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Abstract. Semi-analytic simulation principle in GNSS sig-
nal processing bypasses the bit-true operations at high sam-
pling frequency. Instead, signals at the output branches of
the integrate&dump blocks are successfully modeled, thus
making extensive Monte Carlo simulations feasible. Meth-
ods for simulations of code and carrier tracking loops with
BPSK, BOC signals have been introduced in the literature.
Matlab toolboxes were designed and published. In this pa-
per, we further extend the applicability of the approach.
Firstly, we describe any GNSS signal as a special instance of
linear multi-dimensional modulation. Thereby, we state uni-
versal framework for classification of differently modulated
signals. Using such description, we derive the semi-analytic
models generally. Secondly, we extend the model for realis-
tic scenarios including delay in the feed back, slowly fading
multipath effects, finite bandwidth, phase noise, and a com-
bination of these. Finally, a discussion on connection of this
semi-analytic model and position-velocity-time estimator is
delivered, as well as comparison of theoretical and simu-
lated characteristics, produced by a prototype simulator de-
veloped at CTU in Prague.
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1. Introduction

In global navigation satellite systems (GNSS), Monte
Carlo simulations became dominant in assessment of al-
gorithm performance. Often, closed-form solutions appear
intractable, and explicitly derived formulas need experi-
ments with short implementation time or idealistic condi-
tions. Straightforward generation of high-rate samples and
consecutive processing of them is a widely used approach
which offers adequate representation of crucial physical phe-
nomena of the communication channel [1], [2].

However, increasing the sampling frequency or algo-
rithm complexity may turn such simulations into a tedious

task. This would be the case especially for wideband sys-
tems, including all GNSSs. Fortunately, in a large number
of systems the most computationally demanding operations
can be bypassed with an analytically derived closed-form
and statistical description of their outputs, taking the inputs
as arguments to their description functions. The rest of the
operations are then left untouched. This forms the definition
of the semi-analytic simulation principle [2].

The problem of semi-analytic modeling in GNSS was
first addressed in [3], [4]. The high-rate correlation between
the received signal and its replica was avoided by express-
ing the output as a function of the spreading code autocor-
relation function (ACF) and a noise term with known sta-
tistical description. The idea turned into a simulator in the
form of Matlab toolbox [5], [6], named SATLSim. The
authors therein developed models for binary-phase-shift-
keying (BPSK) and binary-offset-carrier (BOC) modulated
signals, processed by code and carrier tracking loops. Eval-
uation of the tracking jitter, tracking threshold, and mean
time to lose lock was discussed.

1.1 Contribution of the Paper

In this paper, we establish a universal framework for
description of GNSS modulations. We will see that any
of these signals, including the most challenging alternate-
binary-offset-carrier (AltBOC), can be expressed as a special
case of linear multi-dimensional modulation. Such descrip-
tion would not be further limited if different signals in the
inphase and quadrature component were present, including
for example composite BOC (CBOC) modulation.

Using such description, we derive the semi-analytic
models for the tracking loops. At the expanse generality,
the expressions will have the form of vectors and matrices.

In order to adopt this model, which we call as basic
semi-analytic model, to realistic scenarios, we extend it to
account for delay in the feed back, slowly fading multipath,
finite bandwidth, phase noise, and combination of these. The
model is called as extended semi-analytic model.

Not necessarily, these models must be employed only
in the investigation of code and carrier tracking loops. Dis-
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cussion on the connection of these models with multipath
mitigation techniques [7] — [11] and position-velocity-time
(PVT) estimation [12], [7] is provided. Investigation of vari-
ous advanced algorithms such as vector tracking [13] —[18],
direct positioning [19], [20] turns out to be possible using
the semi-analytic approach, as well.

Finally, a Matlab-based toolbox using object-oriented
programming with its graphical user interface (GUI) has
been developed at CTU in Prague. It provides simulation
characteristics of feed-back systems for civil GPS, Galileo,
and GLONASS signals. It is freely downloadable at [21].

1.2 Notation

All vectors in the text are column vectors, denoted with
bold emphasize, as matrices are. The operators Av[.], E[]
denote time average and expectation, respectively. We use
symbol 17(4 ) to represent correlation functions in continu-
ous time, symbol R[] for correlation functions in discrete
time. Symbol S ) (. ) denotes power spectral density (PSD).
Symbol ¥ [.] is the Fourier transform operator. From the
context, it will always be clear what exactly each operator
refers to. Symbol §(.) denotes Dirac delta function, symbol
8[.] the unit impulse. Symbol [.]; ; denotes an element with
indices i, j. Symbol Y, denotes the summation over index n
with unspecified lower and upper bounds, extending over an
infinitive range. We use a notation Trig; () for the following
triangular function

. 1— \T\
Trigr (v) = O , else

and notation Recty (1) for the following rectangular function

1, 0<1t<T,

Rectr(T) = { 0. else. 2

2. GNSS Signals as Linear
Multi-Dimensional Modulations

In this section, we define the linear multi-dimensional
modulation (LMDM) and represent BPSK(y), BOC(B,y),
AltBOC(15,10) modulations in that manner. We also show,
how signals with inphase and quadrature components repre-
senting different signals can be expressed as a kind of such
modulation. The TMBOC modulation of GPS L2C signal is
not discussed separately, but neglecting the property of the
long period of the L2 CL-code, our model can still be ap-
plied. This simplification would make no difference since
the LMDM representation is developed for the simulation
where code acquisition is a priori assumed to be done.

2.1 Linear Multi-Dimensional Modulation

The modulated signal s(¢) at time # is assumed to be
an additive composition of vector modulation impulses h(z)

multiplied by vector of channel symbols q’ generated at dis-
crete time n, corresponding to n multiples of the channel
symbol period 75 in continuous time, [22]

Zth t —nTy) 3)

We denote the dimension of the modulation impulse vector
and the channel symbol vector as N, = dimh(¢) = dimgq,.
The channel symbols q, are a function of the data symbols
d, and the inner states of the discrete part of the modulator.
We suppose that the channel symbols are equiprobable, inde-
pendent and identically distributed (EP-IID), E [q,,+mq,{ ] =
8[m]1, and that the diagonal elements of the correlation ma-
trix K p(t) of the modulation impulse

Ra(x) = L Zh(r b ()dr @)

have unit energy Vi € {1,...N} : ‘[&(0)]H =1

2.2 BPSK(})

According to [7], the BPSK(Y) modulated signal can
be defined as a BPSK direct-sequence-spread-spectrum (DS-
SS) signal with chip length T, = Ty /y where Ty = 1/1023 ms,

vyeN
) =Y guh(t —nTy). (5)

In (5), it holds that g, € {—1, 1}, N, = 1, and the modu-
lation impulse contains the whole number of code periods
N; = T;/(N.T;) € N per a channel symbol. Symbol N, de-
notes the number of chips in a code period. The modulation
impulse is depicted in Fig. 1 (left). The autocorrelation func-
tion of the modulation impulse can be approximated as a tri-
angular function in Fig. 1 (right), Ry, gpsk (y) () ~ Trigy, (1),
for details see [7].

sBpsk(y) (¢

2.3 BOC(B,))

The BOC(B,y) modulated signal is a BPSK(y) modu-
lated signal multiplied by an alternating periodic signal [23],
named subcarrier,

Y (=1)'Recty, (1 —iT;) (6)
1

with period 27, such that B = Tp/(27,). We define N,
as the number of multiplying rectangles on one chip, then
N, =2B/y. The leading edge of the subcarrier is always co-
incident with the leading edge of a chip. An illustrative ex-
ample of BOC(1,1) modulated signal (Galileo E1b or Elc)
is given in Fig. 2. It holds that g, € {—1, 1}, N, = 1, and
the modulation impulse equals BPSK(Y) modulation impulse
(Fig. 1 left) multiplied by the alternating signal in (6). The
autocorrelation function of the modulation impulse Ry (t)
can be derived using similar approach as in [23]

1 N=IN=l

%(T)Zﬁ Z Z (1)

T =0 =0

"rigy (- (i—)T,). @)
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Fig. 1. Modulation impulse A(r) of BPSK(Y) modulation (left), approximated ACF of the modulation impulse &, (t) (right).
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Fig. 2. BOC(1,1) modulation as a BPSK(1) modulation multi-

plied by an alternating periodic rectangular signal. New
Galileo ICD [24] slightly modifies the pulse, not con-
straining the approach used here.

In our BOC(1,1) example, N, = 2, T, = Ty /2, hence

1 . .
Risoc,)(t) = 3 (2Trigg, (t) — Trigy, (1—T;)
—Trigy (t+1;)).

The autocorrelation function %, goc(1,1)(T) is depicted in
Fig. 3.
aRnBoc(,1)(7)

—QTT—TT/ \TT 2T,

0

|

T
—1
2

\‘V

Fig. 3. ACF of BOC(1,1) modulation impulse.

2.4 The IQ Extension of BPSK(y), BOC(j,Y)

In some cases, modulated signals are transmitted in the
inphase and quadrature components at the same time. Pro-
vided the channel symbols are generated with the same pe-
riod T, the modulated signal can be expressed as

s(t) =Y quihi(t —nTy) 4§ anoho(t —nTy)
n n

Y aih(t —nTy)
n

where Nj, = 2, @, = [qn1 jqno]T, h(t) = [hi(t) ho(t)]T. The
correlation matrix follows

Ra (1) ~ ( B o ) ®)

Frequently, the quadrature component has the form of pilot
signal and no data are present, then ¢, o = 1. An example
may be the Galileo E1b, Elc signals.

2.5 AltBOC(15,10)

The AItBOC(15,10) modulation, explicitly defined
in [24], is a nonlinear modulation

SAIBOC(15,10) () = Zh((Im t —nTy) 9
n

where q, = [Qn,lqn,z]T,an,qn,z e {-1,1} Symbol
h(qn,t) denotes the modulation function essentially nonzero
on (0, T;). Here, we assume 7; to be 1 ms = duration of
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one code period. Nevertheless, this approach will enable us
to easily represent the AItBOC(15,10) signal as an LMDM.
We define the following couple of channel symbol vector ¢,
and modulation impulse vector h'(¢) such that

[1000]"  forq, = qp"’,
0100]” forq, = q\>,
g, = O1000 - foran=ar | (10)
[0010) for q, = q’,
0001)7  for q, = q\*,
h(qa,t)
(1) = h(q'{g}’t) (11)
h(qn4 7t)
h(ah, 1)
where gf' = [-1 - 1]7, ¢/ = [-11]7, ¢/ = [1 - 17,
,154} =1 ] . The AItBOC(15,10) can then be rewritten as

an LMDM without the EP-IID property of channel symbols

SAIBOC(15,10) (? Z QW (1 —nTy). (12)

The correlation matrix & (t) of the modulation impulse is
then, using results from [25],

Ru00(T)  Ruo1 (t) Ruio(t) Ruin(T)
Ry (1) = Ru01 (T)  Ru00(t)  Ru11 (1) Ry,10(7)
h Ri10(T) K11 (T)  Ruoo(T) Ruor1 (T)
Re1 (7)) Ru0(t)  Reo1 (T)  Ruoo (1) 5
(13)

where correlation functions Ky, 00, Ry,01, Ru,10, Ry,11 are de-
picted in Fig. 4.

3. Basic Model: Semi-Analytic
Approach

In this section, we derive the basic model of the post-
correlator signals for LMDM. We suppose the linear addi-
tive white Gaussian noise (AWGN) channel with slowly time
varying parameters (STVP) [26], [27]. This model is here
named as basic.

3.1 Channel Model

Linear AWGN channel models the received signal x(¢)
as the transmitted signal with data symbols d = [...d,...]”
shifted in time by delay Tp > 0, multiplied by a carrier with
time varying phase @(t) = 2nfst + @y where @y € R is the
carrier phase offset and f; € R is the frequency shift. Such
signal is then attenuated in the channel by ¢y > 0 and is em-
bedded in complex WGN w(z) € C with double-sided power
spectral density 2Np, No > 0

x(t) = opexp (jo(r)) s(t — To, d) +w(t). (14)

The parameters To, Qo, f5, 0o, No are said to be slowly time
varying with respect to 7;. We also make the assumption that
fsTy < m. This condition holds after a successful acquisition.

3.2 Representation of Correlator Output
Signals

Let Z(Aty) denote the vector of correlator output sig-
nals at time n7; in the following form

Z(AT,) = /_ Zx(t)exp (=t /) " (1 — T, — %o + ATy) dr
(15)

where §(¢) is the estimate of the carrier phase at time ¢ de-
pending on carrier frequency estimate f;. Symbol % is the
estimate of the signal delay, and Aty is the time shift of the
replicated modulation impulse. The situation is depicted in
Fig. 5.

x(t) ni Z(ATs)

e—iP(t.F ) p* (t —nTs — 7o + ATy)

Fig. 5. Correlator output signals and their calculation. Bold
lines represent vectors.

Substituting (3) into (14) and the result into (15), we
see that Z(Aty) can be decomposed into the useful compo-
nent X (Aty) and the noise component AL (Aty)

Z(Atg) = X (Aty) + N (A7) (16)
where
X(At) = ogexp(j(o—9)) (17)
ssine ((fs — /) ) Ry (o — 0 — ATs) Qi

where ¢ = 2nf;nT; + @ and § = §(nTy). The noise compo-
nent AL (At,) can be modeled as zero mean white Gaussian
noise vector uncorrelated over time n, but correlated over
elements with the following covariance matrix Cazc) =
2NoRn (0). However, Z(At) signals for various values
of AT, are evaluated in practice and the vectors AL (AT;)
then become correlated over each other. This would be the
case for early/late components Zr = Z(—At), Z;, = Z(At),
0 < At < T, where 2At is sometimes referred as correlator
spacing. If AL concatenates the early/late noise components
A = [NENL]" where A = N[ (—At), N = N (A1), the
vector A is also a zero mean WGN vector with the following
covariance matrix

_ Ra(0)  Ra(287)
c=2( gt ong TR ) 09

The concatenated noise component A can be generated as

A = An (19)
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Fig. 4. Correlation functions R, 00, Ry,01, Ru,10, Ru,11 of the correlation matrix Ky (t) for LMDM representation of AItBOC(15,10) modulation.

where 1 ~ AL(0, 1) and Cy = AA”. Matrix A can be ob-
tained using Choleski decomposition. Vector M can be eas-
ily generated in Matlab or any similiar software. The group
delay introduced by the integration in (15) is discussed in
Section 4.

Strictly speaking, the convenience of post-correlator
modeling is due to the fact that the output signals Z (At) be-
come sufficient statistics for the maximum likelihood (ML)
estimation of 7o, @, f, 0o, No, d, under the above men-
tioned conditions [26], [27], [28]. Hence, the semi-analytic
models of the tracking loops in [5], [6] may have been de-
veloped. In this paper, we do not embody the post-correlator
model into a particular structure, instead, we develop a gen-
eral model which can be adopted to an arbitrary system ful-
filling the assumptions.

We inherently supposed that the integration time was
chosen as channel symbol period 7;. If shorter integration
times are desired in the simulation, the modulation impulse
vector h(¢) may account for smaller number of code periods
or only one. The channel symbols then lose the stationar-
ity and EP-IID property. We will see that this fact does not
prevent us from using the developed models, except for the
bandwidth constriction which is out of scope of this paper.

3.3 Summary

In order to sum up this section, we recall that a corre-
lator output signal expressed as an LMDM in linear AWGN
channel with STVP can be modeled as depicted in Fig. 6. In
that figure, output signals for Aty = Aty,...,ATk are gener-
atedVke {l,....K} : 0< Ay < T

Z(At)
z=| |,
Z(Atgk)
X (Aty) A (Aty)
X = : AN = :
X (Atk) A (Atk)

where the correlation matrix of the concatenated noise com-
ponent is

R (0) Rn (Atg —ATy)
CN =2Ny . :

R (AT, — Atk) R (0)

4. Extended Model: Realistic
Phenomena

In this section, we extend our model to a more realistic
situation. Firstly, we show how feed-back delay may be em-
bodied in the model. Secondly, we consider slowly fading
multipath channel with AWGN. We will see that the tapped-
delay-line model (TDLM) of the received signal will, thanks
to the linearity of correlation, simply result in an additive
composition of the separate delay-line components. Thirdly,
we discover that bandwidth constriction of the received sig-
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Fig. 6. Basic model of the correlator output signals generated as LMDM in linear AWGN channel with STVP. Bold lines represent vectors.

nal will result in bandwidth constriction of the correlation
matrix. The modified correlation matrix would then be pos-
sible to store to memory and reload its values when gener-
ation of the output signals. Fourthly, we will discuss how
phase noise with 1/f2 phase noise characteristics may be
added to the true parameters. Finally, a combination of these
phenomena is turned into a complex scheme.

4.1 Multipath

Let us suppose that the received signal is composed of
L+ 1 line-of-sight components with amplitude o; > 0, car-
rier phase offset ¢; € R, and code delay t; > 0

L
x(1) =Y oyexp (j(2rfit +@p)) s(t — 7, d) +w(r).  (20)
=0

The output signals of the correlators Z(At,) can be ex-
pressed by first substituting (3) to (20), the result then into
(15). We get that

L

Z(A’Cs) = le (ATS) +N(ATS)
=0

with /th useful signal component

Xi(At) = oyexp(j (0 —o))sinc ((fi— /) T)
R (1 — %0+ ATy) qu.

‘We use notation ¢; for the actual carrier phase of the /th com-
ponent at time n7y, then it holds that ¢; = 2w finT; + ;.

4.2 Finite Bandwidth

In this subsection, we will derive the power spectral
density of a GNSS signal as an LMDM. We consider that
channel symbols are EP-IID. This assumption does not hold
for our IQ representation where one of the channel symbol
is constant. We will discuss this case separately.

The power spectral density (PSD) S;(f) of a modulated
signal s(¢) equals, according to the Wiener-Khinchin theo-
rem,

Ss(f) = F [RKs (7)]

where
Rs () = AVE [s(r +1)s"(7)] -

For all linear multidimensional modulations with stationary
channel symbols, it holds that [22]

1

S (f) = iHH (N)Sq(fTH(S) 1)
where
H(f) = 7 ()
= [Fm) F ). F [hy,0)]]"
SaF) = Y Rafule
Rqlm] = E[qung)].

With EP-1ID and zero mean channel symbols, we have
. 2
R[] = Sl diag (E [[qoa ] ... E [|aom, )

for all our modulations E UC]O,kﬂ =c¢, ¢>0forall k e
{1,...,Ny}, thus

Ralm] = c18[m),
Sq(F) =
and finally
S = ZHIOHE).

Let Spsw(f) be the PSD of signal s(¢) constrained with an
ideal low-pass filter of BW /2 band-stop frequency

|fI <BW/2,
else.

S(f);
Srew (f) = { (Of)
The constrained PSD of the signal
¢
Ssrew (f) = ?HIIEIBW (f)Hpw (f)

will constrain the Fourier transform of the modulation im-
pulse vector

H(f), |fI<BW/2,
0, else.

Hrsw (f) = {

The truncation of the spectrum of the modulation impulses
can then be accomplished in Matlab by the following steps:
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1. Calculate the Fourier transform of the modulation im-
pulse correlation matrix

2. truncate it in frequency domain

Pnrew (f) = { pn(f), |fl<BW/2,

0, else

3. and calculate inverse Fourier transform

Rurew (T) = F ' [Prrsw(f)]-

Considering the IQ extension of BPSK(y) or BOC(j,y) mod-
ulations, the channel symbol vector would not be generally
EP-IID, since ¢, ¢ = 1. It results in the fact that S (f7;) # cI
in (21). Nevertheless, we bypass the problem by suppos-
ing that bandwidth constriction will not influence the flow
of transmitted channel symbols, but the modulation impulse
vector. It substantiates us to use the procedures 1-3 to con-
strain the received signal.

The transformations are here represented in continu-
ous time domain. However, computationally more attrac-
tive would be to accomplish the constriction in discrete time
domain using the fast Fourier transform (FFT), and store the
samples of the constrained correlation matrix in memory. On
load, an interpolation may be employed to better approxi-
mate the continuous function.

4.3 Phase Noise

The carrier phase noise signal can be modeled as zero
mean Gaussian additive component Qpy to the carrier phase,
with defined phase noise characteristics Ly(f) — normalized
single-sided power spectral density of @py. The same defi-
nition stands for the code phase noise signal Tpy, being addi-
tive to the code delay. Its influence is not significant relative
to @py. We model the phase noise characteristics L(f) with
the following function

627 ‘f|<f07

a’c?/f?, else,

%mz{

depicted in Fig. 7. Signals @py, Tpy can be obtained by gen-
erating white Gaussian noise with variance 62, and passing
it through linear time-invariant (LTI) system with frequency
response G(f) such that (a > 0)

51={ oy Vi

2 Lo(f)
Ego(fo) =0’

Ly(fr) =a®d?/ [} *i*‘
L > f
fof1

Fig. 7. Model of the carrier phase noise characteristics L (f).

4.4 Feed-Back Delay

Since the integration in (15) can be classified as a sig-
nal propagation through a linear time-invariant (LTT) system
with Rectr, (r +nT;) impulse response, group delay 7/2 is
introduced by that operation. In discrete time with sampling
period Tj, this can be modeled with the moving average

% (Z,(ATs) + 2,1 (ATy)) (22)

where index 7 is used to denote the time in multiples of in-
tegration time 7j.

Additionally, we can model an integer delay in the
feed-back, denoted as D, Dy for code and carrier phase, re-
spectively, simply by adding FIFO memory. Then, we store
the samples and read them back using a circular buffer, in
order to reduce the computational complexity.

4.5 Combined Model

We can connect the above mentioned models in order
to get the extended model in Fig. 8. Due to linearity of the
TDLM, the finite bandwidth would clearly constrain each
correlation matrix. Extension of the phase noise model and
feed-back delay model is straightforward.

5. Complex System Model: PVT Esti-
mation

In [5], [6], the semi-analytic models were applied to
investigate behavior of the code and carrier tracking loops.
However, the approach might be incorporated to simulations
of much more complex systems. As an example, based on
the satellite constellation and true user PVT, input param-
eters to the basic model (7, f;, @, o, Ny) can be generated,
then they can propagate through the model, and the output
values can be further processed. By further processing we
mean for instance PVT estimation. Optionally, feed-back be-
tween the PVT estimator and the model may be established
in order to simulate vector tracking or direct positioning al-
gorithms.
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Fig. 8. Extended model of the correlator output signals generated as LMDM in slowly fading TDLM in AWGN channel with FBW, feed-back
delay, and phase noise. Bold lines represent vectors.

Section 4 also provides hints how the model can be in-  extended model itself. The multipath channel is here re-

corporated in simulations of multipath mitigation techniques  stricted to a 2-path channel.
which supposes a slowly fading channel. Slight modifica-
tions of the model would suffice most of the proposed meth-
ods adopting correlation [8] — [11], [13] — [20], [30], [31].

Classes DLL, PLL represent a delay-locked loop and
a phase-locked loop, respectively, and define the properties
of the discriminator and loop filter. Both DLL, PLL are sub-

classes of abstract class FBS (feed-back system). Classes

6. Developed Simulator Motion, Sources, Signals provide the FBSs with the in-

put parameters changing over time as requested by class

A simulator of GNSS tracking loops, using the ex-  Tracking, which is responsible for the loops’ closure. The

tended model as an underlying block, has been developed  input signals might be step, ramp, frequency ramp, or signal

at CTU in Prague. Its name is GNSSTracker. The simula-  simulating the mutual motion between the user and the space
tor was designed in the Matlab environment with the object-  vehicle (SV).

oriented programming approach. It has an encapsulating
graphical user interface (GUI). A quick tutorial to the simu-
lator is available in [29], the simulator itself at [21].

Based on the Monte Carlo simulation principle, char-
acteristics of the equivalent model, multipath, mean square
error (MSE), and synchronization failure can be estimated. It

A GNSS signal may be represented as LMDM in class is ensured by classes Eq_model, Multipath, MSE, SyncFail,
Setup by definition of the correlation matrix Ky (), the  respectively. Transient responses can be visualized, as well,
channel symbol vector q,, and some other constants con- with methods of the class Tracking. Hierarchy of the

cerning the modulated signal. Class CorrOut represents the  classes is depicted in Fig. 9.
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7. Simulation Results

The correctness of the model and the functionality
of the simulator have been verified in the following man-
ner. Well known characteristics were simulated and com-
pared with their theoretical values. Characteristics known
from bit-true simulations were compared with the simulated
ones in GNSSTracker. To be more specific, discriminator
characteristics, tracking jitters, multipath characteristics of
BPSK(1), BOC(1,1), AItBOC(15,10) modulated signals in
various system setups were consulted with [7], [23], [25],
[30].

In this paper, we present simulation results of Alt-
BOC(15,10) fully optimal processing introduced in [31].
The method employs four complex early/late correlators
(N, = 4, dim(Z) = 8) and can be classified as joint-
maximum-likelihood estimation of the signal parameters and
channel symbols [26], [27]. Each of the four correlators cal-
culates a metric for decision about the pair of actual channel
symbols. The output of the selected branch is then fed to the
DLL and PLL discriminators.

In the simulation, we consider the extended model from
Fig. 8. The setup of the simulation is in Tab. 1. In Fig. 10, the
characteristics of discriminator, loop noise variance, multi-
path, and mean square error are presented.

Setup
— ] .
Motion
1
Y
CorrOut DLL, PLL Sources

Signals
Eq_model

Fig. 9. Class  hierarchy in GNSS tracking toolbox
(GNSSTracker). Classes with the shape of rounded
rectangle are intended for simulations. The dashed line
denotes an input which is optional.

It is apparent from the figure that the discriminator
characteristics of the DLL has multiple stable lock points
which is a consequence of the alternating shape of the cor-
relation function R [Ry oo (7)] in Fig. 4. The narrow peak of

R [Re,00 (T)] at T = 0 and narrow correlator spacing AT result
in a steep zero crossing of the characteristics. The peaks are
rounded due to the finite bandwidth. PLL discriminator char-
acteristics is linear over (—x, ) which complies with [7].

Modulation AItBOC(15,10)

Bandwidth BW =80 MHz
Correlators’ Setup Optimal [31]
Early/Late Spacing At=T./18
DLL Discriminator Power
PLL Discriminator Atan2

DLL Filter 3. order, 10 Hz, D; =1
PLL Filter 3. order, 20 Hz, D¢y = 1
SNR = 03/ (2Ny) 20 dB
DLL Input Signal Step: 0 — 0.02T;
PLL Input Signal Step: 0 — /3

Carrier Phase Noise | fo=1Hz, L(fy) = —100 dBc/Hz

f1 =100 Hz, L(f;) = —120 dBc/Hz

Tab. 1. Simulation setup.

The variance of the DLL equivalent loop noise exhibits
multiple local minima, whereas the variance of the PLL
equivalent loop variance is almost constant over the range
of the interest. It corresponds to the shape of either discrim-
inator characteristics.

The peaks of the alternating DLL multipath character-
istics decline from its first maximum similarly as in [30].
The next two following subfigures depicting transient re-
sponses on the step functions document that both feed-back
systems react relatively promptly. Be the sampling period of
the simulation 1 ms, the DLL would get into the steady state
within 0.3 s and the PLL within 0.7 s. The characteristics of
mean square error depending on SNR were obtained as the
steady-state values of the characteristics depicting the mean
square error in time.

8. Conclusions

In this paper, we established a universal framework for
description of GNSS modulations as special cases of the lin-
ear multi-dimensional modulation (LMDM). Namely, we in-
troduced how BPSK(y), BOC(B,y), AItBOC(15,10) modula-
tions can be represented in that manner. We extended the
approach for 1Q representation of the modulation, including
CBOC modulation. A discussion on representation of TM-
BOC signals was delivered.

Based on the general description of the signals, ba-
sic semi-analytic model for simulations with correlation be-
tween the received signal and replicas of its modulation im-
pulses has been developed. The model can represent an ar-
bitrary number of correlations for various time shifts of the
replicated modulation impulses. To represent more realistic
scenarios, an extended model accounting for slowly fading
multipath, finite bandwidth, phase noise, feed-back delay,
and combination of these has been developed.
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DLL - Discriminator Characteristics
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DLL - Multipath Error
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Fig. 10. Simulation results of the setup in Tab. 1. The multipath error is evaluated for the difference of carrier phase offsets ¢; — @y = 7 and ratio
of amplitudes 0y /o) = 2. The time axes of the mean square error figures are expressed in samples of the post-correlator processing.

The fact that the models need not be applied only to the
tracking loops was discussed. We proposed it for simula-
tions of complex systems including PVT estimation, vector
tracking, direct positioning, multipath mitigation techniques,
or simply elsewhere where the high-rate correlation in the
above stated form appears.

Finally, we introduced a Matlab-based simulator with
the extended model as a basic building block and demon-
strated several characteristics of optimal AlItBOC(15,10)
processing by the code and carrier tracking loops.
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