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Abstract—In this paper, we present our software sensor fusion
framework for self-driving cars and other autonomous robots.
We have designed our framework as a universal and scalable
platform for building up a robust 3D model of the agent’s sur-
rounding environment by fusing a wide range of various sensors
into the data model that we can use as a basement for the decision
making and planning algorithms. Our software currently covers
the data fusion of the RGB and thermal cameras, 3D LiDARs, 3D
IMU, and a GNSS positioning. The framework covers a complete
pipeline from data loading, filtering, preprocessing, environment
model construction, visualization, and data storage. The archi-
tecture allows the community to modify the existing setup or to
extend our solution with new ideas. The entire software is fully
compatible with ROS (Robotic Operation System), which allows
the framework to cooperate with other ROS-based software. The
source codes are fully available as an open-source under the MIT
license. See https://github.com/Robotics-BUT/Atlas-Fusion.

Index Terms—Open Source, Autonomous Agent, Self Driving
Car, Sensor Fusion, Mapping, ROS

I. INTRODUCTION

As the world is diving deeper into the problem of self-
driving cars and other autonomous robots, there is a large num-
ber of sophisticated systems for analyzing data and controlling
the specific problems of autonomous behavior. However, these
systems, like [1] or [2] are very complex and require dozens
of hours to understand the architecture and to be able to start
to develop a new solution on top of the existing one.

As members of the academic community, we are experi-
menting with many new approaches. Our primary motivation
is to search for new ways and improve the current state-of-
the-art techniques. For this purpose, we designed a system
aiming at surrounding environment sensing and map building
in mobile robotics.

The work has been performed in the project NewControl: Integrated, Fail-
Operational, Cognitive Perception, Planning and Control Systems for Highly
Automated Vehicles, under grant agreement No 826653/8A19006. The work
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No CZ.02.1.01/0.0/0.0/17 043/0010085.
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Fig. 1. The example of the RViz visualization of the runtime model of the
surrounding environment. Grey boxes are the LiDAR-based detections, and
color frustums are the RGB images’ neural network detections. The green
object at the center represents the agent and the lines behind the agent are
the trajectories estimated by different filtering algorithms.

As a result, our team created this C++ framework focusing
on data fusion from the various sensor types into a robust
representation of the robot’s surroundings model.

II. GENERAL ARCHITECTURE DESCRIPTION

We have designed the software with the idea of a very
minimalistic pipeline and simple modification to develop and
deploy new ideas and algorithms quickly.

A. Input Data

As an input data format, we have chosen the same repre-
sentation used previously in our work on Brno Urban Dataset
[3], which is inspired by [4].

The data are stored as an h265 video in case of RGB and
thermal camera data, .ply files for LiDAR scans, and CSV data
files for GNSS, IMU, and camera and LiDAR timestamps.

B. Core Pipeline

At the startup, the program reads the basic configuration
from the config file. The configuration provides a path to the
offline record, and the data loading module loads up all the
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necessary information for offline data interpreting. After that,
the main pipeline begins.

The loading module loads all timestamped data into the
memory and later provides the data in the correct order, one by
one. The pipeline redirects data into the dedicated processing
section based on the data type and from which sensor the
data comes. The output data, like detected obstacles, static
obstacles, or moving entities, are stored in the local map data
model.

The entire pipeline has a linear architecture, so the data
processing algorithms are sorted one by one. This waterfall-
like design allows anybody to add or remove a new data
processing algorithm without affecting the current ones.

C. Outputs

The framework’s main output is the map of the surround-
ings, stored in the Local Map block, with the precise detection
of the possible static and dynamic obstacles. The following
decision-making algorithms can use this map to adjust the
agent’s behavior based on the mapping process’s data.

Secondary, there are several other outputs described in detail
in section IV. There are the 3D models of all the places that the
agent visited during the mapping session, projections of neural
network’s detection from RGB cameras to thermal images (an
annotated IR dataset for object detection is created this way),
and the depth maps for camera images generated from the
aggregated point clouds.

III. MODULES

A. Data Loaders

As our framework is currently not working with online data,
there is an interface that loads stored records and provides the
loaded data ordered by their timestamps to the main pipeline.

There is a data loader for every physical sensor that reads
only one data series. These data loaders are wrapped by a
central data loader that creates an interface between stored
data and the main pipeline. All the data loaders have ordered
the timeline of their data series. When the main pipeline is
ready to accept the next data packet, the central data loader
asks all the loaders for their smallest timestamp. The data
loader with the lowest timestamp will provide the data packet
to the processing pipeline.

B. Data Models

The first part of the data models is the raw input data
representation. Every sensor has one or more classes that cover
the range of the input data. For example, a camera. There are
two classes CameraFrameDataModel for RGB image repre-
sentation and the CameraIRFrameDataModel for the thermal
camera image data entity. Every instance of those classes
defines the camera sensor identifier, precise timestamp, image
frame, and optionally pre-generated YOLO neural network
object detections. This data packet keeps all the important
information, and the data loader passes the instance of this
class when the main processing pipeline requests the latest
image data.

The second part of the data models is the internal data
representation models used for communication between the
modules in the primary data processing pipeline. For example,
the LidarDetection structure for objects detected in the LiDAR
domain, LocalPosition as a relative metric position w.r.t.
the origin of the mapping session, FrustumDetection for the
camera-based detected objects and many others.

C. Algorithms

The ”Algorithms” module is the core one. It contains all the
data processing code. Here the implemented classes cover the
agent’s position filtration based on Kalman fusion of the GNSS
and IMU inputs, functionality for projecting objects from the
3D environment into the camera frames and back, generating
a depth map from the LiDAR data, or the redundant data
filtration. The ”Algorithms” module is the main section where
the implementation of the pipelines is described in Section IV.

D. Local Map

The ”Local Map” module primarily represents the software
that holds the internal map of the surrounding environment.
There are two main classes. The first one is LocalMap. This
class is a simple container that allows us to store and read out
data models of the map representation entities, like aggregated
LiDAR model of the near surrounding, detected obstacles,
YOLO detections, and higher representations of the more
complex fused data. The second class is ObjectsAggregator.
This class fuses low complexity detections, such as LiDAR
and camera-based detected objects, into the higher complexity
representation, fusing geometrical shape information, object
type, kinematic model, motion history, etc.

E. Visualizers

This module handles the interface between the main pipeline
and local map, and the rendering engine. The main class,
called VisualizationHandler provides a wrapper over the en-
tire rendering logic. For every specific data type (IMU data
- ImuVisualizer, camera frames - CameraVisualizer, point
clouds - LidarVisualizer, etc.) there is dedicated class that
manages the interface between the central point and the
visualization engine (RViz in our case).

F. Data Writers

The Data Writer section covers the classes responsible for
writing Local Map data to the local hard drive storage. Cur-
rently, there are the implementations for saving the aggregated
LiDAR point cloud projected to the camera plain (see IV-E)
and the class for storing RGB YOLO detections projected into
the thermal camera (see IV-D).

IV. DATA PROCESSING PIPELINES

The framework implements several principles of data pro-
cessing and map building. In this section, we are describing
the basics of the most important ones.

CameraFrameDataModel
CameraIRFrameDataModel
Lidar Detection
Local Position
Frustum Detection
Local Map
Objects Aggregator
VisualizationHandler
ImuVisualizer
CameraVisualizer
LidarVisualizer


A. Precise Positioning
Without precise positioning, it would be impossible to build

a reliable map model and aggregate information in time.
For our purpose, we used the differential RTK GNSS that

samples a global position with the precision of one σ below
2cm and provides an azimuth of the measurement setup.
To improve the dynamic positioning, we also use the linear
acceleration and angular velocity from the IMU sensor. An
example of the fusion of these sensors could be [5].

The pipeline has the following input data: the global posi-
tion and heading from the GNSS receiver, linear acceleration,
angular velocity, and filtered absolute orientation from the
IMU sensor. The IMU automatically compensates for the roll
and pitch drift by the gravity’s direction, and the yaw drift
compensates by the magnetic field measurement.

In the beginning, the first GNSS position sets up an anchor
that defines the mapping session’s origin. This first global
position is the origin (the anchor) of the local coordinate
system. The core of the position estimation process is the set
of 1D Kalman filters [6], [7], that model position and speed in
all three axes of the given environment. Every new incoming
GNSS position is converted to the local coordinate system
w.r.t. the anchor. This local position is used as a correction
for the Kalman filters [8] in all three axes.

Fig. 2. Scheme of the position estimation pipeline.

As the system models the IMU orientation separately on the
IMU’s internal model, every new angular velocity data system
updates its internal model to have a fast response. However,
there is always a long-term drift for this long-term noisy data
integration. The system fuses its internal model with the IMU’s
one using the low pass filter to remove the roll and pitch drifts.
To compensate for the yaw drift, it combines the heading
measured by the GNSS receiver and its differential antennas
with the heading estimated by the agent’s speed, which the
motion model estimates.

B. LiDAR data aggregation
As we are using the rotating 3D LiDARs, the scanners

perform measurements in different directions at different

times during the scanner motion, and the robot is constantly
changing its position. All these effects cause the outcome
measurement to be significantly distorted [9], [10].

Thus, we can not merge all the scans into one because the
result would be inaccurate and blurred.

The input LiDAR data could come from several LiDAR
scanners. The entire process assumes that each scan stores
the data in the same order as it was measured. However, the
input data are at the beginning filtered by the data model’s
callback and downsampled by the PointCloudProcessor call
instance to reduce the computational complexity of the later
point cloud transformation. At the same time, the positioning
system provides the agent’s position when the current and the
previous scans were taken.

All these three information, the scan, and both positions
are passed to the PointCloudExtrapolator instance. There the
point cloud is split linearly into the N batches of the same
size. Because the scan data are sorted, each batch covers a
small angular section of the entire scan, corresponding to the
small-time period when the batch data has been taken.

Fig. 3. Comparison of the non-aggregated point cloud from two Velodyne
HDL-32e scanners (left) and the aggregated ones (right) on the aggregation
period of 1.5s.

We have already estimated the valid transformation for
every batch for a short time when the batch’s data has been
scanned. This transformation corresponds to the IMU position
w.r.t. the origin of the local coordinate system. Thus, we
have to aggregate one more transformation that expresses
the frame difference between the given LiDAR sensor and
the IMU reference frame. In this way, we can calculate the
final homogeneous transformation transform every single point
cloud measurement from the scanner’s frame to the local
coordinates frame. However, transforming every single point
is very demanding on computational power. The points are not
transformed immediately, but the batch holds the data in the
original frame, and the transformation could be evaluated later
in the pipeline.

C. Camera-LiDAR Object Detection

LiDAR can measure the distance and the geometrical shape
of the obstacle with high accuracy. On the other hand, to be
able to recognize the specific class of the object based only on
the point cloud and geometrical shapes is quite challenging.
The very opposite of this approach is object detection on the
camera images. These days, neural networks can localize and

Point Cloud Processor
Point Cloud Extrapolator


classify objects on the RGB images in real-time with several
dozens of fps [11]. However, although we have quite a reliable
object classification and localization in the 2D plane, it is
tough to estimate the detected object’s distance.

Fig. 4. Car detected by the neural network in both frontal cameras. Distance
of the 2D detection is estimated based on the aggregated LiDAR data. Camera
view in the right top corner.

For this purpose, we have created a system that fuses the
LiDAR data and camera detections and combines them into a
single representation.

There is an estimated median distance of the LiDAR
measurements projected to the detection bounding box for
every detection on the RGB image. This information system
generated the 3D frustum representation in the output map of
the detected obstacle.

D. RGB YOLO Detections to IR Image

If we focus on the field of neural network training, we
can find a large number of papers [12], [13], [14] that deal
with object detection on RGB images. However, not many
works focus on thermal images [15]. The thermal domain
is very beneficial for autonomous agents because it allows
agents to sense their surroundings even in bad lights or weather
conditions.

There is not only a smaller number of works interested in
the learning neural networks to detect objects on the thermal
images [16], [17] compared to the visible light spectrum, but
also the there is also a dramatically smaller background in
existing datasets. There are very few publicly available sources
of annotated thermal images that could be used for training
purposes, like KAITS [18] or the FLIR [19].

We have proposed a system that would automatically gen-
erate a large amount of annotated IR images based on the
transferring object detections from the RGB images to the
thermal ones, which will help in the future when we will train
neural networks for in the thermal image domain [20].

Fig. 5. 1 (red) - the YOLO neural network detects objects in the RGB image.
This 2D detection can be represented as a 3D frustum in the real world. 2
(blue) - the LiDAR measures object distance. 3 (green) - by combining LiDAR
data and 3D frustum, we can estimate the frontal plane of the detected object.
4 (yellow) - the detected object’s plane is reprojected into the IR camera.

The basic idea is to preprocess the detections on the RGB
camera, which is semantically close to the IR camera and
oriented in the same direction. The nearest IR frame in time
is taken for every RGB frame for which the object detection
has been performed. In the next phase, the aggregated point
cloud model (see IV-E) is used to estimate the distance of the
detected obstacle so that the obstacle can be transformed from
the 2D image plane into the 3D model of the environment.
The last phase is to project the 3D modeled obstacle’s frontal
face into the thermal image and store the parameters of the
projected objects in the same format as the origin RGB
detections do.

E. Aggregated LiDAR Data to Image Projection

Currently, many academical publications deal with convolu-
tional neural networks and improve the performance of those
state-of-the-art algorithms. However, there is a large number
of papers that cover the RGB image object detection, but
much less of those that would be dealing with the object
classification and detection in the IR (thermal) domain [21]
and even less that would try to process the depth images [22].

Our framework allows us to merge all these three domains
into a single one.

Every new frame from the thermal camera triggers the
following process. From the motion model, the current po-
sition of the IMU in the local coordinate system is requested.
Simultaneously, the transformation between the IMU and the
IR camera is known from the calibration frame.

From the PointCloudAggregator, the currently aggregated
set of the point cloud batches is requested and passed into
the instance of the DepthMap class. The DepthMap is also
provided by the current position and the IMU to camera
transformation and the camera calibration parameters. By com-
bining all this information, for every point cloud batch, there
is applied additional transformation. The entire transformation
chain is currently following from the LiDAR frame to the IMU
frame to the Origin frame to the IMU frame to the IR Camera
frame.

Point Cloud Aggregator
Depth Map
Depth Map


Fig. 6. Example of depth images generated based on the aggregated point
cloud model. Depth images (top) paired with the corresponding thermal
images (bottom). Point cloud has been projected to the camera frame. The
same technique can be applied also on RGB images.

F. Visualizations

The entire mapping process requires a detailed visualiza-
tion backend to correctly understand every step of the data
processing and the final output environment model. For this
purpose, we have used RViz - the visualization tool of the ROS
toolkit. It supports elementary geometry objects like points or
lines and more complex shapes, like arrows, polylines, and
complex visualizations, like point clouds, occupancy grids, or
the transformation trees. A single class VisualizationHandler
processes the visualization that wraps the entire visualization
logic.

V. EXTERNAL DEPENDENCES

The ROS (Robotic Operating System) [23] makes it possible
to communicate with other programs with well-defined API.
The entire framework visualization is also realized via the Rviz
program, a part of a ROS environment.

For the underlying data representation, like N-dimensional
vectors, rotation angles, matrices, quaternions, bounding
boxes, frustums, transformations, etc., we have used the previ-
ous work of one of the authors, the Robotic Template Library,
the C++17 built on the Eigen library. RTL is available at https:
//github.com/Robotics-BUT/Robotic-Template-Library. Next
to the fundamental data primitives representation, RTL also
provides several algorithms for point cloud segmentation and
vectorization [24], [25]

To solve the assignment problem, we have used
the implementation https://github.com/aaron-michaux/
munkres-algorithm that refers [26].

VI. FUTURE WORK

We have designed our framework in a way that the architec-
ture allows anybody to modify or extend the existing solution.
We have put a special effort into building up an abstract system
that allows us to scale the current solution to a much larger
solution with a reasonable amount of additional complexity.
For example, there is no need to modify existing data models
and loaders to implement the new sensor’s data. We can extend

the current software with a few new lines of code based on the
given templates. The same we can say about the processing
pipelines.

In the future, we are preparing to add more sensors, like
radar or ultrasound sensors, extending the current pipeline
with the disparity map generation based on the two frontal
cameras, optical odometry, or semantic scene segmentation by
the neural networks.

We would also like to make this project fully open-source
because we believe that these projects can reach a more sig-
nificant number of developers and researchers, and the bigger
community means a more dynamic development process. Our
target is to provide a research platform for a large research
community that will not need to develop many of those
algorithms from scratch and will be able to improve more
specific problems for the autonomous robot or the self-driving
car domain.

VII. CONCLUSION

As a result of the research project, we have created the
experimental mapping framework that allows easy and fast
prototyping of new approaches in autonomous agents. The
primary data processing pipeline is a single thread with a
waterfall-like architecture, making it easy to understand how
the data are processed. The modification does not require
complicated code refactoring.

The essential parts of our framework are the precise posi-
tioning system that fuses GNSS and IMU data. The LiDAR
scans aggregator allows us to integrate multiple point clouds
into a single dense environment model. Next is the point
cloud to camera projection and depth image generating, the
point cloud obstacle detection, YOLO neural network-based
3D obstacle detection, and RGB to IR neural network detection
mapping.
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