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Abstrakt
Tato diplomová práce se zabývá numerickými metodami pro řešení počátečních problémů
zlomkových diferenciálních rovnic s Caputovou derivací. Jsou uvedeny dva numerické
přístupy spolu s přehledem základních aproximačních formulí. Dvě verze Eulerovy metody
jsou realizovány v Matlabu a porovnány na základě numerických experimentů.

Summary
The thesis deals with numerical methods for initial value problems of Caputo fractional
differential equations. Particularly, two numerical approaches are introduced together
with overview of fundamental approximation formulas. Two versions of Euler method are
build in Matlab and they are compared by numerical experiments.
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1. Introduction
Fractional calculus and classical calculus are old areas of mathematics dated back to

the seventeenth century [1]. Newton and Leibniz were the founding fathers of Differential
and Integral Calculus. Leibniz invented a symbol for the nth derivative of a function
f , i.e dn

dxn
f(x) and reported in a letter to L’Hopital with the implicit assumption that

n ∈ N. L’Hopital in a correspondence asked Leibniz on 30th September 1695 that “what
does dn

dxn
f(x) mean if n= 1

2
?.”

Leibniz later wrote: “It will lead to a paradox, from which one day useful consequences
will be drawn.” The idea is that if we take two half-derivatives of a function, we should
get back its first derivative. The letter of L’Hopital is recognized as the first occurrence
of phenomenon which is now known as fractional derivative.

Many mathematicians have contributed to the growth of this branch of mathematics over
the last three centuries, some of whom include: Laplace (1812), Lacroix (1812), Fourier
(1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grünwald (1867-1872),
Letnikov (1868-1872), Senin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917),
Davis (1936), Erdelyi(1939-1965), Gelfand and Shilov (1959-1964), Dzherbarshian (1966),
Caputo (1969) and others, see [2]. In particular, Caputo used his own definition of frac-
tional differentiation to formulate and solve certain viscoelasticity problems.

When it comes to solving and simulating integer-order systems, numerical methods are
important. Numerical integration is much more vital when dealing with fractional-order
systems. As a result, the design of accurate and fast algorithms for the numerical inte-
gration of fractional-order differential equations becomes essential to the field. To solve
single-term fractional differential equations, various computational approaches were used
decades earlier. Diethelm et al. [3], Ford and Connolly [4] reviewed some of the existing
methods and demonstrated their area of strengths and weaknesses. Several analytical
ways and numerical schemes to solving fractional differential equations can be found in
[5, 6].
An important work that maps fractional differential equations (FDE) from Caputo al-
gebra to Riemann-Liouville algebra in order to preserve the additivity of base function
powers under multiplication was published in [7]. The authors proposed a new method for
constructing closed-form solutions using only 1/2 order derivative equations. They also
stated that their method can be used in situations where the derivative order is a rational
number. M. Pakdaman et. al [8] proposed a new approach for approximating the solution
of fractional differential equations by using the fundamental properties of artificial neural
networks for function approximation. A high-order algorithm for numerical estimation
of fractional differential equations based on the Riemann-Liouville fractional derivative
using polynomial interpolation was proposed in [9].
A predictor-corrector method and an iterative method for solving fractional differential
equations have been proposed in [10] and [11]. In [12] the Riemann-Liouville integral for
solving FDEs was approximated by piecewise quadratic polynomial interpolation. In [13]
authors used non-equidistant step-sizes and in [14] they used a piecewise linear interpo-
lation to obtain a discretization of a multi-term FDE. For Grünwald-Letnikov schemes,
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1. INTRODUCTION

linear optimization to obtain the discretization weights, updated in each iteration [15] and
a matrix approach for numerically solving ordinary and partial fractional-order differen-
tial equations applied to the recursive fractional-order derivative [16] were presented.
In [17] Legendre wavelet method and Gauss-Legendre quadrature rule for evaluating
the fractional integrals to solve nonlinear fractional mixed Volterra-Fredholm integro-
differential equations along with mixed boundary conditions were used. [18, 19] demon-
strated that a Caputo derivative can be approximated by higher integer order derivatives
and used ordinary numerical methods to solve some special FDEs. Many other numer-
ical methods with various approaches and descriptions of the derivative are still being
researched in the literature.

In the literature, there are many definitions of fractional derivatives that do not coin-
cide, making it more difficult in general. However, for fractional integrals, integer-order
derivatives, and integrals, there is a unique definition, from which they can be determined
in the classical sense [20, 21, 22, 23].

In 1823, Abel used fractional calculus to solve an integral equation that occurs in the
formulation of the problem of finding the shape of a frictionless wire lying in a vertical
plane such that the time of a bead placed on the wire slides to the lowest point of the
wire in the same time regardless of where the bead is placed, a problem known as the
tautochrone problem, see [20, 21].
Fractional derivatives are a powerful method for explaining memory and hereditary prop-
erties in a variety of materials and processes [24]. In certain cases, fractional order models
of real systems are more suitable than integer order models. In general, the fractional
calculus’ superior performance is demonstrated by lower error levels generated during es-
timation, see e.g. [25, 26, 27, 28, 29]. The fact that fractional calculus has found various
applications in Bio Chemistry (modelling of polymers and proteins), Mechanics (theory
of viscoelasticity and viscoplasticity), Electrical Engineering (transmission of ultrasound
waves), Medicine (modelling of human tissue under mechanical loads), Control Theory
of Dynamical Systems, and Stochastic Analysis in the last four decades leads to its great
theory development, see e.g. [2].
One explanation for this is that practical modelling of physical phenomena is not solely
dependent on time, but rather on the background of previous time, which can be ac-
complished using fractional calculus. For more information on recent developments in
fractional calculus see [30] . The continuous and discrete approaches to fractional calcu-
lus [2] are the two main approaches. The continuous approach is linked to the two most
widely used definitions of fractional derivatives, the Riemann-Liouville and Caputo defi-
nitions [21]. The discrete approach dealt with Grünwald-Letnikov fractional derivatives.
The Caputo operator will be the object of our attention as we attempt to implement these
definitions in a continuous manner. The Riemann-Liouville definition is obviously very
useful in the development of fractional derivatives and integrals theory. Even, for the
sake of pure mathematics applications [22].
The Caputo fractional derivative is widely used because it offers initial conditions with
clear meaning for fractional order differential equations in applied problems.

The aim of this thesis is to describe numerical methods for solving initial value prob-
lem of fractional differential equation in the Caputo sense. Much priority will be given
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to single-term equations. We assume that the reader has a basic knowledge of ordinary
differential equations (ODEs) theory and numerical methods for initial value problems
(IVPs) for ODEs.

This thesis consists of 4 sections. Section 1 consists of the introductory part. Section
2 introduces some useful special functions, Caputo fractional derivative and initial value
problem for Caputo fractional differential equation. Section 3 deals with the numerical
methods. Stability and convergence of the solution is also studied and some interesting
new properties are discovered. Particular examples are calculated and illustrated by their
graphs. Section 4 concludes the thesis by summarizing the results. The MATLAB codes
developed for presented numerical simulations are enclosed in Appendix. Appendix A
contains the algorithm for the forward Euler method and Appendix B contains the al-
gorithm for the improved forward Euler method. Next is the list of abbreviations and
symbols.
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2. THEORETICAL BACKGROUND

2. Theoretical Background
The branch of mathematics that deals with the properties of differential and integral

operators of arbitrary order(non-integer order called fractional derivatives or integrals) is
classified as fractional calculus see, [22]. This section introduces fundamentals of fractional
calculus, which are related to the studied problems. It unifies and generalizes n-fold
integration and integer-order differentiation. Fractional derivatives and integrals, in other
words, can be thought of as an ”interpolation” of the infinite sequence

· · · ,
∫ t

t0

∫ τ1

t0

f (τ2) dτ2dτ1,

∫ t

t0

f (τ1) dτ1, f(t),
df(t)

dt
,

d2f(t)

dt2
, · · ·

of the classical n -fold integrals and n -fold derivatives.

2.1. Special Functions
In this section a survey of several special functions which are of fundamental use in
fractional calculus development is given.

• Gamma Function
Gamma function is an extension of the factorial function n!, thus Γ(n) = (n − 1)! for
n ∈ N. Gamma function generalizes factorial for arguments z ∈ C\{0,−1,−2, . . .}. Such
a generalization exists and is well-known as Euler’s Gamma function (or Euler’s integral
of the second kind) defined by

Γ(z) =

{ ∫∞
0
tz−1 exp(−t)dt if Re(z) > 0

Γ(z+1)
z

if Re(z) < 0, z ̸= 0,−1,−2, . . .

Gamma function is defined for all points on the complex plane except at 0,−1,−2, . . . ,
where it has simple poles. Thus Γ : C\{0,−1,−2, . . .} −→ C holds (see [31])

• Γ(z + 1) = zΓ(z) for z ∈ C\{0,−1,−2, . . .}

• Γ(n+ 1) = n! for n ∈ N0

• Γ(z)Γ(1− z) = π
sin(πz) for z ∈ C\{0,−1,−2, . . .}

• For half integer arguments, Γ(n/2), n ∈ N, we have

Γ(n/2) =
(n− 2)!!

√
π

2(n−1)/2
,

where the double factorial is defined by;

n!! =


n · (n− 2) . . . 5 · 3 · 1 n > 0, odd
n · (n− 2) . . . 6 · 4 · 2 n > 0, even
1 n = 0,−1.

Especially for n = 1, we have Γ(1/2) =
√
π.
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2.1. SPECIAL FUNCTIONS

• Beta Function
By Beta Function, we mean the function defined by the integral

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt, Re(p) > 0,Re(q) > 0.

Substituting t = 1− η, we see that the Beta function is symmetric

B(p, q) = B(q, p).

Beta function is sometimes introduced as combination of Gamma functions (see [31]), in
the form;

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (2.1)

Beta function is defined for all points on the complex plane except 0,−1,−2, . . . , where
it has simple poles as a consequence of (2.1) .

• Mittag-Leffler Function
For z ∈ C the one parameter Mittag-Leffler function Eα(z) is defined, see eg. [22],p.16,
as

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, α ∈ R. (2.2)

The two parameter Mittag-Leffler function Eα,β(z) is introduced by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0, α, β ∈ R, z ∈ C. (2.3)

Remark 2.1.1. Let β = 1. Then (2.2) and (2.3) gives,

Eα,1(z) = Eα(z).

Some special cases of Mittag-Leffler function are e.g.

E1,1(z) = exp(z),

E1,2(z) =
1

z
(exp(z)− 1).

Mathematical induction then gives

E1,m(z) =
1

zm−1

(
exp(z)−

m−2∑
k=0

zk

k!

)
, m = 2, 3, .

Mittag-Leffler function has particular cases in the hyperbolic sine and hyperbolic cosine.

E2,1

(
z2
)
=

∞∑
k=0

z2k

Γ(2k + 1)
=

∞∑
k=0

z2k

2k!
= cosh(z),

E2,2

(
z2
)
=

∞∑
k=0

z2k

Γ(2k + 2)
=

1

z

∞∑
k=0

z2k+1

(2k + 1)!
=

sinh(z)
z

.
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2. THEORETICAL BACKGROUND

Theorem 2.1.1. [32] Mittag-Leffler function obeys the recurrence relation

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
.

2.2. Integro-Differential Operators
Suppose the class of functions f(t) such that f(t) is continuous and integrable in every
finite interval (t0, t) , t ∈ R, see ([22], p.63). Such functions f(t) may have an integrable
singularity of order α < 1 at the point t = t0;

lim
τ→t0

(τ − t0)
α f(t) = const. ( ̸= 0).

On this class of functions are defined the next operators, considering eventual additional
properties.

The Riemann-Liouville Operator
For detailed theoretical background we refer to [2] and [22]. First we introduce

Definition 2.2.1. Let J = [t0,∞) ⊂ R+ and L1 be Lebesgue space. Then the Riemann-
Liouville fractional integral of order α > 0 of a function f ∈ L1(J,R) is defined as:

Iαt0f(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ)dτ, t > t0 ∈ R.

Definition 2.2.2. The Riemann-Liouville fractional derivative of order α > 0 of a con-
tinuous function f ∈ L1(J,R) and n = [α] + 1 with [α] being the integer part of α is given
by:

RLDα
t0,t
f(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

(t− τ)n−α−1f(τ)dτ, n− 1 < α < n, n ∈ N, (2.4)

provided the right hand side is pointwise defined on J . Relation (2.4) is also known as
the Riemann-Liouville fractional differential operator of order α.

The Riemann-Liouville approach is based on the Cauchy formula for the n− th integral,
defined as ([21], p.64):

Int0f(t) =

∫ t

t0

∫ τn−1

t0

· · ·
∫ τ1

t0

f(τ)dτdτ1 . . . dτn−1 =
1

(n− 1)!

∫ t

t0

(t− τ)n−1f(τ)dτ. (2.5)

It is clear how to get the integral of arbitrary order for instance α from the Cauchy formula
above. We just have to make a generalization of the Cauchy formula (2.5),

Iαt0f(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ)dτ, α ∈ R+, t > t0. (2.6)

Remark 2.2.1. The integrand in (2.6) is still integrable since α− 1 > −1, but in a case
when α = 0, under certain assumptions we have by convention the identity operator [22]

I0t0f(t) = f(t).
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2.2. INTEGRO-DIFFERENTIAL OPERATORS

Unlike the case of integration, there is no explicit formula that defines an n − th order
derivative, so we have to define the fractional derivative of order 0 < α < 1 in terms of
the fractional integral for n = ⌊α⌋+ 1 as,

Dα
t0,t
f(t) =

dn
(
In−α
t0 f(t)

)
dtn

=
1

Γ(n− α)

dn

dtn

∫ t

t0

(t− τ)n−α−1f(τ)dτ.

(2.7)

Formula (2.7) also includes integer order derivatives. If α = k and k ∈ N0, then n = k+1
and (2.7) becomes:

Dk
t0,t
f(t) =

dk+1

dtk+1

∫ t

t0

f(τ)dτ =
dkf(t)

dtk
.

If we write D−α
t0,tf(t) = Iαt0,tf(t) and f (0)(t) = f(t), we get the representation of the

fractional derivative and integral by one single formula. We now state without proof the
Laplace transform of the Riemann-Liouville fractional derivative.

L
{
RLDα

t0,t

}
= sαF (s)−

m−1∑
k=0

sk
[

RLDα−k−1
t0,t f(t)

]
t=t0

, α > 0, n− 1 ≤ α < n.

Caputo Operator
Another approach of fractional operator is due to Michele Caputo [33]:

Definition 2.2.3. Let α ∈ R+ such that n − 1 < α ≤ n and for n ∈ N and t > t0. The
Caputo fractional derivative of order α of a function f is defined as:

CDα
t0,t
f(t) =

1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1f (n)(τ)dτ, (2.8)

CDα
t0,t
f(t) = In−α

t0,t
f (n)(t), 0 < n− 1 < α ≤ n, t ∈ [t0, T ] . (2.9)

The Caputo fractional operator is denoted by CDα
t0,t

. The fractional integral operator is
as defined in (2.6) above. Hence considering α > 0 it holds

CD−α
t0,t
f(t) = D−α

t0,t
f(t).

The benefit of the Caputo definition is that the Caputo derivative of a constant is zero,
seeing that before the integral is computed we first take an integer derivative of a constant.
But, this adjustment alters the limiting case when the order of the fractional derivative
is an integer.

Example 2.2.1. Suppose f(t) = t, n = 1, t0 = 0, α = 1/2. Then, from (2.8) we have

CD
1/2
0,t t =

1

Γ(1/2)

∫ t

0

1

(t− τ)1/2
dτ,

8



2. THEORETICAL BACKGROUND

By direct substitution, we define u := (t− τ)1/2. It follows that

CD
1/2
0,t t = − 1√

π

∫ t

0

1

(t− τ)1/2
d(t− τ),

CD
1/2
0,t t = − 1√

π

∫ 0

√
t

1

u
du2,

CD
1/2
0,t t =

1√
π

∫ √
t

0

2u

u
du,

CD
1/2
0,t t =

2√
π
(
√
t− 0),

therefore, the half order Caputo derivative of the function f(t) = t is

CD
1/2
0,t t =

2
√
t√
π
.

But unlike the Riemann-Liouville derivative, in the Caputo definition, the function is first
differentiated in the classical sense before integrating fractionally to the required order.
We shall now state without proof the Laplace transform of the Caputo fractional derivative

L
{
CDα

t0,t

}
= sαF (s)−

m−1∑
k=0

sα−k−1f (k) (t0) , α > 0, n− 1 < α ≤ n.

Caputo operator has the following fundamental properties:

1. Interpolation

Lemma 2.2.1. Let f(t) be such that CDα
t0,t
f(t) exist, n− 1 < α < n, α ∈ R, n ∈ N. Then

the following holds
lim
α→n

CDα
t0,t
f(t) = f (n)(t).

lim
α→n−1

CDα
t0,t
f(t) = f (n−1)(t)− f (n−1) (t0) .

P roof . Via integration by parts ( [22], p.79).

CDα
t0,t
f(t) =

1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α+1−n
dτ,

CDα
t0,t
f(t) =

1

Γ(n− α)

(
− f (n)(τ)

(t− τ)n−α

n− α

∣∣∣∣t
τ=t0

−
∫ t

t0

−f (n+1)(τ)
(t− τ)n−α

n− α
dτ

)
,

CDα
t0,t
f(t) =

1

Γ(n− α + 1)

(
f (n)(t0)t

n−α +

∫ t

t0

f (n+1)(τ)(t− τ)n−αdτ

)
.

Taking limits for α → n and α → n− 1, we have

lim
α→n

CDα
t0,t
f(t) =

(
f (n)(t0) + f (n)(τ)

)∣∣t
τ=t0

= f (n)(t),

9



2.2. INTEGRO-DIFFERENTIAL OPERATORS

and

lim
α→n−1

CDα
t0,t
f(t) =

(
f (n)(t0)t+ f (n)(τ)(t− τ)

)∣∣t
τ=t0

−
∫ t

t0

−f (n)(τ)dτCDα
t0,t
f(t) = f (n−1)(τ)

∣∣t
τ=t0

,

CDα
t0,t
f(t) = f (n−1)(t)− f (n−1)(t0). �

The corresponding interpolation property for the Riemann-Liouville fractional differential
operator is given as

lim
α→n

RLDα
t0,t
f(t) = f (n)(t),

lim
α→n−1

RLDα
t0,t
f(t) = f (n−1)(t).

2. Linearity

Lemma 2.2.2. Let f(t) and g(t) be functions such that CDα
t0,t
f(t) and CDα

t0,t
g(t) exist,

then

CDα
t0,t

(µf(t) + λg(t)) = µCDα
t0,t
f(t) + λCDα

t0,t
g(t), n− 1 < α < n, n ∈ N, α, λ, µ ∈ R.

(2.10)

Proof . The proof follows from (2.8) and the fact that the integer order integration and
differentiation is a linear operator. �

As expected, the Riemann-Liouville operator is linear and also satisfies

RLDα
t0,t

(µf(t) + λg(t)) = µRLDα
t0,t
f(t) + λCDα

t0,t
g(t), n− 1 < α < n,

n ∈ N, α, λ, µ ∈ R.

3. Non-Commutation

Lemma 2.2.3. Assume that CDα
t0,t
f(t) exist. Then

CDα
t0,t
Dmf(t) = CDα+m

t0,t
f(t) ̸= DmCDα

t0,t
f(t), n− 1 < α < n n,m ∈ N, α ∈ R.

P roof .
CDα

t0,t
Dmf(t) =

1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1 d
m

dτm
f (n)(τ)dτ.

By the property of integer order derivative

CDα
t0,t
Dmf(t) =

1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1f (n+m)(τ)dτ,

CDα
t0,t
Dmf(t) = CDα+m

t0,t
f(t).

Similarly,

DmCDα
t0,t
f(t) =

1

Γ(n− α)

dm

dtm

∫ t

t0

(t− τ)n−α−1f (n)(τ)dτ.

10



2. THEORETICAL BACKGROUND

To solve the above, we shall use the Leibniz formula
d

dt

∫ t

t0

g(t, τ )dτ = g(t, t) +

∫ t

t0

∂g(t, τ )

∂t
dτ.

Let
g(t, τ ) = (t− τ)n−α−1f (n)(τ),

it follows
= 1

Γ(n−α)
dm−1

dtm−1
d
dt

∫ t

t0
(t− τ)n−α−1f (n)(τ)dτ

= 1
Γ(n−α)

dm−1

dtm−1

[
(n− α− 1)

∫ t

t0
(t− τ)n−α−2f (n)(τ)dτ

]
= 1

Γ(n−α)
dm−2

dtm−2

[
(n− α− 1)(n− α− 2)

∫ t

t0
(t− τ)n−α−3f (n)(τ)dτ

]
continuing, we get
= 1

Γ(n−α)

[
(n− α− 1)(n− α− 2) . . . (n− α−m)

∫ t

t0
(t− τ)n−α−m−1f (n)(τ)dτ

]
.

Using the property (z − 1)Γ(z − 1) = Γ(z) of the Gamma function,

CDα
t0,t
Dmf(t) =

1

Γ(n− α−m)

∫ t

t0

(t− τ)n−α−m−1f (n)(τ)dτ. �

The Riemann-Liouville operator of order n−1 < α < n, α ∈ R is also non-communicative

RLDα
t0,t
Dmf(t) = RLDα+m

t0,t
f(t) ̸= DmCDα

t0,t
f(t), n,m ∈ N.

Corollary 2.2.1. Let f(t) be a function such that CDα
t0,t
f(t) exist, with n − 1 < α <

n, β = α− (n− 1) [=⇒ (0 < β < 1)], n ∈ N, α, β ∈ R. Then
CDα

t0,t
f(t) = CDβ

t0,tD
n−1f(t).

P roof . The proof follows from the above lemma 2.2.3
CDβ

t0,tD
n−1f(t) = CD

β+(n−1)
t0,t f(t),

substituting the value of β, we have that
CDβ

t0,tD
n−1f(t) = CD

α−(n−1)+(n−1)
t0,t f(t),

CDβ
t0,tD

n−1f(t) = CDα
t0,t
f(t). �

Remark 2.2.2. From corollary 2.2.1, we see that to find the Caputo derivative of arbitrary
order n− 1 < α < n it is sufficient to find the Caputo derivative of order β = α− (n− 1)
of the (n− 1)th derivative of the function. We also notice that β ∈ (0, 1).

Proposition 2.2.1. By (2.8) and (2.4), the Riemann-Liouville and Caputo operators do
not coincide.

CDα
t0,t
f(t) ̸= RLDα

t0,t
f(t). (2.11)

We shall however give condition which will make (2.11) identical.

11



2.2. INTEGRO-DIFFERENTIAL OPERATORS

Caputo and Riemann-Liouville Operator Relations
In this paragraph a relationship between the Caputo and Riemann-Liouville differential
operator is discussed, see [2].

Theorem 2.2.1. Let t > 0, α ∈ R, n ∈ N. Then the following relation between the
Riemann-Liouville (2.4) and the Caputo differential operator (2.8) holds

CDα
t0,t
f(t) = RLDα

t0,t
f(t)−

n−1∑
k=0

(t− t0)
k−α

Γ(k + 1− α)
f (k) (t0) , n− 1 < α < n. (2.12)

Proof. The well known Taylor’s series about t0 is given by

f(t) = f (t0) + (t− t0) f
′ (t0) +

(t−t0)
2

2!
f ′′ (t0) + · · ·+ (t−t0)

n−1

(n−1)!
f (n−1) (t0) + Rn−1,

f(t) =
n−1∑
k=0

(t− t0)
k

Γ(k + 1)
f (k) (t0) + Rn−1.

(2.13)

Where Rn−1 is the Lagrange Remainder. By (2.5)

Rn−1 =
1

(n−1)!

∫ t

t0
(t− τ)n−1f (n)(τ)dτ,

Rn−1 =
1

Γ(n)

∫ t

t0
(t− τ)n−1f (n)(τ)dτ,

Rn−1 = Int0f
(n)(t).

Now, taking the Riemann-Liouville derivative of (2.13) and using the linearity property
of the Riemann-Liouville derivative

RLDα
t0,t
f(t) = RLDα

t0,t

(
n−1∑
k=0

(t− t0)
k

Γ(k + 1)
f (k) (t0) + Int0f

(n)(t)

)
,

RLDα
t0,t
f(t) =

n−1∑
k=0

RLDα
t0,t

(t− t0)
k

Γ(k + 1)
f (k) (t0) +

RLDα
t0,t
Int0f

(n)(t).

taking the Riemann-Liouville fractional derivative of the power function

RLDα
t0,t

=
n−1∑
k=0

Γ(k + 1) (t− t0)
k−α

Γ(k + 1− α)Γ(k + 1)
f (k) (t0) + In−α

t0
f (n)(t),

from (2.9)
RLDα

t0,t
f(t) =

n−1∑
k=0

(t− t0)
k−α

Γ(k + 1− α)
f (k) (t0) +

CDα
t0,t
f(t),

which completes the proof. �

Remark 2.2.3. The above theorem shows that the Riemann-Liouville differential opera-
tor and the Caputo differential operator coincide only if f(t) together with its first (n− 1)

12



2. THEORETICAL BACKGROUND

derivatives vanish at t = t0 i.e f(t0) = 0, f ′(t0) = 0, · · · , f (n−1)(t0) = 0.
We state and prove, in composition of Riemann–Liouville integrals and Caputo differential
operators, that the Caputo derivative is a left inverse of the Riemann–Liouville integral
but not the right inverse of the Riemann–Liouville integral.

Corollary 2.2.2. The following relation between the Riemann-Liouville and Caputo frac-
tional derivatives holds

CDα
t0,t
f(t) = RLDα

t0,t

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(t0)

)
(2.14)

Proof : See [2]. Using (2.12), the Riemann-Liouville fractional derivative of the power
function (2.16) and the linearity property of the Riemann-Liouville operator, we obtain

CDα
t0,t
f(t) = RLDα

t0,t
f(t)−

n−1∑
k=0

tk−α

Γ(k + 1− α)
f (k)(t0),

CDα
t0,t
f(t) = RLDα

t0,t
f(t)−

n−1∑
k=0

RLDα
t0,t
tk

Γ(k + 1)
f (k)(t0),

CDα
t0,t
f(t) = RLDα

t0,t

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(t0)

)
. �

2.3. Fractional Differential Equation
Fractional differential equations (FDEs) involve fractional derivatives of the form dα

dtα

which are defined for α > 0, where α is not necessarily an integer. They are generalizations
of ordinary differential equations to a noninteger order. Particular case of FDE of the
Riemann–Liouville type is given by the equation

RLDα
t0,t
f(t) = y(t, f(t)),

and the initial condition is of the form{
RLDα−k

t0,t f(t0) = bk k = 0, 1, 2, . . . , N − 1
IN−αf(t0) = bN .

Similarly, the corresponding FDE of the Caputo type with its initial conditions is of the
form {

CDα
t0,t
f(t) = y(t, f(t)),

f
(k)
t0 = bk k = 0, 1, 2, . . . , N − 1.

Consider the FDE based on the Riemann-Liouville derivative:

RLDα
t0,t
f =

1

Γ(1− α)

∂

∂t

∫ t

t0

f(τ)

(t− τ)α
dτ.

Its Laplace transform is

L
[
RLDα

t0,t
f
]
= sαf̃(s)−

[
RLD

−(1−α)
t0,t f

]
(t0).

13



2.3. FRACTIONAL DIFFERENTIAL EQUATION

The initial value of f is usually given in physical applications, and the Laplace transform
is based on the initial value of the fractional integral of f . It is known that in order to
produce a unique solution to classical and FDEs, additional conditions must be defined.
These conditions are fractional derivatives and integrals of the unknown solution at the
initial point t0 = 0, and are functions of t for Riemann-Liouville FDEs. As a limitation
of fractional derivatives of this kind, these initial conditions are not physical and cannot
be measured in any way. The Caputo derivative of the fractional derivative provides a
solution to this problem, where the additional conditions are essentially the traditional
conditions that are identical to those of classical differential equations. In most cases, the
equation of choice is based on the Caputo derivative, which contains the functions’ initial
values as well as its lower-order integer derivatives.

Fractional Derivatives of fundamental functions
Examples of fractional derivatives, such as the constant, power, and exponential functions,
as well as the sine and cosine functions, are provided in this section. For more details,
see [34].

• The Constant Function
It makes sense to have the fractional derivative of a constant equal to zero from a physical
standpoint. For the Riemann-Liouville operator it holds [22]

RLDα
t0,t
c =

c

Γ(1− α)
t−α ̸= 0, c = const.

Lemma 2.3.1. For the Caputo fractional derivative it holds

CDα
t0,t
c = 0, c = const.

Proof. Let 0 < n−1 < α < n, n ∈ N, n ≥ 1. Using the definition of the Caputo derivative
(2.3.1) and since the n− th derivative c(n) of a constant equals zero it follows

CDα
t0,t
c =

1

Γ(n− α)

∫ t

t0

c(n)

(t− τ)α+1−n
dτ = 0. �

• The Power Function
The power function is of great importance. The Taylor expansion is given as ([35], p. 35)

f(t) = f(0) + f ′(0)t+
f ′′(0)

2!
t2 +

f ′′′(0)

3!
t3 + · · ·

We know that the Caputo fractional derivative is linear (see (2.10)) . So if CDα
t0,t
tp is

known, then the Caputo fractional derivative for arbitrary function can be expressed as

CDα
t0,t
f(t) = CDα

t0,t

∞∑
k=0

f (k)(0)

k!
tk =

∞∑
k=0

f (k)(0)

k!
CDα

t0,t
tk. (2.15)

14
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Theorem 2.3.1. The Riemann-Liouville fractional derivative of the power function sat-
isfies

RLDα
t0,t
tp =

Γ(p+ 1)

Γ(p− α + 1)
tp−α, n− 1 < α < n, p > −1, p ∈ R. (2.16)

Proof. See ([22], p. 72.)

Theorem 2.3.2. The Caputo fractional derivative of the power function satisfies [34]

CDα
t0,t
tp =

{
Γ(p+1)

Γ(p−α+1)
tp−α = RLDα

t0,t
tp, n− 1 < α < n, p > n− 1, p ∈ R

0, n− 1 < α < n, p ≤ n− 1, p ∈ N
(2.17)

Proof : We use the relation between the Caputo and Riemann-Liouville derivatives (2.12)
as well as the Riemann-Liouville fractional derivative of the power function (2.16).

Let n− 1 < α < n, p > n− 1, p ∈ R,
CDα

t0,t
tp = RLDα

t0,t
tp −

n−1∑
k=0

tk−α

Γ(k + 1− α)
(tp)(k)

∣∣∣∣∣
t=0

,

and taking into account (tp)(k)
∣∣∣
t=0

= 0, for k ≤ n− 1 < p,we obtain

CDα
t0,t
tp =

Γ(p+ 1)

Γ(p− α + 1)
tp−α −

n−1∑
k=0

tk−α

Γ(k + 1− α)
· (0)

CDα
t0,t
tp =

Γ(p+ 1)

Γ(p− α + 1)
tp−α. �

The proof of the second case
(
CDα

t0,t
tp = 0, n− 1 < α < n, p ≤ n− 1, p ∈ N

)
follows the

pattern of the proof of the differentiation of the constant function, since (tp)(n) = 0 for
p ≤ n− 1, p, n ∈ N.

Remark 2.3.1. Theorem 2.3.2 can also be proved directly, using the definition of the
Caputo fractional derivative (2.8) and the properties of the Gamma and Beta functions.

Proposition 2.3.1. The Caputo fractional derivative for an arbitrary function f(t) can
be computed by the formula

CDα
t0,t
f(t) =

∞∑
k=n

f (k)(0)

Γ(k − α + 1)
tk−α.

P roof. Taking into account Caputo arbitrary function (2.15) and (2.17), the following
equalities hold

CDα
t0,t
f(t) =

∞∑
k=0

f (k)(0)

k!
CDα

t0,t
tk =

∞∑
k=n

f (k)(0)

k!

Γ(k + 1)

Γ(k − α + 1)
tk−α =

∞∑
k=n

f (k)(0)

Γ(k − α + 1)
tk−α.�

Example 2.3.1. Assume α ∈ R\N and n−1 < α < n < 3, f(t) = t2, i.e p = 2 is discussed
for fixed values of the parameter α, in particular, α = 1/3, α = 1/2 and α = 3/4.
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2.3. FRACTIONAL DIFFERENTIAL EQUATION

Using (2.17) the fractional derivative is given as

CDα
t0,t
t2 =

Γ(2 + 1)

Γ(2− α + 1)
t2−α =

2

Γ(3− α)
t2−α, n− 1 < α < n < 3,

for α = 1
3
: CD

1/3
t0,tt

2 = 2
Γ(3−1/3)

t2−1/3 = 2
Γ(8/3)

t5/3 ≈ 1.3293t5/3,

for α = 1
2
: CD

1/2
t0,tt

2 = 2
Γ(3−1/2)

t2−1/2 = 8
3
√
π

√
t3 ≈ 1.5045

√
t3,

for α = 3
4
: CD

3/4
t0,tt

2 = 2
Γ(3−3/4)

t2−3/4 = 2
Γ(9/4)

t5/4 ≈ 1.7652t5/4.

Figure 2.1: CDα
t0,t
t2 for α ∈ 0,

1

3
,
1

2
,
3

4
, 1.

Except for a small interval, the graphs of the fractional derivatives are enclosed everywhere
by the graphs of the classical integer-order derivatives. The greater the order α < 1 of
the derivative is, the closer is its graph to the graph of the 1st derivative of t2 The smaller
the order α > 0 is, the closer is its graph to the graph original function.

Using the function f(t) = tp = t, i.e, p = 1 for α = 1/2 it follows

CDα
t0,t
t =

Γ(1 + 1)

Γ(1− α + 1)
t1−α =

1

Γ(2− α)
t1−α.

16
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CD
1/2
t0,tt =

1

Γ(2− 1/2)
t1−1/2 =

2
√
t√
π
.

Figure 2.2: CDα
t0,t
t for α ∈ 0,

1

4
,
1

2
,
3

4
, 1.

From figure 2.2, the graphs of the fractional derivatives are enclosed between the graphs
of the integer-order derivatives except for a small interval.

17



2.3. FRACTIONAL DIFFERENTIAL EQUATION

Figure 2.3: 3D CDα
t0,t
t2 for α ∈ [0,2]

Figure 2.3 gives the 3D representation of the function f(t) = t2 with 0 < α < 2. Here
the fractional derivatives interpolate the classical zero, first and second order derivatives
t2, 2t and 2.

• The Exponential Function
The Caputo derivative of the exponential function eλt is introduced by
Theorem 2.3.3. Let α ∈ R, n − 1 < α < n, n ∈ N, λ ∈ C. Then the Caputo fractional
derivative of the exponential function can be denoted as

CDα
t0,t
eλt =

∞∑
k=0

λk+ntk+n−α

Γ(k + 1 + n− α)
= λntn−αE1,n−α+1(λt), (2.18)

where Eα,β(z) is the two-parameter function of Mittag-Leffler type.
Proof. The relation between Caputo and Riemann-Liouville fractional derivatives (2.12)
and the Riemann-Liouville fractional derivative of the exponential equation,

RLDα
t0,t
eλt = t−αE1,1−α(λt),

18
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could be used to prove the theorem. It follows that,

CDα
t0,t
eλt = RLDα

t0,t
eλt −

n−1∑
k=0

tk−α

Γ(k + 1− α)

(
eλt
)(k)

(t0)

CDα
t0,t
eλt = t−αE1,1−α(λt)−

n−1∑
k=0

tk−α

Γ(k + 1− α)
· λk

CDα
t0,t
eλt =

∞∑
k=0

(λt)kt−α

Γ(k + 1− α)
−

n−1∑
k=0

λktk−α

Γ(k + 1− α)

CDα
t0,t
eλt =

∞∑
k=n

λktk−α

Γ(k + 1− α)

CDα
t0,t
eλt =

∞∑
k=0

λk+ntk+n−α

Γ(k + n+ 1− α)

CDα
t0,t
eλt = λntn−αE1,n−α+1(λt). �

See [34] for a similar result of (2.18) without proof.

Figure 2.4: CDα
t0,t
et for 0.5-th and 2.8-th α in the interval (0,1.5]
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2.3. FRACTIONAL DIFFERENTIAL EQUATION

In figure 2.4, graph of exponential fractional derivatives of the function et with 0.5 − th
and 2.8− th order in the interval (0, 1.5] at λ = 1 is presented. The fractional derivatives
are enclosed by the functions et and et− 1. In general, graphs of the exponential function
and its derivatives have the same shape.

Figure 2.5: 3D CDα
t0,t
et for 0.5-th and 2.8-th α in the interval (0,1.5]
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• The Trigonometric Functions
The Caputo fractional derivative of trigonometric functions i.e. sine and cosine is discussed
in this section [34] .

Theorem 2.3.4. Let λ ∈ C, α ∈ R, n ∈ N, n− 1 < α < n . Then

CDα
t0,t

sinλt = −1

2
i(iλ)ntn−α (E1,n−α+1(iλt)− (−1)nE1,n−α+1(−iλt)) .

P roof. Using the linearity property (2.10) of the Caputo fractional derivative, the expo-
nential function (2.18) and the sine function

sin z = eiz − e−iz

2i
, z ∈ C,

it follows that

CDα
t0,t

sinλt = CDα
t0,t

eiλt − e−iλt

2i
CDα

t0,t
sinλt = 1

2i

(
CDα

t0,t
eiλt − CDα

t0,t
e−iλt

)
CDα

t0,t
sinλt = 1

2i

(
(iλ)ntn−αE1,n−α+1(iλt)− (−iλ)ntn−αE1,n−α+1(−iλt)

)
CDα

t0,t
sinλt = −1

2
i(iλ)ntn−α (E1,n−α+1(iλt)− (−1)nE1,n−α+1(−iλt)) . �

The Caputo derivative of the cosine function is derived in a similar way. Using the
representation of cosine function

cos z = eiz + e−iz

2
, z ∈ C,

we state without proof a theorem for which the Caputo derivative of cosine holds,

Theorem 2.3.5. Letλ ∈ C, α ∈ R, n ∈ N, n− 1 < α < n . Then

CDα
t0,t

cosλt = 1

2
(iλ)ntn−α (E1,n−α+1(iλt) + (−1)nE1,n−α+1(−iλt)) .

2.4. Initial value problem
A fractional initial value problem (FIVP) in the sense of Caputo’s definition is given by{

CDα
t0,t
y(t) = f(t, y(t))

y
(k)
t0 = bk, bk ∈ R, k = 0, . . . , ⌈α⌉ − 1.

The Riemann-Liouville and the Grünwald-Letnikov derivatives of a function f are equal
when f(t) ∈ C⌈α⌉[t0, t], for t > t0 [22]. From (2.12) the Caputo derivative of a function f
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2.4. INITIAL VALUE PROBLEM

can also be determined using the Grünwald-Letnikov derivative for f(t) ∈ C⌈α⌉[t0, t] and
t > t0, that is

CDα
t0,t
f(t) = GLDα

t0,t
f(t)−

n−1∑
k=0

(t− t0)
k−α

Γ(k + 1− α)
f (k) (t0) , n− 1 < α < n.

In next we study IVP for particular case of linear FDE{
CDα

t0,t
y(t)− λy(t) = 0 t > 0, n− 1 < α < n

y(k)(0) = bk, bk ∈ R, k = 0, . . . , n− 1.
(2.19)

Theorem 2.4.1. The solution of problem (2.19) is given by

y(t) =
n−1∑
k=0

bkt
kEα,k+1 (λt

α) ,

where Eα,β(z) is the two-parameter function of Mittag-Leffler type.

Proof . Applying the Laplace transform to the fractional differential equation in (2.19) it
becomes

sαY (s)−
n−1∑
k=0

sα−k−1y(k)(0)− λY (s) = 0,

where

Y (s) =
n−1∑
k=0

sα−k−1

sα − λ
y(k)(0), (2.20)

is the Laplace transform of y(t) and L{−λy(t); s} = −λY (s).

Substituting the initial conditions from (2.19) into (2.20) we get

Y (s) =
n−1∑
k=0

sα−k−1

sα − λ
bk.

Using the Laplace transform of the two-parameter function of Mittag-Leffler type, it
follows

Y (s) =
n−1∑
k=0

sα−k−1

sα − λ
bk =

n−1∑
k=0

L
{
tkEα,k+1 (λt

α) ; s
}
bk = L

{
n−1∑
k=0

bkt
kEα,k+1 (λt

α) ; s

}
.

Then using the inverse Laplace transform y(t) can be found as

y(t) = y(t, α) =
n−1∑
k=0

bkt
kEα,k+1 (λt

α) . �
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3. Numerical Methods
We discuss methods often used to find the approximated solution to fractional differen-

tial equations. For information on numerical methods for ordinary differential equations
see, [36]. In this thesis, emphasis is given to the single term Caputo fractional differential
equations

CDα
t0,t
y(t) = f(t, y(t)), 0 < α ≤ 1, (3.1)

with an initial condition
y(0) = y0. (3.2)

Many researchers have proposed several ways to discretize IVP (3.1), (3.2); the most often
used two approaches are based on the following ideas:

• Direct discretization of the Caputo derivative in (3.1) to get the numerical schemes.

• Transformation of IVP (3.1), (3.2) into the fractional integral equation, then frac-
tional integral discretization for getting numerical scheme.

In the following, we introduce the numerical methods for IVP (3.1), (3.2) based on the
given ideas. First we introduce mesh on interval [t0, T ] where the numerical solution will
be considered. The mesh consists of {tj}Nj=0 such that t0 < t1 < · · · < tN = T .
In general, the stepsize hj = tj − tj−1, j = 0, 1, · · · , N is variable. In the following we
restrict our consideration on equidistant mesh ∆ with constant stepsize h = (T − t0)/N ,
∆ : = {tj}Nj=0 : tj = t0 + jh.

3.1. Direct Methods
Direct methods are based on numerical approximation of the derivative term i.e. CDα

t0,t
y(t)

in case of IVP (3.1), (3.2).

• L1 and L2 Methods
• The Caputo derivative is mostly discretized by the L1 method given by:

[
CDα

t0,t
f(t)

]
t=tN

=
N−1∑
k=0

bN−k−1 (f (tk+1)− f (tk)) + O
(
h2−α

)
, 0 < α < 1

where bk = h−α

Γ(2−α)
[(k + 1)1−α − k1−α]. The L1 method for the IVP (3.1), (3.2) is

N−1∑
j=0

bN−j−1 (yj+1 − yj) = f (tN , yN) ,

where yN is the approximate solution of y (tN), and bj =
h−α

Γ(2−α)
[(j + 1)1−α − j1−α].
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3.1. DIRECT METHODS

An improved version of the L1 method for the Caputo derivative is given by:

[
CDα

t0,t
f(t)

]
t=tN+1/2

=


b0
2
(f (tN+1) + f (tN))− 1

2

N∑
j=1

(bN−j − bN−j+1) (f (tj−1) + f (tj))

−1
2
(bN −DN) (f (t0) + f (t1))−DNf (t0) +O (h2−α)

where
bN =

h−α

Γ(2− α)

[
(N + 1)1−α −N1−α

]
and

DN =
2h−α

Γ(2− α)

[
(N + 1/2)1−α −N1−α

]
.

• For the L2 method in the Caputo sense we have:

[
CDα

t0,t
f(t)

]
t=tN

=
N∑

k=−1

Wkf (tN−k) +O
(
h3−α

)
, 1 < α < 2,

where

Wk =
h−α

Γ(3− α)


1, k = −1,
22−α − 3, k = 0,
(k + 2)2−α − 3(k + 1)2−α + 3k2−α − (k − 1)2−α, 1 ≤ k ≤ N − 2,
−2N2−α + 3(N − 1)2−α − (N − 2)2−α, k = N − 1,
N2−α − (N − 1)2−α, k = N.

• Product Trapezoidal Method
Since the Riemann-Liouville derivative is equivalent to the Hadamard finite-part integral
[37, 38, 22], we have that,

RLDα
t0,t
y(t) =

1

Γ(−α)
p.f.

∫ t

t0

y(s)

(t− s)α+1
ds, α ̸= 0, 1, 2, · · · (3.3)

The equation (3.3) is approximated by the first-degree compound quadrature formula
[39, 37, 40], which is given by

1

Γ(−α)
p.f.

∫ tN

t0

y(s)

(tN − s)α+1 ds ≈
N∑
j=0

aj,Ny (tN−j) ,

where

aj,N =
h−α

Γ(2− α)


1, j = 0,
(j + 1)1−α − 2j1−α + (j − 1)1−α, 0 < j < N,
(1− α)N−α −N1−α + (N − 1)1−α, j = N.

From the relationship
RLDα

t0,t
[y(t)− y(0)] = CDα

t0,t
y(t), 0 < α < 1,
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3. NUMERICAL METHODS

we obtain the numerical scheme for IVP (3.1), (3.2) as follows
N∑
j=0

aj,N (yN−j − y0) = f (tN , yN) , (3.4)

where yN is the approximate solution of y (tN). When f(t, y) = βy(t) + f(t), β ≤ 0, (3.4)
has the error estimate

|y (tN)− yN | ≤ Ch2−α, (see [39]).

Next, we introduce a modified trapezoidal rule , see [41]. The rule is used to approximate
the fractional integral Iαt0f(t) by a weighted sum of functional values at specified points.

y(f, h, α) =


((N − 1)α+1 − (N − α− 1)Nα) hαf(t0)

Γ(α+2)
+ hαf(T )

Γ(α+2)

+
N−1∑
j=1

(
(N − j + 1)α+1 − 2(N − j)α+1 + (N − j − 1)α+1

) hαf (tj)
Γ(α + 2)

,

(3.5)
which is an approximation to the fractional integral(

Iαt0f(t)
)
(T ) = y(f, h, α)− Ey(f, h, α), T > t0, α > 0.

There is a constant Cα depending only on α if f(t) ∈ C2[t0, T ], so that the error term
Ey(f, h, α) has the form

|Ey(f, h, α)| ≤ Cα ∥f ′′∥∞ T αh2 = O
(
h2
)
.

• Grünwald–Letnikov Formula
Using the Grünwald–Letnikov formula to approximate the Riemann–Liouville derivative,
we have

RLDα
t0,t
y(t)

∣∣
t=tN

≈ 1

hα

N∑
j=0

ω
(α)
j y (tN−j) , ω

(α)
j = (−1)j

(
α
j

)
. (3.6)

It was proved (see [42]). That formula (3.6) is convergent and it is of order one for any α
positive. By the relationship

RLDα
t0,t

[
y(t)−

m∑
k=0

tk

k!
y(k)(t0)

]
= CDα

t0,t
y(t),

one gets the following method for IVP (3.1),(3.2) as

1

hα

N∑
j=0

ω
(α)
n−j

[
yj −

m∑
k=0

yk0
k!
tkj

]
= f (tN , yN) , for α > 0.

The right shifted Grünwald-Letnikov formula (3.7) is then used to approximate the Caputo
derivative. [

RLDα
t0,t
f(t)

]
t=tN

≈ 1

hα

N+p∑
j=0

ω
(α)
j f (tN−j+p) , (p shifts, p ∈ N). (3.7)
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3.2. Integration Methods
Methods used to discretize the integral part of the IVP (3.1), (3.2) are presented. Our
analysis is based on the fractional Euler method. Other methods are introduced as well.

• Fractional Euler methods
We introduce the derivation of Euler methods for the numerical solution of the IVP (3.1),
(3.2) in the Caputo sense. This method is a generalization of the classical Eulers methods.
All smooth functions y(t) can be expanded in a Taylor series

y (tj+1) = y (tj) + hj
y′ (tj)

1!
+ h2j

y(2) (tj)

2!
+ . . .

If y(t) is the local solution defined by

y′ = F (t, y), y (tj) = yj,

this expansion suggests an approximation of y (tj+1) known as the forward Euler method

yj+1 = yj + hjF (tj, yj) .

This formula is explicit and requires one evaluation of F per step. The series shows that
the local error

lej = y (tj+1)− yj+1,

is O
(
h2j
)
. When y(t) in this definition is the solution y(t) of the IVP (3.1), (3.2), the local

error is called the truncation error or discretization error. The backward Euler method is
introduced as

yj+1 = yj + hjF (tj+1, yj+1) .

As we know from numerical theory for ODEs, backward Euler has better absolute stability
property than its forward counterpart. Now we introduce several assertions which are
necessary for fractional Euler methods formulation. Before we proceed, some theorems
necessary in the derivation of the fractional Euler methods are presented.

Theorem 3.2.1. (Generalized mean value theorem) Suppose that f(t) ∈ C[t0, T ] and
CDα

t0,t
f(t) ∈ C(t0, T ], for 0 < α ≤ 1. Then

f(t) = f(0+) +
1

Γ(α)

(
CDα

t0,t
f
)
(ξ) · tα, (3.8)

with 0 ≤ ξ ≤ t, ∀t ∈ (t0, T ].

Proof. From the definitions of the Riemann-Liouville fractional integral operator (2.2.1)
and the Caputo fractional derivative operator (2.2.3), we have

(
Iαt0

CDα
t0,t
f
)
(t) =

1

Γ(α)

∫ t

t0

(t− τ)α−1
(
CDα

t0,t
f
)
(τ)dτ.
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From the integral mean value theorem, we have

(
Iαt0

CDα
t0,t
f
)
(t) =

1

Γ(α)

(
CDα

t0,t
f
)
(ξ)

∫ t

t0

(t− τ)α−1 =
1

Γ(α)

(
CDα

t0,t
f
)
(ξ) · tα, (3.9)

for 0 ≤ ξ ≤ t. Also, from (2.14), we have(
Iαt0

CDα
t0,t
f
)
(t) = f(t)− f(0+). (3.10)

From (3.9) and (3.10), the generalized mean value theorem (3.8) is obtained. �

Remark 3.2.1. In case of α = 1, the generalized mean value theorem reduces to the
classical mean value theorem.

Theorem 3.2.2. Suppose that CDjα
t0,tf(t),

CD
(j+1)α
t0,t f(t) ∈ C(t0, T ], for 0 < α ≤ 1. Then

(
Ijαt0

CDjα
t0,tf

)
(t)−

(
I
(j+1)α
t0

CD
(j+1)α
t0,t f

)
(t) =

tjα

Γ(jα + 1)

(
CDjα

t0,tf
)
(0+), (3.11)

where
CDjα

t0,t =
CDα

t0,t
CDα

t0,t
. . . CDα

t0,t
(j − times ).

P roof. We can get the proof by using the properties of the Riemann-Liouville fractional
integral operator and the Caputo fractional derivative operator and the relation:(
Ijαt0

CDjα
t0,tf

)
(x)−

(
I
(j+1)α
t0

CD
(j+1)α
t0,t f

)
(x) = Ijαt0

((
CDjα

t0,tf
)
(t)−

(
Iαt0

CDα
t0,t

) (
CDjα

t0,tf
)
(t)
)

(
Ijαt0

CDjα
t0,tf

)
(x)−

(
I
(j+1)α
t0

CD
(j+1)α
t0,t f

)
(x) = Ijαt0

(
CDjα

t0,tf
)
(0+). �

Theorem 3.2.3. (Generalized Taylor’s formula) Suppose that CDkα
t0,t
f(t) ∈ C(t0, T ] for

j = 0, 1, . . . , N + 1, and 0 < α ≤ 1. Then

f(t) =
N∑
k=0

tkα

Γ(kα + 1)

(
CDkα

t0,t

)
(0+) +

(
CD

(N+1)α
t0,t f

)
(ξ)

Γ((N + 1)α + 1)
t(N+1)α, (3.12)

with 0 ≤ ξ ≤ t, ∀t ∈ (t0, T ].

Proof. From (3.11), we get

N∑
k=0

(
Ikαt0

CDkα
t0,t
f
)
(t)−

(
I
(k+1)α
t0

CD
(k+1)α
t0,t f

)
(t) =

N∑
k=0

tkα

Γ(kα + 1)

(
CDkα

t0,t
f
)
(0+),

it follows,

f(t)−
(
I
(N+1)α
t0

CD
(N+1)α
t0,t f

)
(t) =

N∑
k=0

tkα

Γ(kα + 1)

(
CDkα

t0,t
f
)
(0+). (3.13)
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We apply the integral mean value theorem to (3.13), we have

(
I
(N+1)α
t0

CD
(N+1)α
t0,t f

)
(t) =

(
CD

(N+1)α
t0,t f

)
(ξ)

Γ((N + 1)α + 1)

∫ t

t0

(t− τ)(N+1)αdτ,

(
I
(N+1)α
t0

CD
(N+1)α
t0,t f

)
(t) =

(
CD

(N+1)α
t0,t f

)
(ξ)

Γ((N + 1)α + 1)
t(N+1)α.

(3.14)

We obtain the generalized Taylor’s formula (3.12) if we substitute (3.14) into (3.13) .

Remark 3.2.2. When α = 1, the generalized Taylor’s formula (3.12) reduces to the
classical Taylor’s formula.

Consider the IVP (3.1), (3.2). We denote [t0, T ] as the interval on which solution to
problem (3.1), (3.2) is found. A set of points {(tj, y (tj))} is generated for our numerical
approximation. The interval [t0, T ] is subdivided into N subintervals [tj, tj+1] of equal
width h = (T − t0)/N and the nodes tj = t0 + jh, for j = 0, 1, . . . , N. Assume that
y(t), CDα

t0,t
y(t) and CD2α

t0,t
y(t) are continuous on [t0, T ] and using the generalized Taylor’s

formula (3.12), we expand y(t) about t = t0 = 0. For all t values there exist a value c1
such that

y(t) = y (t0) +
(
CDα

t0,t
y(t)

)
(t0)

tα

Γ(α + 1)
+
(
CD2α

t0,t
y(t)

)
(c1)

t2α

Γ(2α + 1)
. (3.15)

When
(
CDα

t0,t
y(t)

)
(t0) = f (t0, y (t0)) and h = t1 are substituted into equation (3.15), we

get

y (t1) = y (t0) + f (t0, y (t0))
hα

Γ(α + 1)
+
(
CD2α

t0,t
y(t)

)
(c1)

h2α

Γ(2α + 1)
.

We can neglect the second-order term involving h2α if the step size h chosen is small
enough, it follows

y (t1) = y (t0) +
hα

Γ(α + 1)
f (t0, y (t0)) . (3.16)

The process is repeated and generates a sequence of points that approximates the solution
y(t). The general formula for fractional Euler’s method is{

tj+1 = tj + h
y (tj+1) = y (tj) +

hα

Γ(α+1)
f (tj, y (tj)) .

(3.17)

for j = 0, 1, . . . , N − 1. A special case is shown if α = 1, the fractional Euler’s method
(3.17) reduces to the classical Euler’s method.
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• Improved Fractional Euler method
The improved algorithm is based on the fractional Euler’s method and the modified
trapezoidal rule. The analytical property that the IVP (3.15) is identical to the integral
equation

y(t) = Jαf(t, y(t)) + y(0), (3.18)
underpins our approach. Let [t0, T ] be the interval for the approximate solution. Assume
that the interval [t0, T ] is subdivided into N subintervals [tj, tj+1] of equal width h =
(T − t0)/N and the nodes tj = t0 + jh, for j = 0, 1, . . . , N. To obtain the solution point
(t1, y (t1)), we substitute t = t1 into (3.18), we have

y (t1) = (Jαf(t, y(t))) (t1) + y(0).

We get
y (t1) = α

hαf (t0, y (t0))

Γ(α + 2)
+
hαf (t1, y (t1))

Γ(α + 2)
+ y(0), (3.19)

if the modified trapezoidal rule (3.5) is used to approximate
(
Iαt0f(t, y(t))

)
(t1) with step

size h = t1− t0. We can see that the formula on the right-hand side of (3.19) contains the
term y (t1) , therefore we use an estimate for y (t1) . Fractional Euler’s method is sufficient
for this task. Substituting (3.16) into (3.19), gives

y (t1) = α
hαf (t0, y (t0))

Γ(α + 2)
+
hαf

(
t1, y (t0) +

hα

Γ(α+1)
f (t0, y (t0))

)
Γ(α + 2)

+ y(0).

The process is repeated to generate a sequence of points that approximate the solution
y(t). At each step, the fractional Euler’s method is used as a prediction, and then the
modified trapezoidal rule is used to make a correction to obtain the finite value. The
general formula for our algorithm is:

y (tj) =



hα

Γ(α+2)
((j − 1)α+1 − (j − α− 1)jα) f (t0, y (t0)) + y(0)

+ hα

Γ(α+2)

j−1∑
i=1

(
(j − i+ 1)α+1 − 2(j − i)α+1 + (j − i− 1)α+1

)
f (ti, y (ti))

+ hα

Γ(α+2)
f
(
tj, y (tj−1) +

hα

Γ(α+1)
f (tj−1, y (tj−1))

)
.

The improved algorithm is simple for computational performance for all values of α and
h. It is clear that the behavior of the method is independent of the parameter α and, as
we will see in the next section, the accuracy of the approximation depends on the step
size h.
The algorithm is used directly without applying linearization, perturbation or restrictive
assumptions. The algorithm is shown to be reliable and useful for the numerical evalua-
tion of functions such as the Mittag-Leffler function, (see [43]). Appendix A contains the
forward Euler algorithm and Appendix B contains the improved forward Euler algorithm.
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3.3. Numerical examples
In the tables and figures below are values and figures for the approximation of forward
Euler and improved forward Euler method. To check the accuracy and stability of the
algorithms, we evaluate them using example (3.3.1,3.3.2 and 3.3.3 ).

Example 3.3.1. Take into account the following fractional differential equation

CDα
t0,t
y(t) =

2

Γ(3− α)
t2−α − y(t) + t2, y(0) = 0, 0 < α ≤ 1, and t > 0. (3.20)

which has the exact solution
y(t) = t2.

Considering α = 0.5, 0.75 and α = 1.0 with a fixed stepsize h = 0.01. Table 1 gives
the numerical values of example 3.3.1. for the forward Euler method and Table 2 for the
improved forward Euler method.

Table 1

α = 0.5 α = 0.75 α = 1.0
t Exact Approx Exact Approx Exact Approx
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0100 0.0175 0.0100 0.0133 0.0100 0.0090
0.2 0.0400 0.0871 0.0400 0.0642 0.0400 0.0382
0.3 0.0900 0.2077 0.0900 0.1550 0.0900 0.0874
0.4 0.1600 0.3733 0.1600 0.2847 0.1600 0.1567
0.5 0.2500 0.5799 0.2500 0.4513 0.2500 0.2461
0.6 0.3600 0.8246 0.3600 0.6528 0.3600 0.3555
0.7 0.4900 1.1053 0.4900 0.8874 0.4900 0.4849
0.8 0.6400 1.4206 0.6400 1.1535 0.6400 0.6345
0.9 0.8100 1.7694 0.8100 1.4497 0.8100 0.8040
1.0 1.0000 2.1509 1.0000 1.7749 1.0000 0.9937

Table 2
α = 0.5 α = 0.75 α = 1.0

t Exact Approx Exact Approx Exact Approx
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0100 0.0098 0.0100 0.0115 0.0100 0.0111
0.2 0.0400 0.0403 0.0400 0.0440 0.0400 0.0422
0.3 0.0900 0.0911 0.0900 0.0967 0.0900 0.0934
0.4 0.1600 0.1621 0.1600 0.1697 0.1600 0.1647
0.5 0.2500 0.2532 0.2500 0.2628 0.2500 0.2561
0.6 0.3600 0.3643 0.3600 0.3760 0.3600 0.3675
0.7 0.4900 0.4956 0.4900 0.5092 0.4900 0.4990
0.8 0.6400 0.6469 0.6400 0.6625 0.6400 0.6505
0.9 0.8100 0.8182 0.8100 0.8358 0.8100 0.8221
1.0 1.0000 1.0096 1.0000 1.0292 1.0000 1.0137
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Table 3 and Table 4 give the absolute errors for forward Euler method and improved
forward Euler method of example 3.3.1 at α = 0.5, 0.75 and 1.0 with stepsizes h = 0.01
and h = 0.001 respectively.

Table 3
α = 0.5 α = 0.75 α = 1.0

t h=0.01 h=0.001 h=0.01 h=0.001 h=0.01 h=0.001
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0075 0.0268 0.0033 0.0141 0.0010 0.0001
0.2 0.0471 0.0987 0.0242 0.0633 0.0018 0.0002
0.3 0.1177 0.1990 0.0650 0.1427 0.0026 0.0003
0.4 0.2133 0.3212 0.1247 0.2458 0.0033 0.0003
0.5 0.3299 0.4620 0.2013 0.3672 0.0039 0.0004
0.6 0.4646 0.6193 0.2928 0.5032 0.0045 0.0005
0.7 0.6153 0.7916 0.3974 0.6511 0.0051 0.0005
0.8 0.7806 0.9777 0.5135 0.8088 0.0055 0.0006
0.9 0.9594 1.1766 0.6397 0.9750 0.0060 0.0006
1.0 1.1509 1.3876 0.7749 1.1487 0.0063 0.0006

Table 4
α = 0.5 α = 0.75 α = 1.0

t h=0.01 h=0.001 h=0.01 h=0.001 h=0.01 h=0.001
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0048 0.0014 0.0027 0.0005 0.0011 0.0001
0.2 0.0123 0.0037 0.0063 0.0012 0.0022 0.0002
0.3 0.0212 0.0064 0.0102 0.0019 0.0034 0.0003
0.4 0.0311 0.0095 0.0143 0.0026 0.0047 0.0005
0.5 0.0417 0.0128 0.0184 0.0033 0.0061 0.0006
0.6 0.0529 0.0163 0.0226 0.0040 0.0075 0.0007
0.7 0.0647 0.0200 0.0267 0.0047 0.0090 0.0009
0.8 0.0768 0.0238 0.0309 0.0054 0.0105 0.0010
0.9 0.0894 0.0277 0.0351 0.0061 0.0121 0.0012
1.0 0.1023 0.0318 0.0392 0.0068 0.0137 0.0014
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Figure 3.1: Forward Euler method to FIVP (3.20)

Figure 3.2: Forward Euler method to FIVP (3.20)
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Figure 3.3: Forward Euler method to FIVP (3.20)

Figure 3.4: Absolute error of forward Euler method to FIVP (3.20) at h = 0.01
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Figure 3.5: Improved forward Euler method to FIVP (3.20)

Figure 3.6: Improved forward Euler method to FIVP (3.20)
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Figure 3.7: Improved forward Euler method to FIVP (3.20)

Figure 3.8: Absolute error of improved forward Euler method to FIVP (3.20) at h = 0.01

35



3.3. NUMERICAL EXAMPLES

A numerical solution is obtained with 100 number of subintervals. In the figures for the
forward Euler and improved forward Euler method, we observe that the approximated
solutions approach closely to the exact solutions as the number of division increases.

Example 3.3.2. This example covers the inhomogeneous linear equation

CDα
t0,t
y(t) =

2

Γ(3− α)
t2−α − 1

Γ(2− α)
t1−α − y(t) + t2 − t, y(0) = 0, t > 0, (3.21)

where 0 < α ≤ 1.

The exact solution of equation (3.21) is given by

y(t) = t2 − t.

Considering α = 0.5, 0.75 and α = 1.0 with a fixed stepsize h = 0.01. Table 5 gives
the numerical values of example 3.3.2. for the forward Euler method and Table 6 for the
improved forward Euler method.

Table 5

α = 0.5 α = 0.75 α = 1.0
t Exact Approx Exact Approx Exact Approx
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 −0.0900 −0.1942 −0.0900 −0.1391 −0.0900 −0.0910
0.2 −0.1600 −0.3931 −0.1600 −0.2883 −0.1600 −0.1618
0.3 −0.2100 −0.5120 −0.2100 −0.3962 −0.2100 −0.2126
0.4 −0.2400 −0.5602 −0.2400 −0.4566 −0.2400 −0.2433
0.5 −0.2500 −0.5501 −0.2500 −0.4699 −0.2500 −0.2539
0.6 −0.2400 −0.4902 −0.2400 −0.4384 −0.2400 −0.2445
0.7 −0.2100 −0.3858 −0.2100 −0.3652 −0.2100 −0.2151
0.8 −0.1600 −0.2405 −0.1600 −0.2531 −0.1600 −0.1655
0.9 −0.0900 −0.0568 −0.0900 −0.1045 −0.0900 −0.0960
1.0 0.0000 0.1635 0.0000 0.0782 0.0000 −0.0063
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Table 6

α = 0.5 α = 0.75 α = 1.0
t Exact Approx Exact Approx Exact Approx
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 −0.0900 −0.0916 −0.0900 −0.0980 −0.0900 −0.0899
0.2 −0.1600 −0.1629 −0.1600 −0.1683 −0.1600 −0.1596
0.3 −0.2100 −0.2132 −0.2100 −0.2170 −0.2100 −0.2092
0.4 −0.2400 −0.2429 −0.2400 −0.2449 −0.2400 −0.2386
0.5 −0.2500 −0.2524 −0.2500 −0.2524 −0.2500 −0.2479
0.6 −0.2400 −0.2416 −0.2400 −0.2397 −0.2400 −0.2370
0.7 −0.2100 −0.2107 −0.2100 −0.2067 −0.2100 −0.2061
0.8 −0.1600 −0.1597 −0.1600 −0.1537 −0.1600 −0.1550
0.9 −0.0900 −0.0886 −0.0900 −0.0805 −0.0900 −0.0838
1.0 0.0000 0.0026 0.0000 0.0127 0.0000 0.0074

Table 7 and Table 8 give the absolute errors for Euler method and improved Euler method
of example 3.3.2 at α = 0.5, 0.75 and 1.0 with stepsizes h = 0.01 and h = 0.001 respec-
tively.

Table 7

α = 0.5 α = 0.75 α = 1.0
t h=0.01 h=0.001 h=0.01 h=0.001 h=0.01 h=0.001
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.1042 0.2414 0.0491 0.1447 0.0010 0.0001
0.2 0.2331 0.3392 0.1283 0.2639 0.0018 0.0002
0.3 0.3020 0.3606 0.1862 0.3185 0.0026 0.0003
0.4 0.3202 0.3385 0.2166 0.3192 0.0033 0.0003
0.5 0.3001 0.2848 0.2199 0.2790 0.0039 0.0004
0.6 0.2502 0.2058 0.1984 0.2082 0.0045 0.0005
0.7 0.1758 0.1052 0.1552 0.1142 0.0051 0.0005
0.8 0.0805 0.0144 0.0931 0.0021 0.0055 0.0006
0.9 0.0332 0.1511 0.0145 0.1245 0.0060 0.0006
1.0 0.1635 0.3033 0.0782 0.2631 0.0063 0.0006
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Table 8
α = 0.5 α = 0.75 α = 1.0

t h=0.01 h=0.001 h=0.01 h=0.001 h=0.01 h=0.001
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0280 0.0085 0.0134 0.0025 0.0001 0.0000
0.2 0.0292 0.0090 0.0122 0.0022 0.0004 0.0000
0.3 0.0260 0.0081 0.0094 0.0017 0.0008 0.0001
0.4 0.0203 0.0065 0.0060 0.0010 0.0014 0.0001
0.5 0.0131 0.0042 0.0025 0.0003 0.0021 0.0002
0.6 0.0047 0.0016 0.0025 0.0005 0.0030 0.0003
0.7 0.0049 0.0013 0.0063 0.0012 0.0039 0.0004
0.8 0.0150 0.0044 0.0104 0.0019 0.0050 0.0005
0.9 0.0257 0.0078 0.0146 0.0027 0.0062 0.0006
1.0 0.0370 0.0113 0.0188 0.0034 0.0074 0.0007

Figure 3.9: Forward Euler method to FIVP (3.21)
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Figure 3.10: Forward Euler method to FIVP (3.21)

Figure 3.11: Forward Euler method to FIVP (3.21)

39



3.3. NUMERICAL EXAMPLES

Figure 3.12: Absolute error of forward Euler method to FIVP (3.21) at h = 0.01

Figure 3.13: Improved forward Euler method to FIVP (3.21)
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Figure 3.14: Improved forward Euler method to FIVP (3.21)

Figure 3.15: Improved forward Euler method to FIVP (3.21)
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Figure 3.16: Absolute error of improved forward Euler method to FIVP (3.21) at h =
0.01

The linear equation (3.21) is solved by Diethelm et al. [44] using the fractional Adams-
Bashforth-Moulton method. By the forward Euler method a numerical solution is ob-
tained with n = 100 number of division. We observe that the numerical solution ap-
proaches more closely to the exact solution as the number of divisions increases. In real
sense, the Euler methods is more stable and accurate. Also, an investigation is made by
allowing the value of α to vary in the interval (0, 1] with fixed step size h = 0.01 and
it is clear that the approximate solutions are in high agreement with the exact solutions
and the solution continuously depends on the time-fractional derivative. The results show
that the accuracy can be improved using smaller values of h.

Example 3.3.3. Consider the equation

CDα
t0,t
y(t) = λy(t), λ ∈ C with the initial condition y(0) = 1, t > 0, (3.22)

where 0 < α < 2.

The exact solution of equation (3.22) in case of λ ∈ R is given by

y(t) = Eα,1(λt
α).

We consider λ = -1, α = 0.5, 0.75 and α = 1.0 with a fixed stepsize h = 0.01. Table 9
gives the numerical values of example 3.3.3. for the forward Euler method and Table 10
for the improved forward Euler method.
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Table 8

α = 0.5 α = 0.75 α = 1.0
t Exact Approx Exact Approx Exact Approx
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 0.7236 0.3020 0.8283 0.7046 0.9048 0.9044
0.2 0.6438 0.0912 0.7326 0.4965 0.8187 0.8179
0.3 0.5920 0.0275 0.6603 0.3498 0.7408 0.7397
0.4 0.5536 0.0083 0.6021 0.2465 0.6703 0.6690
0.5 0.5232 0.0025 0.5536 0.1737 0.6065 0.6050
0.6 0.4980 0.0008 0.5123 0.1224 0.5488 0.5472
0.7 0.4767 0.0002 0.4766 0.0862 0.4966 0.4948
0.8 0.4582 0.0001 0.4453 0.0607 0.4493 0.4475
0.9 0.4420 0.0000 0.4177 0.0428 0.4066 0.4047
1.0 0.4276 0.0000 0.3931 0.0302 0.3679 0.3660

Table 9

α = 0.5 α = 0.75 α = 1.0
t Exact Approx Exact Approx Exact Approx
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 0.7236 0.7212 0.8283 0.8187 0.9048 0.9044
0.2 0.6438 0.6407 0.7326 0.7231 0.8187 0.8179
0.3 0.5920 0.5891 0.6603 0.6518 0.7408 0.7397
0.4 0.5536 0.5510 0.6021 0.5945 0.6703 0.6690
0.5 0.5232 0.5208 0.5536 0.5469 0.6065 0.6050
0.6 0.4980 0.4959 0.5123 0.5063 0.5488 0.5472
0.7 0.4767 0.4748 0.4766 0.4713 0.4966 0.4948
0.8 0.4582 0.4565 0.4453 0.4407 0.4493 0.4475
0.9 0.4420 0.4405 0.4177 0.4136 0.4066 0.4047
1.0 0.4276 0.4262 0.3931 0.3895 0.3679 0.3660
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Table 10 and Table 11 give the absolute errors for forward Euler method and improved
forward Euler method of example 3.3.3 at α = 0.5, 0.75 and 1.0 with stepsizes h = 0.01
and h = 0.001 respectively.

Table 10
α = 0.5 α = 0.75 α = 1.0

t h=0.01 h=0.001 h=0.01 h=0.001 h=0.01 h=0.001
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.4216 0.6972 0.1237 0.2869 0.0005 0.0000
0.2 0.5526 0.6431 0.2361 0.4396 0.0008 0.0001
0.3 0.5645 0.5920 0.3105 0.5017 0.0011 0.0001
0.4 0.5453 0.5536 0.3557 0.5163 0.0013 0.0001
0.5 0.5206 0.5232 0.3799 0.5071 0.0015 0.0002
0.6 0.4973 0.4980 0.3899 0.4871 0.0017 0.0002
0.7 0.4765 0.4767 0.3903 0.4629 0.0017 0.0002
0.8 0.4582 0.4582 0.3845 0.4379 0.0018 0.0002
0.9 0.4420 0.4420 0.3749 0.4137 0.0018 0.0002
1.0 0.4276 0.4276 0.3630 0.3909 0.0018 0.0002

Table 11
α = 0.5 α = 0.75 α = 1.0

t h=0.01 h=0.001 h=0.01 h=0.001 h=0.01 h=0.001
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0589 0.0183 0.0191 0.0037 0.0005 0.0000
0.2 0.0451 0.0142 0.0156 0.0029 0.0008 0.0001
0.3 0.0372 0.0117 0.0130 0.0024 0.0011 0.0001
0.4 0.0319 0.0101 0.0109 0.0019 0.0013 0.0001
0.5 0.0280 0.0089 0.0091 0.0016 0.0015 0.0002
0.6 0.0250 0.0079 0.0078 0.0013 0.0017 0.0002
0.7 0.0225 0.0071 0.0066 0.0011 0.0017 0.0002
0.8 0.0205 0.0065 0.0056 0.0009 0.0018 0.0002
0.9 0.0188 0.0060 0.0048 0.0008 0.0018 0.0002
1.0 0.0174 0.0055 0.0042 0.0006 0.0018 0.0002
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Figure 3.17: Forward Euler method to FIVP (3.22)

Figure 3.18: Forward Euler method to FIVP (3.22)
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Figure 3.19: Forward Euler method to FIVP (3.22)

Figure 3.20: Absolute error to forward Euler method to FIVP (3.22) at h = 0.01
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Figure 3.21: Improved forward Euler method to FIVP (3.22) at h = 0.01

Figure 3.22: Improved forward Euler method to FIVP (3.22) at h = 0.01
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Figure 3.23: Improved forward Euler method to FIVP (3.22) at h = 0.01

Figure 3.24: Absolute error of improved forward Euler method to FIVP (3.22) at h =
0.01.

48



4. CONCLUSION

4. Conclusion
It is not possible to solve most of the fractional differential equations in analytical way.

The numerical analysis gives us a possibility to obtain at least numerical approximation
of the solution (under certain conditions). The thesis focuses on Euler method for solving
Caputo fractional differential equations. The method has intuitive geometric meaning.
The convergence of the method is illustrated: the higher number of equal steps within
fixed interval is the closer the numerical approximation is to the exact solution. The more
effective improved Euler method was introduced too.
The stability of the forward Euler method and the improved forward Euler method are
studied. As there are perturbations in the initial conditions of the experimental examples
considered, the small changes did not cause large errors in the numerical solutions. These
were compared by several numerical experiments. Another numerical methods are used
such as homotopy analysis method [45],[46],[47], Chebyshev spectral method [48], [49], ho-
motopy perturbation method[50],[51], variational iteration method[52],[53],[54],[55]. Fi-
nally, due to the various applications of fractional differential equations in mathematics
and the real world. It becomes necessary to investigate the methods of solution i.e exact
and numerical for such equations, this study serves as a manual for researches.
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Appendix
In the section that follows are the MATLAB code for the forward Euler method and the

improved forward Euler method. Appendix A gives the algorithm for the forward Euler
method and Appendix B gives the algorithm for the improved forward Euler method.
These algorithms were used to evaluate three experimental examples. The value of α was
varied with a fixed stepsize. In each case the absolute error between the exact and the
numerical solutions were calculated. Graphical representations were also given.
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List of Abbreviations and Symbols
SYMBOL MEANING
R set of real numbers
C set of complex numbers
Z set of integers
N set of natural numbers
L Laplace operator
Γ Gamma operator
RLDα

t0,t
Riemann-Liouville operator

CDα
t0,t

Caputo operator
IVP Initial Value Problem
FIVP Fractional initial value problem
ODE Ordinary differential equation
FDE Fractional differential equation
⌈α⌉ Ceiling function of a real number α
h Function spaces
∆ Equidistant mesh
T Final time
Approx. sol Approximated solution
Abs. error Absolute error
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