search.

Population size

The population size is the only parameter potential user needs to define. Its value sig-
nificantly influences the properties of the optimization. By setting the population size to
a smaller value, the algorithm favours fast convergence. By using larger populations (pos-
sibly in connection with optimization restarts [1]) the global search performance can be
improved, however, the algorithm will take a longer time to converge.

For further details on the CMA-ES algorithm the reader is referred to [17], [15] or [18].

3.5 Classification

In the chapter 6, classification of trajectories is carried out. This classification is based
on using classification decision trees [29], which are grouped into ensembles, as the whole
ensemble might have better predictive performance than a single decision tree.

However, due to unequal distribution of the training data an extension to the ensemble
learning – a boosting algorithm – is used, since training the classifier on a skewed data3

might lead to favouring the majority class over the minority classes ([35]). A common
approach to deal with skewed data is employing sampling techniques ([8], [9]).

Below we introduce the concept of ensemble learning and the Random Undersampling
Boosting algorithm (RUSBoost). A more thorough introduction to classification can be
found in the review [23] or [20]. For a comprehensive description of decision trees refer
to [30].

3.5.1 Ensemble learning

Ensemble learning methods are learning algorithms that create a set of classifiers, which are
afterward used to classify new data points ([31]). The final classification is aggregated of
predictions of these classifiers, commonly referred to as weak learners. The rationale behind
ensemble learning is a question if a set of weak learners with a moderate performance can
form together one strong learner (a classifier with good performance). Experiments showed
that it is often possible to construct a very good ensemble ([26]). A necessary and sufficient
precondition for a strong learner to be more accurate than any of its individual weak learners
is that the weak learners are accurate (meaning more accurate than random guessing) and
differ in making errors on new data.

In what manner these classifiers are trained depends on the specific learning strategy,
the following are the two most common [26]:

• Bagging uses for learning a weak learner different samples of observations or a different
set of features. The aggregation of the predictions is done by averaging (regression)
or taking the majority vote (classification).

• Boosting, on the other hand, trains weak learners on the whole training set, but as-
signs weights to the samples. In the beginning all sample have the same weight, but

3also referred to as imbalanced data
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in latter iterations larger weight obtains samples that were misclassified in the pre-
vious iteration. The weighted sum of the weak learners’ predictions is the resultant
prediction of the ensemble. Weak learners’ weights are given by their accuracy.

3.5.2 Skewed data

RUSBoost algorithm is a hybrid sampling/boosting algorithm which deals with the skewed
data by applying random undersampling; a technique which randomly removes samples of
the majority class. The algorithm itself is based on AdaBoost algorithm (introduced in [12])
and described in [32]. The key difference compared to AdaBoost is random undersampling
of the majority class in each iteration of the boosting algorithm.
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Chapter 4

Current Implementation and
Configuration of the Tracker

The tracker of our concern is a multi-sensor tracker developed by Tern Systems and deployed
in Keflavík, Iceland. It is a tracking system based on measurements from multiple radars
whose purpose is to derive trajectory estimates for aircrafts in the controlled airspace,
filtering out as much measurement noise as possible. The filtering techniques applied in
these systems varied greatly throughout the history as the corresponding estimation theory
was advancing. Nowadays, most modern radar tracking systems are based on some derivate
of the IMM algorithm, which is also applied in the tracker developed by Tern Systems.

4.1 Structure and Implementation of the Tracker

As noted above, the input data for the tracker is provided by three different sources.
Throughout the thesis, we refer to these sources by labels radar1, radar2, and radar3.
Their physical characteristics are listed in the table 4.1. For each trajectory, these sources
provide unique sequences of track data encumbered by measurement noise of different mag-
nitudes. Each of this sequences is filtered using a separate instance of the IMM algorithm,
which itself consists of three different Kalman filters. The outputs of the Kalman filters are
fused together by the IMM algorithm according to the mode transition probabilities and
these IMM-fused outputs get eventually combined using a method described in 4.1.2. For
reader’s better understanding, these structures are also visualized in the figures 4.1 and 4.2.
The first one is depicting the overall structure of the aircraft tracker, while the latter outlines
the detailed structure of each IMM instance.

4.1.1 Used Kalman filters

For filtering radar measurements the implemented IMM algorithm combines outputs of
three different Kalman filters. These Kalman filters compute their output in parallel and
their configuration matches the following different types of motion (MOF):

• uniform motion (linear),

• accelerated motion (linear),

• manoeuvres (non-linear).
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Figure 4.1: Overall structure of the aircraft tracker.
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The Kalman filters for uniform and accelerated motion share the same linear CV
model and differ in the magnitude of the process noise perturbing only velocity estimates.
The magnitude of the process noise is defined via Power Spectral Density (PSD) and is
naturally higher in the accelerated motion model. The state vector for linear models is
composed of estimates of position and velocity and is arranged as:

xk =
[
x̂k ŷk v̂xk v̂yk

]T
where xk is a state vector at time step k, x̂k and ŷk are estimates of the position in
XY coordinates; and v̂xk and v̂yk are estimates of the velocities in the X and Y direction
correspondingly.

For the filtering of manoeuvres, represented with CT model, an Extended Kalman filter
is applied. Its state vector is augmented by an estimate of turn rate ŵk and the process
noise is assumed to be corrupting only estimates of the turn rate. The process noise is, in
this case, modelled as a random variable with known variance – expressing the magnitude.

Coordinate conversion The filtering is carried out in a projected X,Y space relative
to the position of the specific radar, so conversion from geographic coordinates (latitude,
longitude, altitude) to local X,Y coordinates takes place. When fusing the filtered sequences,
all of them need to be converted to the common coordinate frame resulting in another
coordinate conversion.

4.1.2 Sensor fusion

As mentioned earlier we refer to the Tern ATC tracker as a multi-sensor tracker, because
it uses several radar sources for tracking aircrafts. The advantages of such a setting are
greater area coverage than what is possible with a single radar and higher reliability in
case of a failure. To our application, the most important differences between radars are
the maximum measuring distance and the magnitude of the measurement error (expressed
via measurement error covariance).

The three radars in the table 4.1 corresponds to two physical radars only. The radar2
and radar3 represent a single device but differ in the maximum range and precision. By us-
ing a fixed-length representation (11 bits) for the range measurements the maximum range
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Figure 4.2: Architecture of the IMM algorithm used in the aircraft tracker.
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influences quantization error. The radar2 has a lower maximum range and thus lower quan-
tization error. For the radar3 it is the opposite – by having higher maximum range also
the quantization error rises.

Table 4.1: Physical characteristic of the used radars. The range is in Nautical miles, scan
period is in revolutions per minute.

label range [Nm] scan period [rpm]
radar1 100 5
radar2 60 15
radar3 100 15

Hence, for every track we have measurements from several different radars (sensors)
encumbered by the noise of different magnitudes. The current implementation does not
distinguish between different radars – we can say that the configuration is generic for all
radars, although the radars differ considerably. The filtered sequences are eventually fused
together using the following equation1 – linear combination weighted by respective noise
error covariances:

x = P(P1
−1x1 + P2

−1x2)

where P = (P1
−1 +P2

−1)−1 is the error covariance of the fused measurement, P1 and P2

are error covariances of the filtered sequences and x1 and x2 are filtered state estimates.
The equation for the fusion of three sensors can be derived in a similar fashion.

1subscript k indicating the number of a sample intentionally left out for better readability
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Coasting

Since the measurement sequences from different radars are not synchronized or some of
the measurements might be missing, the filtered measurement sequences must be time-
aligned in order to being able to fuse them. One can think of this alignment procedure called
coasting as a special type of interpolation when we take the last measurement preceding
the timestamp specified for coasting and use the time-update step of Kalman filter algorithm
described in 3.2.1.

4.2 Current Configuration and Evaluation

The current configuration of the IMM algorithm, presented in 4.2, is shared across all IMM
instances coupled with different radar sources. In other words, to every radar corresponds
an IMM instance with the same structure and configuration as for the other radars, despite
possibly differing radar’s characteristics.

Table 4.2: Current configuration of the tracker. Labels KF1-3 refer to the corresponding
Kalman filters.

KF1 process noise PSD 9× 10−6m2s−4Hz−1

KF2 process noise PSD 100m2s−4Hz−1

KF3 process noise variance 9× 10−6deg2

measurement noise variance

range [Nm] var [m2]
< 40 502

∈ [40, 60] 3002

> 60 1 5002

IMM transition matrix

KF1 KF2 KF3
KF1 0.80 0.15 0.05
KF2 0.10 0.75 0.15
KF3 0.10 0.05 0.85

In order to have figures for later comparison, table 4.3 shows evaluation results for
the current configuration. The evaluation was performed on a traffic captured within one
whole day. In total, 83 327 target reports were included in the evaluation of the fused output,
only around 4% of all reports account for turns according to the transversal acceleration
threshold of 1.5 m/s2. The maximum range of the recorded trajectories was 100 Nm.
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Table 4.3: Evaluation of the current configuration. Error statistics for velocity vector
components are divided for straight-line motion (on the left in the particular column) and
turns (on the right). For convenience, we also evaluated the performance of each radar
separately.

source
horz. position

RMSE [m]
speed

RMSE [m/s]
heading

RMSE [◦]

radar1 387.59 7.04/7.28 2.96/9.44
radar2 160.10 8.42/5.26 3.90/5.63
radar3 256.21 9.78/8.51 3.55/7.48
fused 256.95 4.56/6.00 2.33/11.41
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Chapter 5

Problem Definition

The problem of ATC tracker performance optimization can be stated as a multi-objective
optimization problem. It must take into account the tracker’s performance against the set of
tuning metrics, such as those described in the chapter 2, highly depending on the particular
scenario one selects for evaluation. Among these merits different levels of trade-offs can
be identified and also each one of the considered magnitudes can drive the optimization
problem to a different solution. For these reasons the process of optimization needs to be
designed such that it considers all tuning metrics at the same time and takes into account
most of the representative situations.

Our concern in this thesis is the part of the tracker that deals with the estimation in
the horizontal position only. The models in the horizontal and vertical plane are typically
filtered decoupled for the sake of simplicity and also due to the fact that the target motion
in horizontal plane and vertical plane can be considered independent.

Generally, the tracking quality of such tracker highly depends on:

• the number of Kalman filters, i.e., the number of modes-of-flight used,

• the configuration of each Kalman filter,

• the configuration of the model transition probabilities for the IMM algorithm.

Therefore, the main goal of this thesis can be formulated as finding an improved configu-
ration for the IMM algorithm leading to an increase in the tracker’s performance. Apart
from that there are two additional objectives outlined in the following section.

5.1 Additional Criteria

5.1.1 Smoother heading while cruising

An additional quality requirement was identified through ATC controller feedback. It was
formulated as a requirement to increase the smoothness of track velocity angle (heading)
while the aircraft is cruising (rectilinear motion at constant velocity). This might introduce
a trade-off to the error in the horizontal position and heading which will be higher during
manoeuvres.

The intention is to have the heading progression smoother when the aircraft is farther
from the airport as it undergoes there significantly fewer manoeuvres and we can also allow
for higher error. On the other hand when the aircraft is within close proximity to the airport
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it is preferable to make the estimates adapt quickly to the supplied measurements and, as
a result, the progression is less smooth.

5.1.2 Adaptation of the IMM structures

In the air traffic control environment, the tracker is estimating the kinematic state of several
dozen aircraft. For most of the flights the tracker obtains the flight data from multiple radars
of varying precision, as shown in the table 4.1. For each radar an estimated state needs
to be computed using the IMM algorithm, coasted and fused with the estimates computed
from data supplied by remaining radars and processed in the same manner. This results
in a significant computational load if running all of these procedures for tens of different
airplanes.

Currently, for filtering output of all radars the very same IMM structure (set of Kalman
filters) is used. However, it might be that for radar1 we could employ a simpler IMM
structure due to its higher measurement noise magnitude and lower scan rate. Nevertheless,
the IMM structure should not be modified if the overall tracker’s performance could be
negatively influenced.

5.2 Tracker Parameters

With the current structure of the tracker, the parameters that are to be optimized are:

• process noise PSD for the uniform and accelerated Kalman filters,

• variance of the random noise in the manoeuvring Kalman filter,

• measurement noise covariance,

• transition matrix in the IMM algorithm.

All of these needs to be optimized for each radar source. We believe this will yield bet-
ter results than using one generic configuration for all radars. Also, the actual structure
of the IMM algorithm is a subject for optimization, so the set of parameters can vary
depending on the particular structure selected.
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Chapter 6

Optimization of Separate Kalman
Filters

Both the IMM algorithm and Kalman filters are Markov models. The standard way of
training parameters of a Markov model is to derive the maximum likelihood estimate of
the parameters of the model given a set of output sequences (flight trajectories). In general,
there are no efficient algorithms that find optimal solutions to the problem. However,
there are efficient algorithms for finding good local solutions based on the Expectation-
Maximization (EM) algorithm [10], [14].

Thus, our proposed solution to the problem was divided in the following steps.

1. Categorize existing radar data of flight trajectories into different classes by Mode-Of-
Flight (MOF) such that the data can be used to train different Kalman filters (each
corresponding to the particular MOF).

2. Train the Kalman filters separately so they perform well on the trajectories of the cor-
responding MOF (EM algorithm).

3. Learn the transition probability matrix of the IMM algorithm (Baum-Welch algo-
rithm).

If this approach proves to be appropriate, then also different structures of the IMM algo-
rithm will be optimized in the similar fashion in order to determine the best configuration
possible.

6.1 Classification and Segmentation of the Trajectories

The goal of this task is to divide available trajectory data into segments with different MOF.
These segments can be thought of as grouped measurements with the same MOF assigned,
thus the problem might be stated as a multiclass classification of single measurements rather
than trajectories.

The selection of MOF classes is arbitrary, it only depends on what motion models one
plans to apply. We classified the data to the classes currently employed in the tracker, that
is uniform and accelerated motion and other manoeuvres.

We approached this classification problem via techniques of supervised machine learning.
An approach employing decision tree learning or other machine learning techniques was
already successfully applied in similar works [13], [28]. In this work, we experimented with
ensembles of decision trees.
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6.1.1 Training set of trajectories

To train the model itself we needed to prepare a set of training trajectories that were cor-
rectly classified. This was achieved by picking 18 trajectories that were representative for
the whole dataset and afterwards hand-classified to the classes specified above. While there
are no recommendations on what should be considered as accelerated motion or manoeu-
vre we set a threshold for determining acceleration to be a value of 0.4 m/s2. Similarly,
segments with turn rate greater than 0.007 rad/s were classified as a turn. These thresh-
olds were based on reviewing different plots with trajectories and corresponding velocity
waveforms. While classifying acceleration and turns, also the nearest surrounding measure-
ments (context) were classified as acceleration/turn although they might not have reached
the threshold value.

6.1.2 Classification features

As a sample’s features we experimented with turn rate, longitudinal and transversal ac-
celerations computed – interpolated in one-second intervals – from the ADS-B recordings
and IMM mode probabilities (used in [13]). Furthermore, we must take into account that
the information is not contained in the current measurement only, but also in the neigh-
bouring past and future measurements (context), so including past and future neighbouring
measurements’ features in the set of features might help better identify transitions between
different modes. The layout of a feature vector is depicted in the figure 6.1, where

• µna stands for the a-th feature of a sample in step n,

• xn denotes features of a sample in step n,

• N refers to the number of measurements,

• M refers to the number of a sample’s features,

• k specifies the width of the context.

Table 6.1: Arrangement of the feature vector.

µn−k1,2,...M . . . µn−1
1,2,...M µn1 µn2 . . . µnM µn+1

1,2,...M . . . µn+k
1,2,...M

xk+1

xk+2

. . .
xN−k

During the experiments, various parameters were tested. We studied the influence of
using acceleration and turn rate in the feature set, IMM mode probabilities, different values
of parameter denoting the width of context or depth of weak learners’ decision trees.

Skewed data

We must point out that in the trajectories different modes-of-flight were not equally dis-
tributed. Most measurements belonged to the uniform model, much less to the accelerated
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model and to manoeuvres as is shown in the table 6.2. For our purposes, we decided to use
RUSBoost algorithm, which is also available from MATLAB Statistics Toolbox.

Table 6.2: Distribution of the MOF in the training data.

MOF Count Percent
uniform 3990 82.69%
accelerated 468 9.70%
manoeuvres 367 7.61%

Classification algorithm configuration

To evaluate different configurations and settings of the classifier, various scenarios were
evaluated using 10-fold cross-validation. During each round of cross validation a confusion
matrix was computed and used to further compare with other classifier instances.

We determined the best configuration is to have both longitudinal and transversal ac-
celeration included in the features set. Including the IMM mode probabilities as in [13]
did not yield better predictive results. A possible reason might be an incorrect configura-
tion of the IMM algorithm which afterwards failed to recognize modes-of-flight correctly.
The width of context included (on both sides) in the feature set was determined to give
best results when set to 10 seconds (1 sample per second). A sufficient number of weak
learners proved to be 50. The prediction is based on 42 features (21 samples x 2 transversal
and longitudinal acceleration).

6.1.3 Classification results

The performance of a learned classifier is typically evaluated by a confusion matrix (see
table 6.3 for a 3 class problem). The columns denote predicted class while rows denotes
actual class. Cells in the confusion matrix (table 6.3) are explained as:

• TX percentage1 of correctly classified samples of class X,

• MXY percentage of incorrectly classified samples of class X for class Y .

The overall accuracy on all classes can be then computed as:

ACC =
T1C1 + T2C2 + T3C3

C1 + C2 + C3

where T1,2,3 are diagonal cells from confusion matrix and C1,2,3 are the element counts of
the corresponding classes.

For the final evaluation of the acquired model, we created a set of testing (validating)
trajectories to provide an objective assessment – independent data that was neither used
to train nor test the configurations. This was fulfiled by selecting 6 trajectories (different
from the training trajectories) and hand classifying them.

With the configuration from 6.1.2 we achieved an accuracy of 93.23% on the validating
set of trajectories. The corresponding confusion matrix is the table 6.4. The learned clas-
sifier achieves good performance on all classes – especially classification of the accelerated

1common is also number of samples instead of percentage
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Table 6.3: Confusion matrix for a three-class problem.

predicted
uniform accelerated manoeuvre

ac
tu

al uniform T1 M12 M13
accelerated M21 T2 M23
manoeuvres M31 M32 T3

segments seems very precise. On the other hand, a significant proportion of manoeuvres
was misclassified as uniform segments. We shall point out, that this evaluation is strongly
dependent on the right classification of the trajectories. Thus, it is generally very difficult
to reach total conformity with the human classifier.

Table 6.4: Confusion matrix for the resultant ensemble.

predicted
uniform accelerated manoeuvres

ac
tu

al uniform 93.1271 4.2285 2.6444
accelerated 3.5337 95.8692 0.5971
manoeuvres 8.0655 1.1696 90.7649

Trajectory segmentation After carrying out the classification, we grouped measure-
ments with identical mode-of-flight into segments (parts of original trajectories). It might
be that during the segmentation very short segments are created (let’s say 1 or 2 measure-
ments long) however mode-of-flight usually does not change freely from sample to sample.
Such segments were ignored for subsequent parts of the project.

6.2 Training Kalman Filters

As stated in section 5.2 the parameters that need to be optimized are the measurement noise
covariance and the process noise covariance modelled in the continuous time domain with
magnitude expressed via corresponding power spectral density. To train these parameters
we intended to use the EM algorithm as is presented in [14] or [33]. However, during
the implementation of the EM algorithm we realized that the algorithm is not applicable
to our scenario as it assumes all parameters to be (time) invariant. Unfortunately, this
assumption does not hold as the process noise is time-dependent (via irregular sampling)
and measurement noise depends on the distance from the radar. Although it might be
tempting to simply substitute the expressions for computing measurement and discretizing
process noise to the equation for the computation of log-likelihood, this would not help
as the partial derivative of log-likelihood with respect to the process noise power spectral
density does not have a closed-form solution.

From the above it is clear that EM algorithm is not applicable to our case and to our
best knowledge there are no other algorithms which could be used for parameter estimation
of such continuous-time linear dynamical systems sampled via irregular measurements.
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Chapter 7

Empirical Estimation of Process
and Measurement Noise

In this chapter we examine the estimation of the sample measurement and process noise
covariances by a simple distribution fitting1 from the available data. For the measurement
noise estimation we investigated the differences in the observed measurements and the true
states represented by ADS-B recordings. While for the process noise estimation we explored
the samples of the noise extracted from the ADS-B data.

7.1 Measurement Noise Estimation

To estimate the measurement noise we examined the dependency of standard deviation of
horizontal position error on the actual distance from the radar. We fitted normal distri-
butions2 to the samples of measurement error in the position that were computed against
ADS-B recordings and grouped by their distance from the radar in 500 m increments. In
this way we obtained sample means and standard deviations for the error in the specified
ranges. Eventually, we smoothed the resulting data by a 10-span moving average filter.

The plot in the figure 7.1 represents acquired results for all radars along with corre-
sponding fitted linear models. The X axis represents the distance from the radar, on Y axis
the dependent standard deviation of error in horizontal position is plotted. Each radar is
represented by a different colour with a solid line, while for linear approximations a dotted
line is used. In addition we plotted (in black dotted line) the stepping function currently
used in the tracker.

The plot 7.1 proves the presumed dependency of the standard deviation of measurement
noise on the distance from the radar. Obviously, in the sampled measurements it could be
approximated by a linear function. We also investigated the estimated sample means which
always lied around zero – assumption that the measurement noise is a white Gaussian thus
seems correct.

Furthermore, we can observe a sudden change in the estimated error for radar3 in
the range between 60 and 70 Nm possibly caused by a quantization error, described in 4.1.2.

The measurement noise variance in both axes can be determined by taking a square
of estimated standard deviation. By the assumption that the measurement noise in one

1sample mean and sample variance
2measurements are assumed to be corrupted by a random noise with normal distribution
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Figure 7.1: Measurement noise standard deviation estimated from the data. The X axis
shows the distance from the radar (in Nautical miles), on Y axis a measurement noise
standard deviation (in meters) is plotted.
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direction is uncorrelated to the measurement noise in the other direction, the covariance
matrix can be stated as a diagonal matrix with variances on its main diagonal.

7.2 Process Noise Estimation

The process noise was estimated in a similar fashion as the measurement noise. For this
computation we used ADS-B recordings which are considered in our case as a ground truth
and as such are best representing the process itself – we neglected the GPS measurement
error.

This method is based on the equation describing the evolution of the state in linear
dynamical systems3 as is defined in the subsection 3.2.1.

xk = Axk−1 + wk−1

We transformed the equation to the following form which can be used to calculate
the process disturbance in every time step. For the non-linear model the term Axk−1

is substituted with f(xk−1) to comply with the non-linear evolution of the state. Note
that with state represented by a column vector also process disturbance is represented by
a column vector. During the estimation process we, thus, need to consider the dependency
of each element of the noise vector on the interval length ∆t.

wk−1 = xk −Axk−1

We shall also think of the noise vector as a random vector consisting of 4 random
variables; noise in position in X and Y coordinates and noise in velocity in X and Y coor-

3there is no input to the system so the term Buk−1 was left out
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dinates4. The noise vector then represents an observation of this random vector. Now we
can reformulate the problem as finding the dependency of this random vector’s covariance
on the length of the sampling interval ∆t.

To estimate the covariance matrix for each Kalman filter currently used in the tracker
we used the MOF-segmented trajectories (acquired in the chapter 6) as an input to the es-
timation process. In other words for estimating the process noise covariance of the Kalman
filter for estimating the state during cruising, only segments of trajectories with uniform
motion were used and so on.

However, if we had investigated the process noise only in the consecutive ADS-B record-
ings, we would have gotten estimates for the ∆t intervals of the length of 1 second only,
because of the distribution of the interval ∆t in the ADS-B data – as is visualized via his-
togram in the figure 7.2. Without any further details on used ADS-B units, we can assume
the standard period of ADS-B broadcast messages to be 1 second. In order to examine
the dependency of the process noise with period ∆t longer than 1 second, we did not con-
sider only consecutive ADS-B recordings in the estimation process, but also recordings that
are not neighbouring. By doing so, we acquired samples of the measurement noise along
with different lengths of interval ∆t. We again grouped the measurements according to
the interval ∆t and for each group computed a covariance matrix.

Figure 7.2: Distribution of the interval between consecutive ADS-B recordings. The ADS-
B broadcast period is obviously 1 second. Additionally, we assume that the ADS-B units
broadcast multiple redundant messages – explaining the high amount of messages received
sooner than 0.1 seconds after the previous message.
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The results of the process noise estimation are visualized in the figure 7.3 – note that
only diagonal elements of the covariance matrices are plotted – variances of the random
variables. Results for uniform, accelerated motion and manoeuvres are plotted simultane-
ously to visualize their magnitudes. While, variance in the position measurement is plotted

4in the case of non-linear (turn) model the turn rate disturbance accounts for the fifth random variable
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with both axes linear, for plotting variance in the velocity we chose semi-logarithmic axes.
It can be clearly seen that the process noise is significantly higher in the accelerated mo-
tion model and during manoeuvres. We can also observe that variances in the X and Y
direction differ. Presumably, this is caused by an unequal distribution of the trajectories
in the corresponding directions – most trajectories are recorded in eastward or westward
direction.

The evaluation of the empirically estimated process and measurement parameters was
performed only on the segments with a specific mode-of-flight.

Table 7.1: Fitted linear models (in meters) to standard deviation of radar’s measurement
error.

radar1 σR1 = 0.000 7range+ 290
radar2 σR2 = 0.001 1range+ 115
radar3 σR3 = 0.001 7range+ 112

The standard deviation of a measurement error in the horizontal position for each radar
was approximated using a linear model. Table 7.1 presents the fitted polynomials for each
radar (both range and the standard deviation are in meters). The computed standard
deviations were during evaluation transformed into covariance matrices and used within
the estimation algorithm.

The dependency of elements in the process noise covariance matrices on the interval ∆t
were approximated using linear or quadratic polynomials for each MOF. For every MOF
we thus obtained a polynomial expressing the dependency of the particular element in
the covariance matrix on ∆t.

The evaluation was performed for each radar and each MOF (uniform, accelerated,
manoeuvre) separately. That means we were not evaluating the performance of the IMM
combining all modes-of-flight, instead we evaluated the performance of a single KF matching
the corresponding MOF. The results are listed in the following table 7.2.

Table 7.2: Evaluation of the empirically estimated parameters.

MOF
horizontal position

RMSE [m]
speed

RMSE [m/s]
heading

RMSE [◦]

ra
da

r1 uniform 454.8 97.44 8.54
accelerated 358.3 21.22 20.83
manoeuvres 296.8 8.58 31.49

ra
da

r2 uniform 155.1 9.19 8.24
accelerated 101.5 12.01 9.67
manoeuvres 113.6 9.19 7.85

ra
da

r3 uniform 296.1 9.67 9.07
accelerated 125.56 14.65 9.97
manoeuvres 157.31 14.29 9.57

The evaluation results are rather poor – especially, for the radar1 on the trajectories
with uniform motion, which should be easiest to estimate, the performance is of a really
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low quality. Also, the heading cannot be considered to be estimated accurately enough. For
radar2 and radar3, the estimates of position and heading seem satisfactory, but the error
in the velocity estimates is still fairly high.

Apparently, these results might be influenced by the precision of the measuring devices,
and thus do not reflect the actual performance of the estimation algorithm. This would
explain the acceptable performance of radars radar1 and radar2 in the horizontal position
and worse performance on velocity vector estimates as the position is contained in the actual
measurement, while the velocity components are estimated by the algorithm.

Next, we incorporated these empirically estimated parameters to the IMM algorithm
(with original mode transition matrix) and ran the evaluation again with the results in 7.3.
Again, the evaluation did not yield satisfactory results, as the errors reached high magni-
tudes in all of the considered performance measures. Obviously, the tracker’s performance
was not improved.

There are several possible reasons explaining this failure:

1. Incorrectly classified trajectories into the MOF classes. The classification might be
correct from the human designer’s point of view, but is not suitable for the algorithm.

2. Estimation of parameters from a non-representative sample of data.

3. The very non-linear dependencies in the parameters void the use of empirical estima-
tion.

4. This kind of estimation assumes the process noise is the same for each radar. However,
it might be that each radar observes the process differently and thus this assumption
might not hold.

To sum up, this experimental approach again did not result in an improved configuration
of the tracker and it is probably not suitable for the problem dealt. Nevertheless, we
managed to get a good estimation for the measurement noise and thus for the following
chapters we have a rough idea of its magnitudes.

Table 7.3: Evaluation of the IMM with empirically estimated parameters.

source
horizontal position

RMSE [m]
speed

RMSE [m/s]
heading

RMSE [◦]

radar1 411.59 28.32 10.39
radar2 180.34 12.03 9.38
radar3 284.02 15.91 10.82
fused 322.75 17.84 9.29
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Figure 7.3: Diagonal elements of process noise covariance matrix estimated for uniform
(blue), accelerated (green) motion and turns (red). The x-axes represents either variance
(abbr. var(x)) of position in X,Y coordinates or velocity in X,Y coordinates.
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Chapter 8

Evolutionary Optimization

The last approach examined in this thesis is the evolutionary optimization – a stochastic
black-box optimization. We choose technique referred to as Covariance-Matrix-Adaptation
Evolution Strategy (CMA-ES) from the family of Evolution Strategy (ES) algorithms.

The optimization using ES was already successfully applied for optimization of an IMM
filter for radar tracking in [5], however, this optimization was carried out on a simulated
trajectory data. In this work, we used real trajectory data as a training set for the optimizer.

The ES algorithm itself can be very easily parallelized making the optimization process
more efficient especially when running on a multi-core system/cluster. In order to imple-
ment ES we need to define a fitness function (cost function that is to be minimized), develop
a reasonable parameter encoding and decide on other design settings which are covered in
the following subsections.

8.1 Fitness Function

The definition of a global fitness function should encompass the performance in all evaluated
figures. In a multi-objective optimization, it is necessary to consider all goals simultane-
ously so that the solution is driven to the point where all evaluated figures achieve the best
performance possible. In the general case, this is often not possible as different goals might
be conflicting – in the meaning that optimizing one can lead to worsening the performance
of another one. This makes it difficult to compare and rank the solutions directly. There-
fore, one usually tries to find a set of alternative solutions, in the literature referred to
as the Pareto-optimal front, where each solution represents best solution for one partic-
ular goal. Nonetheless, the problem of an ATC tracker optimization is so complex and
computationally expensive, that generating complete Pareto front would be infeasible. In
order to overcome this difficulty we defined the global fitness function as a summation of
costs for each optimized figure transforming the multi-objective optimization problem into
a single-objective one.

The fitness function is used for the evaluation of a single individual, i.e., a single configu-
ration of the IMM algorithm. This configuration is used to initialize an instance of the IMM
algorithm, which is then used for filtering training trajectories. The output is compared
to the corresponding reference values computed from ADS-B recordings as is described
in 9.1.2. The magnitude of errors is expressed by root mean square average computed for
each figure separately.
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The figures included in the fitness function are:

• horizontal position error,

• velocity vector amplitude,

• velocity vector angle (heading),

• incorporation of the smoothness of heading is described in 8.3.

Following criteria for global fitness function were identified as necessary in order to
attain multiple objectives:

1. The magnitude of the figures included in the evaluation varies significantly. The error
in horizontal position is usually in the order of hundreds, while the error in velocity
vector components is occasionally greater than 10. To deal with these differences, it
was necessary to carry out appropriate scaling so that all terms have similar influence
on the overall cost. This was achieved by substituting individual cost terms by their
partial cost expressing the level of attainment to some objective value. These objective
values were defined for every evaluated figure and every radar individually. Their
values were empirically estimated by performing several optimization test runs and
evaluating the acquired results. The partial cost for goal x and the global fitness
function for n goals is then defined as:

pcx =
cx − objx
objx

COST =

n∑
x=1

pcx

2. It might be that the algorithm is more successful in optimizing one figure, while other
figures are hard to optimize. Moreover, the optimizer can minimize specific figure
far below the objective value, thus making the partial cost negative which, in turn,
can make the overall cost seem better while other figures’ cost increases. To avoid
this shortcoming, instead of taking the partial cost directly, we use its exponential.
As seen in the figure 8.1 by doing so the individual cost decreases quickly as it is
converging to the objective value, but once the objective is reached the cost decreases
at a much slower pace and stays always positive. For this reason, it is necessary
that all objective values are sensible as setting the objective to a very small value
can easily cause error terms of very high magnitudes. Using exponentials also makes
the cost function more sensitive to the changes in parameters. The final form of
the cost function is:

COST =
n∑

x=1

exp(
cx − objx
objx

)

where cx is the cost of an individual figure x and objx is its objective value.

3. Later, during experimenting with the algorithm we noticed that the optimizer some-
times found solutions that were odd and unrealistic – setting process noise magnitudes
to the values, that were clearly wrong or constructing transition matrices where par-
ticular state transitions had been assigned zero probability. Visual evaluation of this
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configuration also gave poor results, however, the fitness/cost of this configuration
was very good. By inspecting the fitness evaluation, we figured out this was caused
by introducing new outliers, which are excluded from the evaluation by the ESASSP
specification (see chapter 2). The performance of these wrongly optimized configu-
rations was so poor, that the algorithm marked most measurement as outliers and
the cost was computed from a small non-representative sample. We addressed this
issue by a penalty term that was set to a high value when new outliers were introduced.

Figure 8.1: Comparison of exponential and direct partial cost.
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The global fitness function is evaluated on a set of trajectories. Yet using a big dataset
of trajectories for the optimization would make the fitness function evaluation unnecessarily
expensive. On the other hand, by choosing just a few trajectories we could easily run into
over-fitting. Moreover, the distribution of a straight-line motion and turns in the training
set significantly influences how well the tracker will perform on these classes of motion. We
chose to use a set of 15 trajectories, carefully picked so that they were representative for
all possible scenarios. And from these we even selected only interesting segments, trying
to make the set as diverse as possible with all kinds of movements equally covered. In our
training set, there is a considerably greater proportion of the turning to straight-line motion
segments resulting in heavier weighting of the cost terms during manoeuvres. This strategy
of using only a small subset of trajectories resulted in an assumption, that if the optimized
IMM configuration performs well with this small set, the performance on the complete
dataset will also be improved.

Furthermore, we believe that using a generic set of parameters for different radars can-
not yield optimal results due to their varying physical characteristics and the corresponding
measurement noise magnitudes. Moreover, varying coverage area implies that different seg-
ments of tracks are captured by a different radars, possibly resulting in a varying process
noise characteristics. For these reasons in each optimization run, we work with measure-
ments from a single radar only to optimize the performance of this particular radar.

Also, computing the output of the IMM algorithm for all three radars, coasting the states
to common timestamps and fusing everything together would make the evaluation of the fit-
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ness function very cumbersome and expensive. We assume that by optimizing the tracker
for each radar separately, also the fused output of all radars will be optimized.

8.2 Parameters to Be Optimized

Depending on the structure of the IMM algorithm the number of parameters can vary
greatly. The more motion models we incorporate in the IMM, the bigger the corresponding
transition matrix is. Also each of these models requires supplying parameters describing
the process and measurement noise. The configuration of the tracker currently deployed in
Keflavik contains 15 design parameters; 3 describing process noise in the used motion mod-
els, 3 specifying the measurement noise magnitudes and 9 counting for the mode transition
matrix.

8.2.1 Measurement noise model

For the purposes of the optimization we used linear models for the approximation of the mea-
surement noise standard deviation, which is obviously nearly linearly dependent on the ac-
tual distance from the radar, as is visible from the figure 7.1. Such a simple measurement
model was used for radar1 and radar2, where the measurement error is assumed to have
the same linear dependency on the whole range of the radar. However, for radar3 we used
2 linear models, as the dependency clearly changes at the range of 60 Nm, possibly, because
of higher quantization error or different encoding of the measured values. In this case, one
linear model is used to approximate the measurement error up to the distance of 60 Nm
and for the greater distances another linear model is used. The radar3 has, therefore, four
design parameters1 influencing the measurement noise approximation, while radar1 and
radar2 have only two parameters.

8.2.2 Parameter scaling

Not only the number, but also the magnitude and nature of these parameters may vary.
The probability values in the transition matrix lie within the interval (0, 1). However,
the magnitudes of the process and measurement noise only need to be positive and as
such are theoretically unconstrained. On the other hand, from our experience we can set
constraints on them in the form of their typical ranges. These ranges are afterwards used
for scaling so that the typical range of each parameter lies within values 0 and 1. In other
words, we map the space of the typical parameters values inside the interval < 0, 1 > using
a convenient function that is invertible as we also need to map the scaled values back to
the original parameter range.

From the definition of all the parameters enumerated above it is obvious that their
valid values are always positive. For that reason, it is convenient to use for such a scaling
functions from the logarithmic family. The functions we used are defined as:

x =
log P

min

logmax
min

= logmax
min

P

min

P = min(
max

min
)x

1coefficients of the linear polynomials
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where P is the value of the parameter with typical boundaries specified by min and max.
x is then its scaled value.

Figure 8.2: Logarithmic mapping of P to x with both axes linear.
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In the figure 8.2 is visualized the shape of the scaling function. The typical range of
the parameter P , embossed in green, is set to lie within values 10 and 20. Apparently,
the typical range is nearly linearly mapped to the interval (0,1) and the value of P is
never negative. Another convenience of such mapping is certain tolerance for estimating
the typical range of the parameter as also values close to the boundaries are within a reach
of the optimizer.

8.2.3 Parameter reduction

The complexity of the black-box optimization problem is usually influenced by the proper-
ties of the objective function (e.g. roughness, smoothness) as well as the dimensionality of
the searched space. Especially by reducing the dimensionality we can significantly influence
the time needed by the stochastic search to converge. In our scenario, we can reduce the pa-
rameters determining the mode transition matrix by introducing a proportional notation.
Instead of representing each element of transition matrix by an individual parameter, we de-
fine proportional relations among the matrix’s elements, reducing the number of parameters
by
√
n for matrix with n elements.

Let vector R be an arbitrary row of the mode transition matrix consisting of three
models – its elements p1, p2 and p3 define the probability of switching from the specified
mode to modes M1, M2 and M3 correspondingly.

R =
[
p1 p2 p3

]
The corresponding row in the proportional transition matrix then reads:

Rprop =
[
a1 a2

]
a1 =

p1

p2
, a2 =

p1

p3
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To construct the mode transition matrix from the proportional transition matrix we simply
solve a system of linear equations (the last equation holds from the definition of the mode
transition matrix):

p1 − a1p2 = 0

p1 − a2p3 = 0

p1 + p2 + p3 = 1

8.3 Incorporating Smoothness of Heading

As already mentioned in the chapter 5 another design goal is to make the waveform for
track velocity angle smoother when the aircraft is cruising. However, it is not clear how
this smoothness should be measured and thus in this section we develop a suitable formula.

We should also consider that by making the heading progression smoother we might
get more noisy estimates about the position or velocity and thus the estimation error
might increase. Clearly, there is a trade-off between a steady smooth curve and a dynamic
curve quickly adapting to the changes. We shall also point out that it is not desirable
to smooth the heading progression all over the track, but only within areas farther from
the airport. This (locally smoothing) behaviour can be achieved by setting the measurement
noise magnitudes reasonably larger for certain ranges, i.e., higher distances from the radar.
Subsequently, such increased measurement noise makes the IMM algorithm trust the sensors
less and considers its predictions of straight-line motion more precise, altogether possibly
resulting in a smoother track.

For these particular reasons, it is impractical to model the measurement error to be
linearly dependent on the distance from the radar, as a linear function cannot arbitrar-
ily change its value. When running the optimization with the heading smoothness in-
corporated, we used stepping functions for the representation of the relationship between
the measurement error and the distance from the radar.

Straight-line motion detection For the detection of a straight-line motion we used
transversal acceleration estimates calculated from interpolated ADS-B data. A threshold
value of 1.5 ms-2 is suggested by the ESASSP specification to differentiate straight-line from
turning motion.

8.3.1 Measuring smoothness of a curve

Smoothness as differences in the neighbouring samples

Our initial idea how to measure the actual smoothness was to involve in the computation
the differences between neighbouring samples. This was rooted in the fact that samples
belonging to a smooth curve does not change significantly. The smoothness of the whole
curve is then defined as an average over these differences – we used the root mean square to
weight the peaks heavier. In this fashion, to increase the smoothness of an arbitrary curve
one would attempt to minimize samples’ differences. The formula reads:

smoothness(X) =

√∑n
i=2(Xi −Xi−1)2

n

where X denote the sequence of heading estimates and n is the number of these estimates.
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Figure 8.3: Smoothness as a differences in the neighbouring samples.
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In the figure 8.3 we can observe the results of the proposed method. The actual heading
samples are plotted with a blue line. The red columns at each sample denote the differ-
ence to the previous sample. This method might seem sufficient, however, its drawback is
the comparison to the preceding sample only. This does not guarantee that the curve will
really be smoother on the wider range. Instead of incorporating more samples or developing
other workarounds we developed another method.

Smoothness as differences of the samples to the corresponding smoothed curve

This method evaluates the smoothness of a curve by computing how much the curve dif-
fers from its smoothed equivalent. For every sample we determine the difference against
corresponding sample in the smoothed curve. The measure for the whole curve is again
computed as an RMS average over the differences. To compute the smoothed heading we
used the IMM smoother (described in 3.3.2).

The figure 8.4 demonstrates the new method on the same sample data as used in the fig-
ure 8.3. We clearly see that peaks and sudden changes in the heading correspond to much
higher differences than with the previous method.

8.3.2 Integration with the global fitness function

The smoothness of heading was integrated with the fitness function in a very similar manner
as other figures. We again took the exponential of the partial cost computed for the smooth-
ness, but this time we restricted the resultant cost by a stepping function. Once the desired
level of smoothness is reached, the optimizer should not seek even more smoothing config-
uration as it would mostly give rise to higher errors.
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Figure 8.4: Smoothness as a differences to the smoothed curve.
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Chapter 9

Implementation

For the actual implementation we decided to use Matlab environment as its high-level
technical computing language and interactive environment allows for fast development of
algorithms and data processing tasks. The outcome of this master thesis is a Matlab toolbox
for the ATC tracker optimization containing tools to work with a trajectory data, various
structures of the IMM algorithm and its optimization. The toolbox was developed with
Matlab 2014b.

Even though Matlab does not offer full object orientation, we chose this methodology
for implementation because of the ability to define classes’ responsibilities naturally and
possibility of writing code that can be easily reused. The latter was essential during design-
ing the class for the estimation algorithms that would allow easy incorporation of different
motion models and IMM structures.

The overall design of the toolbox can be explored in the appendix A in form of a class
diagram. A brief description of the important classes follows.

9.1 Handling of Trajectory Data

9.1.1 Trajectory class

One of the base classes in the toolbox is the Trajectory class. It is more or less just
a convenient class that wraps around trajectory data. Each trajectory is in the system
represented by an instance of this class which encapsulates corresponding measurements
from different radars which are treated separately. Methods available to instances include
functions for conversions between geographic coordinate system and local Cartesian system;
and methods for trajectory splitting.

9.1.2 TrajectoryReconstruction class

We assume that to all tracks used throughout the project we have corresponding ADS-B
data available. However, ADS-B recordings are taken at different times and with different
period than the radar plots. In the toolbox we often need the reference track defined in
the times when the radar plots were captured – some kind of a curve fitting, obviously, needs
to be performed. The class TrajectoryReconstruction serves as a helper for computing
reference trajectory data by interpolating the ADS-B data – to this task it uses Shape
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Language Modelling toolbox1. The available reference quantities include measurements
of position (both geographic and Cartesian), velocity vector components (amplitude and
angle), acceleration (longitudinal and transversal) and turn rate. All of these are modelled
with least square cubic splines. The spline knots are distributed uniformly in the time
domain with a period of 5 seconds (heading), 10 seconds (position and speed) or 20 seconds
(altitude). The accelerations and turn rate are computed from interpolated speed and
heading recordings. These varying periods were set by examining the corresponding plots
and were influenced by the rate of change of the specific measures in order to prevent
the resultant curve from oscillating where the interpolated value changes slowly.

9.1.3 TrajectoryStub class

The design of this class was motivated by the needs of evaluating the fitness value of each
individual during the evolutionary optimization. To calculate the fitness of an individual,
one needs to run the estimation algorithm on the converted radar measurements and com-
pare it to the reference data in order to get the error terms. Obviously, the estimated
output differs with every individual. However, the reference data and radar measurements
does not change. To keep the design of the Trajectory class clean, we decided not to en-
capsulate computed reference values and converted radar measurements in the Trajectory
class instances, but to create another class where these precomputed data would reside.

By including measurements from the radar that is being optimized the size of the
TrajectoryStub object is smaller than the corresponding Trajectory object – see the fig-
ure 9.1. This is beneficial for the parallel evaluation of individuals as the size of the data
that needs to be broadcasted on the Matlab workers is also smaller.

Table 9.1: Size comparison of seven training trajectories represented by the Trajectory and
TrajectoryStub objects [in Bytes].

class size [B]
Trajectory 204844 303948 310780 225500 213948 304188
TrajectoryStub 3176 17672 25544 17960 17960 23432

9.2 Estimation Algorithms

The IMM algorithm is in the toolbox represented by its own class IMMFilter. Its main
functionality is obviously the algorithm itself, which was implemented abstract enough to
allow for easy use of various process models (see section 9.2.1) or models of sensor noise
(see section 9.2.2). This was achieved by defining common interfaces via abstract classes
IProcessModel and IMeasurementNoise. Another functionality of the IMMFilter class is
the method for coasting, i.e., predicting states.

The IMMSmoother class is derived from the IMMFilter class. IMMSmoother adds to
the forward IMM algorithm (implemented by IMMFilter) its backward alternative, and
thus, smoothes the estimates. These two classes share the same interface and as such can
be interchangeably used.

1available from http://www.mathworks.com/matlabcentral/fileexchange/24443-slm-shape-language-
modeling
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For the fusion of filtered or smoothed estimates one can utilize the SensorFuser class,
which is in the toolbox used to fuse the estimates of each radar supplied by the coupled
IMMFilter or IMMSmoother instances. During the fusion process, each instance provides
the estimates for the corresponding radar, then these estimates are coasted to the common
timestamps and converted to the common local coordinate frame. Afterwards, the fusion of
the track segments where 3 data sources are available is carried out, followed by the fusion
of remaining segments with 2 data sources available. Eventually, the segments supplied by
one source only are copied to the resulting track.

9.2.1 IProcessModel class and descendants

Various (both linear or non-linear) motion models are represented by the descendants of
the class IProcessModel and are required to implement methods for computing the process
noise covariance, state transition matrix or dynamic function (along with Jacobian) or
providing the measurement model matrix.

The motion models included in the toolbox are implemented by classes CVMotionModel,
CTMotionModel and CTAcceleratedModel. The instances of CVMotionModel describe con-
stant velocity motion models with process noise injected in the velocity estimates. The con-
stant turn motion is modelled by CTMotionModel and CTAcceleratedModel. The first one
has turn-rate estimates perturbed by the process noise, while the latter one also velocity
estimates.

9.2.2 IMeasurementNoise class and descendants

The measurement noise is in the toolbox represented by classes implementing interface
IMeasurementNoise, which defines a method for computing the measurement noise covari-
ances only. Two descendants are included in the toolbox. Class PolyMeasurementNoise
estimates the sensor error by a linear function, while in the class StepMeasurementNoise
this is approximated by a stepping function whose value changes in the predefined distances.

9.3 Optimization end Evaluation

The Optimizer class wraps methods used throughout the optimization process; the pa-
rameter scaling, mode transition matrix transformation, definition of the fitness function
and integration of the CMA-ES algorithm. The Evaluator class implements all that is
necessary for carrying out the evaluation of the specific figures from the aforementioned
ESASSP specification. Its methods are also utilized by the Optimizer instances for evalu-
ating the fitness function.

The CMA-ES algorithm is in the toolbox implemented by the stand-alone function
cmaes2 provided by the author of the CMA-ES algorithm – Nikolaus Hansen.

2available from https://www.lri.fr/ hansen/cmaesintro.html
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Chapter 10

Results

In this chapter we deal with the results gained by employing techniques of evolutionary
optimization to the problem of the tracker’s performance optimization. In the first part we
provide the reader with the details on the optimization algorithm configuration – especially
the population size. In the following section we present various IMM structures possible for
utilization in the tracker and evaluate which one to choose for each particular radar. After
the optimal IMM structure is defined, we list the optimized parameters for that configu-
ration along with the corresponding performance. In this part we left out the integration
of the smoothness of heading in order to optimize the tracker’s performance defined by its
error magnitudes as much as possible. How the results changed after this requirement was
incorporated is presented in the second part.

10.1 Optimization Process

The optimization was run within the Matlab environment on a computing cluster with 24
cores, making the parallel optimization very effective. The optimization algorithm itself has
a few tuning parameters. For every parameter left free for the optimization we also needed
to define a typical range, a boundaries within which the optimal value of parameter should
reside. This was necessary for the purposes of scaling described in 8.2.2. The table 10.1 be-
low summarizes all parameters used throughout different models along with their boundary
values.

Table 10.1: Typical ranges for the parameters involved in the optimization.

Used in Parameter Typical range

CV motion model
Process noise PSD - uniform [10−6, 10−2]
Process noise PSD - accelerated [10, 300]

CT motion model Variance in the turn rate [10−6, 0.1]

Measurement noise Std. dev. of error a ∈ [10−4, 0.02]
model - linear polynomic coefficients y = ax+ b b ∈ [20, 150]

After variables encoding, the initial solution point x0 and the initial standard deviation
(stepsize) σ0 must be chosen. We started by trying to improve the current configura-
tion locally choosing the value of σ0 rather small, i.e., 0.2. After that we also started
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the optimization runs from random initial points with larger value of 0.4. We note that
the parameter vector is scaled to lie within [0, 1]. However, most of the time they converged
to the solutions that were close to the default configuration. That made us focus more on
improving the current configuration as it was clearly close to the optimum.

Population size

In order to determine the appropriate population size and corresponding size of parental
population we need to take into account several aspects. Firstly, considering the dimen-
sionality of the problem dealt, which is in the most complex scenario higher than 10, we
experimented with populations of several hundreds to thousands individuals in order to
cover the searched space as much as possible. On the other hand the population size has
a tremendous impact on the time needed to evaluate and rank all generated individuals.
Furthermore, in conjunction with the dimensionality, stepsize σ0 and the size of a parental
population it significantly influences the count of iterations needed for the algorithm to
converge – to reach a stopping criterion.

To estimate the optimal setting we performed several test optimizations with various
population sizes and examined how long (measured by the count of fitness evaluations) it
took the algorithm to converge. The initial solution for these test runs was the current
configuration of the tracker (thus the search space has 11 dimensions) with σ0 set to 0.1.
The size of parental population was left to be one half of the offspring population.

Figure 10.1: Evolution of object variables for different sizes of population. To each plot
we added how many function evaluations were needed for the algorithm to reach fitness
function value 4.33. Note that with the population size of 2000 individuals, this objective
was not reached.
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Function evaluations

The results of these test runs are plotted in the figure 10.1 where the plots show the evo-
lution of object variables through the optimization with population sizes of 100, 500, 1 000
and 2 000 individuals. The different rate of convergence is clearly visible. For this particular
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reason we consider the algorithm converging when the value of the majority of its object
variables stops to change significantly. We see that with smallest population the algorithm
converged after approximately 15 000 function evaluations, for the population of 500 indi-
viduals we reckon maybe slightly more than 25 000 function evaluation would be needed.
We can observe clear correlation between the population size and the number of function
evaluations necessary for convergence. From the plots we assume that with populations of
1 000 and 2 000 individuals the algorithm is far from converging.

To evaluate the efficiency and performance for varying population sizes, we examined
how many fitness function evaluations were performed in order to reach objective value
of 4.33. Surprisingly, the smallest population reached the value after performing only 3 700
evaluations, followed by 500-individuals population reaching the objective after 12 000 eval-
uations. The biggest population did not reach the objective even after 20 000 evaluations.
However, we note that the optimization instance with 20 000 individuals had not converged
and the algorithm might have found later much better solution than the instances, that
have already converged to, possibly, local optima.

The results presented in the following section were achieved by using populations of 500
individuals for all optimizing scenarios.

Stopping criteria

There are several criteria defined, that make the optimization algorithm stop whenever any
of them is met. Naturally, one can declare the algorithm to stop when some objective value
is reached, however, in our scenario it is not clear what is the cost of the global optimum.
Similarly, the count of algorithm iterations (generations) or function evaluations might be
restricted.

During our experiments we considered the algorithm converged when the change in
the variable vector was too low (1010 smaller) compared to the initial standard deviation
or when the fitness function value was stagnating.

The opposite situation, when the change in the variable vector was more than 103 times
larger then initial standard deviation was recognized as a divergence.

10.2 Different Structures of the IMM

In total we analysed 3 different IMM structures. They are summarized in the table 10.2
along with a description of dynamic models they comprise and parameters that were opti-
mized using CMA-ES optimization.

The structure currently implemented in the tracker is denoted by the label IMM3, i.e.,
two linear CV motion models for estimating uniform and accelerated straight-line motion
with varying process noise magnitudes and one non-linear CT motion model, internally
estimating the turn rate – note that in this CT model only turn rate is perturbed by
a random noise. Although standard deviation of the measurement noise is in the tracker
represented by a stepping function (refer to 4.2), here we used linear function to model
the dependency of a measurement noise on the distance from radar as it might provide
more accurate estimates.

Another structures subjected to optimization are consisting of two Kalman filters only
making the IMM algorithm estimation less computationally expensive. The first structure
IMM1 is the simplest one, with two linear CV motion models. We did not expect it to
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yield comparable results as the more sophisticated structure IMM3, however, for radar1
such a simple setting might be sufficient.

In the last structure analysed (IMM2 ) we exchanged the more noisy (accelerated) lin-
ear model with a CT motion model similar to the one currently used in the tracker, but
the process noise is perturbing not only turn rate but also velocity, theoretically combining
noisy linear model with CT model containing noisy turn rate.

Table 10.2: Analysed IMM Structures.

Label Parameters Description

IMM1 6 • Two linear CV models (uniform, manoeuvres) with vary-
ing process noise variances
• Linear model for measurement noise estimation
• Mode transition matrix 2x2

IMM2 6 • One linear CV model (uniform) with low process noise
variance
• One non-linear CT model (manoeuvres) with estimated

turn rate
• Linear model for measurement noise estimation
• Mode transition matrix 2x2

IMM3 11 • One linear CV model (uniform) with low process noise
variance
• One linear CV model (acceleration) with high process

noise variance
• One non-linear CT model (manoeuvres) with estimated

turn rate
• Linear model for measurement noise estimation
• Mode transition matrix 3x3

The table 10.3 presents the evaluation results for optimized configurations of the IMM
structures listed in the table 10.2. This evaluation was performed on the same dataset as
the one used for the evaluation of the current configuration (to be found in the section 4.2).

For the radar radar1 we see that using both simpler IMM structures (IMM1, IMM2 )
comprising tow Kalman filters only yielded very similar results in all evaluated figures to
the more complex settings of IMM3. On the contrary, for radar2 and radar3 the current
IMM structure (IMM3 ) clearly outperformed the two simpler ones, especially, in the heading
error evaluated for the segments with turning motion.

We believe these differences are due to varying physical characteristics of the radars –
especially, higher scan rate of radar2 and radar3 as well as varying error magnitudes of
all three radars. These differences makes each radar observe a slightly different process.
For example, radar1 – low scan rate – captures significantly fewer measurements during
manoeuvres which usually do not last long. As a result the radar1 more or less captures
just straight segments – a fragments of the whole trajectory. This makes the poor ability
of estimating turns less significant. Radar2 and radar3 – with higher scan rate – clearly
benefit of using non-linear structure to precisely estimate the track when turning, as they
can incorporate more measurements and the estimated turn rate is in return more accurate.
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Table 10.3: Evaluation of optimized configurations. Error statistics for velocity vector
components are divided for straight-line motion and turns.

IMM
struct.

horz. pos.
RMSE [m]

speed
RMSE [m/s]

heading
RMSE [◦]

ra
da

r1 IMM1 378.40 4.48/5.69 2.02/15.73
IMM2 379.21 4.71/6.44 2.28/10.91
IMM3 378.10 4.38/5.82 2.00/16.62

ra
da

r2 IMM1 156.60 4.43/5.19 2.26/15.65
IMM2 150.9 4.72/4.57 2.91/11.62
IMM3 146.50 5.07/4.89 3.21/3.92

ra
da

r3 IMM1 261.70 9.37/7.76 3.47/16.51
IMM2 244.9 5.70/5.74 3.04/15.86
IMM3 245.90 5.71/6.00 2.61/7.76

10.3 Incorporating the optimized IMM structure

In the above we assessed the performance of the optimized parameters for each radar
separately. Further, we examined how the tracker’s output (fused from all three radars) is
influenced based on which IMM structure we choose for the estimation of radar1. This is
summarized in the table 10.4. Obviously, the quality of the fused output increased compared
to the original configuration listed in 4.3 for all IMM structures. From the above results we
assumed that IMM structures IMM1 and IMM2 are nearly equivalent and both will have
similar influence on the overall performance. However, the resulting performance differed
significantly.

Table 10.4: Evaluation of the selected and optimized IMM structures. Error statistics for
velocity vector components are divided for straight-line motion and turns.

radar1
horz. pos.
RMSE [m]

speed
RMSE [m/s]

heading
RMSE [◦]

IMM1 240.70 3.68/5.91 1.58/11.07
IMM2 289.73 3.69/5.97 2.29/13.24
IMM3 242.23 3.69/5.94 1.57/11.33

Our presumption for the cause of this issue was very varying magnitude of the mea-
surement noise estimated for radar1. As seen in the figure 10.2, for structure IMM2 it
was notably smaller than with remaining configurations IMM1 and IMM3. Our hypothesis
was confirmed by comparison of the state estimation error covariance matrices produced
by IMM algorithm with all IMM structures on the input data from radar1. To compare
the covariance matrices we used the following principle:

A > B → xT (A−B)x > 0, ∀x 6= 0

In other words A > B if and only if the matrix A−B is positive definite. The results of this
comparison carried out on several trajectories showed that the covariances with the opti-
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Figure 10.2: Optimized measurement noise standard deviation for radar1 and various IMM
structures.
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mized structure IMM2 were significantly smaller. This resulted in a heavier weighting of
noisier radar1 during the fusion process, which worsened the overall performance. The re-
maining IMM1 and IMM3 yielded larger covariance matrices and thus radar1 was in these
configurations weighted considerably lesser.

Possible solution could be modification of the global fitness function so that it takes
into account the magnitude of covariances for the particular radars, however this would be
hard to define as it is not clear what the appropriate magnitudes are. Other solution could
be optimization of the whole tracker at once, i.e., optimizing configuration of all radars and
defining the fitness function to evaluate the fused output.

To sum up, the optimized parameters for the current IMM structures implemented
yielded good results as the quality of tracker’s output increased. However, for the radar1
a simpler IMM structure referred to as IMM1 could be used and thus the computational
load would decrease without worsening the output’s quality. Configuration parameters for
this optimized structure are to be found in the table B.

10.4 Smoothness Incorporation

In order to fulfil the requirement for a smoother heading while the aircraft is cruising we re-
defined the cost function as is described in 8.3. We also changed the model of measurement
noise – for this optimization scenario we modelled the measurement error by a stepping
function with steps at 40 and 60 Nm – as is currently implemented in the tracker. The in-
terval boundaries 40 Nm and 60 Nm were kept and only corresponding magnitudes were
left free for optimization. The cost of the heading smoothness was computed for measure-
ments farther than 40 Nm from the radar. Otherwise, the optimization was run in a very
same manner as in the previous sections. However, this time we optimized only the IMM
structure assumed to be most efficient; that is structure IMM1 for radar1 and IMM3 for
radar2 and radar3.
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In the table 10.5 we can examine acquired results. We see that the error statistics
increased a little as we anticipated.

Table 10.5: Evaluation of the smoothed configuration. Error statistics for velocity vector
components are divided for straight-line motion and turns.

source
horz. pos.
RMSE [m]

speed
RMSE [m/s]

heading
RMSE [◦]

radar1 382.1 5.92/6.03 4.11/12.03
radar2 152.3 5.48/5.18 2.78/5.00
radar3 248.9 5.69/5.72 2.84/9.41
fused 242.8 3.85/5.65 1.85/11.41

In the next table 10.6 we can evaluate how much the smoothness of the trajectory
increased based on the developed measuring function described in 8.3.1. Obviously, the
smoothed configuration did not yield any significant improvement over the original opti-
mized configuration. This failure in obtaining configuration that would provide smoother
trajectory might be explained that the objective defined as minimal changes in the heading
while the aircraft is cruising is already covered by an objective to minimize the error in
heading. Clearly, during cruising the aircraft maintains a straight-line motion. The refer-
ence track during cruising, therefore, consists of a straight-line motion only and as such,
represents the smoothest track. By minimizing the error in the heading, we are also minimiz-
ing the differences to the reference heading estimates, which is basically a definition of our
smoothness-measuring function. In other words, the configuration that was optimized with-
out the incorporation of the heading smoothness, can already be regarded as a smoothing
configuration. The RMS average of differences in filtered heading and smoothed heading,
in 10.6, and also the overall error1 in heading for straight-line motion, prove this hypothesis.

Table 10.6: Comparison of the smoothed and non-smoothed configuration.

source non-smoothed smoothed

radar1 1.339 1.151
radar2 2.005 1.874
radar3 1.867 1.750
fused 1.349 1.266

10.5 Best configuration

Based on the experimental results described above we determined the best configuration
and structure for the tracker. For estimation of radar radar1, the IMM structure labelled
as IMM1 is recommended; while for radar2 and radar3 we recommend more sophisticated
IMM structure IMM3. The detailed configuration for these structures is to be found in
the appendix B.

1difference to the reference value
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The direct comparison of the optimized and original configuration is in the figure 10.5.
This chart presents results obtained by running the ESASSP evaluation on the whole dataset
of trajectories – used throughout the thesis.

Figure 10.3: Comparison of the evaluation of optimized and original configuration and
structure applied on the tracker – evaluated on the whole dataset.
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4.56 m/soriginal
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3.68 m/soptimized

6.00 m/soriginal
speed (turns)

5.91 m/soptimized

2.33 degoriginal
heading (straight)

1.58 degoptimized

11.41 degoriginal
heading (turns)

11.07 degoptimized

0 0.25 0.5 0.75 1

More dramatic improvements can be seen on the performance evaluation in the fig-
ure 10.4 – depicting evaluation performed for a smaller area around the airport where most
of the manoeuvres take place. This area was defined by a circle with a radius of 40 Nm.
This significant difference in improvement over the previous plot is caused by the selection
of trajectories included in the training set. As explained in the chapter 8.1 by careful se-
lection of trajectories we can influence how the tracker will perform on various segments of
trajectories (uniform, accelerated, manoeuvres).
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Figure 10.4: Comparison of the evaluation of optimized and original configuration and
structure applied on the tracker – on a smaller area around airport defined by a circle with
radius of 40 Nm.
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Chapter 11

Conclusions

In this thesis, we dealt with the optimization problem of an aircraft tracker which uses
IMM algorithm with a set of Kalman filters. The tracker fuses outputs of several radars,
each coupled with an IMM algorithm instance. The tracker’s original configuration did not
take into account different characteristics of the radars and defined a generic settings that
were applied to all IMM algorithm instances.

To evaluate the tracker performance we studied the ESASSP specification, every ATC
tracker should fulfil. For our purposes we extracted several performance measures: root-
mean-square error in the horizontal position and root-mean-square error in the track velocity
vector components – amplitude and heading – which were used for evaluation of different
configurations and structures of the IMM algorithm.

Our initial approach was based on the idea of training the Kalman filter separately on
sets of segmented trajectories by a mode-of-flight. We assumed that if a particular filter
performs well on a class of trajectories it is designed for, the whole set of Kalman filters (the
IMM algorithm) will perform well too. For the optimization of Kalman filters, we planned
to use the well-known EM algorithm commonly used for training Markov models. To learn
the transition matrix of IMM algorithm we expected Baum-Welch algorithm (derivate of
EM algorithm for Hidden Markov Models) to give good results. The prerequisite for this
approach is a correct segmentation of the available recorded data into classes by the type of
motion/mode-of-flight: uniform, accelerated and other manoeuvres. While completing this
task, we have shown that ensemble learning along with boosting algorithms are an effective
way to classify trajectories based on radar data, even if the data is skewed and noisy. We
determined what the best features for such classification are and also what is the right
number of surrounding measurements features to include in the feature set. The trained
model, with best configuration found, was tested on real data with accuracy around 94%
that was deemed as satisfactory. However, due to the insufficient initial research in the area
of parameter estimation for continuous-time models our original approach proved to be im-
practicable since the derivation of the log-likelihood function – needed for the EM algorithm
– does not have a closed-form solution. Further investigation in the field yielded no results,
from which we assume that so far no appropriate algorithm was published to this estimation
problem.

As an experiment, we tried to estimate the process noise and measurement noise em-
pirically from the available data. Both noise terms are of time-varying nature. For the es-
timation of the process noise, which is dependent on the length of the sampling interval,
ADS-B data were used as they represent, in our scenario, true samples of the process itself.
The estimation procedure was based on computing covariance matrices to the samples of
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process noise – computed as the differences of coasted states (i.e., predicted and thus with-
out process noise) and true states (with process noise) represented by ADS-B recordings.
The process noise was in this manner estimated for each mode-of-flight by carrying out
the estimation procedure on the mode-of-flight-segmented trajectories. Similar approach
was applied to the estimation of the measurement noise, where we fitted normal distribu-
tions to the samples of the measurement noise represented by the deviations of the radar
measurements from the reference values (spline interpolated ADS-B data). The acquired
results showed nearly linear dependency of the measurement noise standard deviation on
the range (distance from the radar). To evaluate this empirically acquired estimations we
plugged the constructed models for process and measurement noise into the IMM estima-
tor and carried out the ESASSP evaluation. However, the yielded results failed to meet
the demanded qualities both in the terms of horizontal position error as well as error in
the groundspeed vector.

Lastly, we examined utilization of a stochastic black-box optimization method, Cova-
riance-Matrix-Adaptation ES. In order to utilize the methodology of evolutionary computa-
tion we defined a fitness function for evaluating each individual’s performance expressing its
level of attainment to the specified accuracy statistics. This cost measure was computed on
15 selected trajectories covering as many possible scenarios as possible – uniform segments,
accelerating segments as well as segments where the aircraft was turning or performing
more complex (combined) maneuvers. The subterms of the global fitness function were
error measures in the horizontal position and velocity vector components. The designed
cost function conveniently combines all objective measures into one abstraction. We also
showed how to scale the individual cost terms or parameters such that they reside within
a certain boundaries; and the encoding used for the IMM mode transition matrix reduced
the number of parameters by n in the case of n× n transition matrix.

This optimization approach resulted in an optimized configuration for each radar. We
simultaneously proved that it is desirable to have a distinct configuration for each radar
source as they differ in the measurement noise magnitude and also the observed process
evinces different characteristics. The separate evaluation of the optimized configurations
yielded good results, and also the quality of the fused output was improved significantly
when evaluated on the available datasets. The error statistics went down in all interested
measures by tens of percent, and the results are deemed satisfactory by Tern Systems –
the supplier of the tracking software. Specifically, the RMSE in horizontal position was
240.7 m (originally 257.0 m); on straight segments of the track the RMSE in groundspeed
vector amplitude was 3.68 m/s (originally 4.56 m/s) and heading 1.58◦ (originally 2.33◦);
and on segments with turns the RMSE in groundspeed vector amplitude was 5.91 m/s
(originally 6.0 m/s) and heading 11.07◦ (originally 11.41◦).

Also, the additional requirements were fulfilled. Originally, the radar source radar1 was
coupled with an IMM instance consisting of three Kalman filters. We simplified this IMM
instance by reducing the number of employed Kalman filters while preserving the quality
of the estimator’s output. The tracker with the simplified structure is thus more compu-
tationally efficient which is highly beneficial when tracking multiple targets. The second
additional objective was to smooth the track when the aircraft is cruising. However, by
reformulating the requirement we came to a conclusion that this is already covered by
the objective of minimizing the error in heading and thus this optimization objective was
dropped.

The outcome of this thesis is a Matlab toolbox that eases work with trajectory data,
estimation algorithms and corresponding optimization. The estimation algorithms are
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implemented in a very abstract way that allows incorporation of different motion mod-
els or even totally different processes. The included estimation algorithms are based on
the IMM algorithm and encompass both IMM forward filter and IMM forward-backward
filter (smoother). Included is also a variety of motion models to enable experiments with
various structures of the IMM. The optimization classes are based on the CMA-ES algo-
rithm that can be easily substituted by another one if needed. The toolbox automates
the process of finding a good configuration for the IMM algorithm applied to maneuvering
target tracking, and greatly helps to decide on the suitable structure of the IMM algorithm
itself.

There are many possible extensions to this thesis as we dealt only with the performance
in the horizontal plane and configuration for commercial aircraft. Obviously, the tracker
needs to estimate also the altitude of an aircraft. For this estimation a single linear Kalman
filter is currently applied and, naturally, its configuration could be optimized using the im-
plemented toolbox. Furthermore, the optimized configuration for the tracker performs well
on commercial aircraft only, as other kinds of aircraft evince different motion patterns and
thus should be modelled by different motion models. For example, small private airplanes
or military aircraft undergo acceleration of considerably different magnitudes or perform
turns at higher turning rates and, consequently, the process noise magnitude in the cor-
responding Kalman filters would differ. With military aircraft the configuration would be
even harder to optimize as their motion can exhibit very sudden changes at nearly all esti-
mated measures. Probably, application of substantially different motion models would be
inevitable. Moreover, the problem of estimating the position of military aircraft is hard
due to low scan rate of the radars, which, in return, have very poor ability to observe or
even predict the kinematic state of fast targets, such as fighter planes.
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Appendix A

Toolbox Class Diagram

 Squawk

 Data

 ADSB

 Trajectory()

 clone(startTime, endTime)

 getXYZ(SIC)

 createTrajectories()

Trajectory

 plotReference : boolean

 TrajectoryPlotter(trajectory)

 filter(imm)

 overview()

 plotTrajectory()

 plotSpeed()

 plotAcceleration()

 plotHeading()

TrajectoryPlotter

 TrajectoryReconstruction(trajectory)

 getLatLonAlt(time)

 getXYZ(SIC, time)

 getSpeed(time)

 getAccelLong(time)

 getAccelTrans(time)

 getHeading(time)

 getTurnRate(time)

TrajectoryReconstruction

 trainset

 cmaesOptions

 objectives

 Optimizer(trainset, sic)

 x2params(x)

 params2x(params)

 fitfunc(x, trainset)

Optimizer

 procesModels

 sensorModel

 transMatrix

 IMMFilter(parameters)

 run(trajectory, sic)

 coast(coastTimes)

IMMFilter

 ndims

 ind

 getCovariance(dt)

 getTranMatrix(dt)

 getMeasurementModel()

 getDynamicFunc()

IProcessModel

 getCovariance(range)

<<Interface>>

IMeasurementNoise

 polynomial

 PolyMeasurementNoise(coefficients)

 getCovariance(range)

PolyMeasurementNoise

 intervals

 f_values

 StepMeasurementNoise(values, inte...

 getCovariance(range)

StepMeasurementNoise

 run(imm, testset, sic)

 computeErrors(trajectoryStubs)

Evaluator

 SensorFuser(immFilters, sic, dt)

 run(trajectory, sic)

SensorFuser

 processNoiseVar

 getCovariance(dt)

 getTranMatrix(dt)

 getMeasurementModel()

 getDynamicFunc()

CTMotionModel noiseEffectMatrix

 processNoisePSD

 getCovariance(dt)

 getTranMatrix(dt)

 getMeasurementModel()

 getDynamicFunc()

CVMotionModel

 run(trajectory, sic)

IEstimationAlgorithm

 IMMSmoother(immFilter)

 run(trajectory, sic)

IMMSmoother

 radar

 reference

 immout

 TrajectoryStub(trajectory)

TrajectoryStub

optimizes
evaluates

testset

plotsreference values

<<implements>>

<<implements>>

trainset

computes fitness

<<implements>>
<<implements>>

uses for evaluation

encapsulates output

encapsulates reference values

encapsulates radar plots

plots resuts of

fuses <<implements>>

<<implements>>

Visual Paradigm Standard Edition(Brno University of Technology)

66



Appendix B

Optimized Parameters

Table B.1: Table presenting best configuration for the tracker. For each radar specific
configuration is matched. The IMM structure applied is marked by IMM structure label
next to each radar’s label. This labeling corresponds to the one introduced in 10.2.

ra
da

r1
(I

M
M

1) KF1 process noise PSD 1.03
KF2 process noise PSD 28.98
Meas. noise std. dev. σR = 0.002 ∗ range+ 72

IMM transition matrix
KF1 KF2

KF1 0.56 0.44
KF2 0.61 0.39

ra
da

r2
(I

M
M

3)

KF1 process noise PSD 0.04
KF2 process noise PSD 12.23
KF3 turn rate variance 0.000 42
Meas. noise std. dev. σR = 0.002 ∗ range+ 24

IMM transition matrix

KF1 KF2 KF3
KF1 0.93 0.01 0.06
KF2 0.01 0.37 0.61
KF3 0.01 0.35 0.64

ra
da

r3
(I

M
M

3)

KF1 process noise PSD 0.03
KF2 process noise PSD 14.08
KF3 turn rate variance 0.000 017
Meas. noise std. dev. < 60Nm σR = 0.0007 ∗ range+ 32
Meas. noise std. dev. >= 60Nm σR = 0.0016 ∗ range+ 8

IMM transition matrix

KF1 KF2
KF1 0.98 0.01 0.01
KF2 0.52 0.01 0.47
KF3 0.04 0.25 0.71
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