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Abstract—This contribution presents straightforward design 

of a fractional-order oscillator employing novel simple 

impedance inverter (implementing differential voltage current 

conveyor transconductance amplifier as active element) used for 

construction of parallel LC resonator and requiring also negative 

resistor. Design supposing two output waveforms with constant 

amplitude ratio and phase shift 155 degrees (–25 degrees) 

supposes two identical constant phase elements (fractional-order 

capacitors). The key advantages of our solution, stability of ratio 

of output levels and phase shift between generated waveforms, 

were confirmed by simulations. 

Keywords—constant phase element; fractional-order; 

impedance inverter; oscillator; phase shift; resonator 

I.  INTRODUCTION 

The sinusoidal oscillators using standard integer-order 
passive elements suffer from certain disadvantages and 
limitations such as providing phase shifts in integer-order 
portions of π only [1]. The design of the oscillator generating 
arbitrary value of the phase shift between output waveforms 
supposes implementation of so-called fractional-order passive 
elements [2]. Recently reported solutions of the fractional-
order oscillators are not providing simple tools for fast design 
because of complex mathematical description [3]-[6] and are 
not studying relations between generated levels as well as 
phase shifts when oscillation frequency tuned [5], [6]. 
Therefore, we prepared very simple example of the fractional-
order oscillator design using two identical (for simplicity) 
constant phase elements (fractional-order capacitors) [7], [8], 
simple electronically controllable impedance inverter and 
negative resistor. This example uses straightforward approach 
without necessity of complex expressions and shows simple 
and easily to be followed design steps. Advantages of 
presented approach are: a) simple and practically feasible 
design approach in comparison to complex mathematical ways 
[3]-[6], b) constant amplitude ratio and phase shift during the 
tuning process, c) simply controllable condition of oscillation, 
d) very narrow change of value of parameters used for driving 
of oscillation frequency leads to sufficient tunability range, e) 
device implementable by commercially available active 
elements. Verification of the most important features in PSpice 
simulations accompany the design described bellow. 

II. DEFINITION OF ACTIVE ELEMENT USED IN DESIGN 

The modern active elements (AEs) [9] cover features useful 
for synthesis of various electronic circuits, especially because 
of their multi-terminal relations and possibility of multi-
parametric electronic control. The differential voltage current 
conveyor transconductance amplifier (DVCCTA) represents 
interesting device allowing useful features for our intentions 
[9]. We intend to define new behavioral model based on 
commercially available devices. The internal concept, 
representing behavior of DVCCTA, is given in Fig. 1. The 
structure includes differential difference amplifier (DDA) [10] 
and two current conveyors of second generation (CCII+) [9], 
[10]. The ideal operation (omitting internal parasitic properties) 
of the DVCCTA can be explained by the following 
expressions: VX = VY1 – VY2, IZ = IX, Io = VZ∙gm. The second 
CCII+ serves actually as operational transconductance 
amplifier (OTA). Note that adjustable gm and RX parameters 
can be controlled by the standard way (bias current of DC 
voltage). The same trend of control can be easily obtained for 
our final implementation, tested with commercially available 
devices, where external resistance values are varied instead of 
intrinsic parameters (as shown in Fig. 1). 
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Fig. 1. Proposed concept (principle) and behavioral model of DVCCTA 

element for further experimental purposes. 

III. IMPEDANCE INVERTER USING DVCCTA 

The topology of designed impedance inverter is shown in 
Fig. 2. The inverter has the following ideal form of input 
impedance when general load ZL(s) is connected: 
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Note that this formula is valid also when terminals are 
interchanged (Zin ↔ ZL). 

IV. DESIGN OF THE CONSTANT PHASE ELEMENT 

As an example, we decided to design the oscillator with 
phase shift (angle) between generated waveforms equal to 

 = 155° (–25°). The selected phase shift represents only 
arbitrary example indicating how this approach can be useful 
for modeling of behavior for many natural systems [2]. The 
following constant phase element (CPE) is required for our 
design.  Validity of approximation of CPE is limited to 4 
decades (from 10 Hz up to 100 kHz) and phase error is 

∆ = ±0.5° in theory. It results into fractional-order capacitor 

with order α = 5/18 and value Cα = 111 F/sec13/18 

(Cα = 1/(ωαǀZCαǀ) [F/sec1-α]; ǀZCαǀ = 5.407 k @1 Hz). Figure 3 
shows the CPE chain of RC sections having values calculated 
by method from Valsa et al. [7]. The impedance plot 
(magnitude and phase) of the CPE are shown in Fig. 4.  
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Fig. 2. New topology of the impedance converter based on DVCCTA. 
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Fig. 3. Designed RC chain of CPE (α = 5/18, Cα = 111 F/sec13/18) based on method developed in [7].  

 

 

a) 

 

b) 

Fig. 4. Impedance plot of designed CPE (α = 5/18, Cα = 111 F/sec13/18): 

a) magnitude response, b) phase response. 

V. FRACTIONAL-ORDER RESONATOR 

The resonator (in the meaning of parallel LC network) 
represents the important part of the oscillator design [1]. 
Several fractional-order resonators has been introduced quite 

recently, [11] for instance based on opamps in Antoniou 
impedance inverter [11], [12] (many floating passive elements, 
complicated electronic controllability) and employs 
combination of fractional- and integer-order capacitors. 
However, implementation of such resonator in the oscillator 
design is not necessary as shown in our contribution.  

The resonator circuit uses our impedance inverter 
(described in previous section) and two CPEs (identical α for 
the simplicity of our example) as shown in Fig. 5. The input 
impedance of the resonator can be expressed as: 
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where Lα (1) represents fractional-order inductance: 
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(numerically Lα  55.5 sec23/18/F) obtained from transformation 
of Cα by the impedance inverter where parameters for setting 

Lα have values RX = 1 k and gm = 1 mS. The denominator of 
(2) has complex root: 
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It results into pole in Cartesian form: 
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and value of the pole frequency can be calculated from 
ωp = (Real(p) + Imag(p))–1/2. The α value is restricted to 

0 < ǀαǀ ≤ 1 and max = ±90°. Previously discussed values of Lα 
and Cα numerically yield into p = 7.7∙103 + 5.6103j that results 
to ωp = 9.52 krad∙s–1 (fp = 1.515 kHz). 
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a)    b) 

Fig. 5. The fractional resonator network: a) principal topology, b) new circuit 

solution with impedance convertor based on DVCCTA element. 

The frequency ωp can be calculated also as: 
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Magnitude value at the pole frequency can be found from: 
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Simultaneous adjustment of RX = 1/gm in arbitrarily selected 

values 700 , 1 k and 1.2 k yields 

ZRmax(s) = |ZR(ω→ωp)| = 468 , 390 , 273  respectively, at 
frequencies of maximal impedance fp = 5.47 kHz, 1.515 kHz 
and 0.79 kHz, respectively. Results of the analysis of the circuit 
shown in Fig. 5 (active devices represented as shown in Fig. 1) 
are presented in Fig. 6. 

VI. OSCILLATOR DESIGN 

 The circuit in Fig. 5 can be easily extended to the oscillator 
when negative resistor, implemented by variable gain amplifier 
(VGA, implemented by VCA810 chip) and resistor, is added to 
the node of ZR(s) as shown in Fig. 7. Standard oscillator design 
requires analysis of the characteristic equation. However, 
solution of roots for non-integer-order case is not easily 
feasible in practice without appropriate software (Matlab) and 
resulting expressions are uncomfortable for immediate usage 
([3]-[6] for example). Fortunately, the circuit in Fig. 7 can be 
set to oscillations easily by equality of negative resistance 
value (Rneg = R/(1 – A)) to ZRmax at frequency fp of the resonator 
(see Fig. 6). It means that condition for oscillation (CO) is 
given as Rneg ≥ ZRmax where Rneg ≥ R/(1 – 102(Vset_A – 1)), see 
datasheet of VCA810. This CO can be rewritten as: 
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The gain of the amplifier controlling CO is expressed as 
A ≥ 1 + R/ZRmax that leads into practically useful parameter (DC 
control voltage) setting actually CO by: 
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Fig. 6. Impedance plots of the resonator (Fig. 5) for stepping of RX = 1/gm: 

a) magnitude responses, b) phase responses. 
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The oscillation frequency of the circuit is determined by the 
resonator frequency (6). The relation between produced 
waveforms (supposing identical CPEs) can be expressed as: 
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The formula (9) can be modified into: 
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Analysis of (10) yields to theoretically constant ratio of 
generated amplitudes and phase shift when frequency is tuned 
by simultaneous change of RX and gm. 

 The numerical values of our design (after substitution to 
previous equations) are adopted from the resonator design and 

R = 1 k (resistor in the negative resistance simulator, Fig. 7). 
Then, parameters for selected oscillation frequency f0 = 1 kHz 
can be calculated from rearranged equation (6) as 
RX = 1/gm = √2/(ω0

α∙Cα) = √2/(ω0
5/18∙C5/18). It results into 

RX = 1/gm = 1.12 k. The substitution of real values into (9) 
and (10) results to amplitude ratio V1/V2 = √2 and phase shift 
155° (–25° respectively), theoretically. Results of simulations 
in time domain are shown in Fig. 8 where simulated 
f0 = 1.05 kHz was obtained (and total harmonic distortion about 



2% was achieved). Figure 9 indicates the dependence of f0 on 

RX = 1/gm tested in range 0.7 → 1.2 k leading to f0 range 
from 0.82 kHz up to 5.72 kHz (ideal range 0.79 → 5.47 kHz). 
The harmonic distortion varied from 0.5 up to 2.5%. Expected 
dependences of phase shift between generated waveforms and 
their amplitude ratios are shown in Fig. 10 for particular 
settings. For tuning of f0 amplitude stabilization (controlling A 
by Vset_A automatically), i.e. automatic gain control (AGC) 
system, has been used (not shown due to space restrictions). 
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Fig. 7. Proposed resonator applied to the design of oscillator. 

 

Fig. 8. Generated output waveforms (f0 = 1.05 kHz). 

 

Fig. 9. Control of f0 by value of RX = 1/gm. 

VII. CONCLUSION 

This paper presents practical approach to design of the 
fractional-order oscillator based on two identical fractional-
order passive elements employing special active device 
(differential voltage current conveyor transconductance 
amplifier) applied in very simple resonator. Operation of the 
circuit confirming intended phase shift 155° (–25°) between 
generated amplitudes, not available by the standard integer-
order solution, has been verified by PSpice simulations at 

oscillation frequency 1 kHz and even for frequency tuning 
between 0.82 kHz and 5.72 kHz. The most important 
advantage of our solution is stability of value of phase shift and 
ratio of amplitudes during tuning of f0.  

 

Fig. 10. Dependence of phase shift and amplitude ratio on tuning of f0. 
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