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Abstract: This article deals with the comparison of 
various estimators of the m parameter from the Naka-
gami distribution. This kind of distribution has been used 
in many engineering applications and we present 
another possible application in biomedical engineering, 
particularly the ultrasound tissue characterization in the 
echocardiographic application. Matlab 6.5 was used as 
a proper tool for fast and efficient scientific research. 
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where Ω and m are the two parameters of this 
distribution and Γ(m) is the Gamma function. In radio 
channels modeling, the parameter m is constrained so 
that m ≥ 1/2 [2]. But this condition may be violated in 
ultrasound applications [6], [7]. The parameter Ω 
represents the average power of the envelope signal and 
can be estimated as Keywords 
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This Ω estimator is well accepted, but there are many 
estimators for the second parameter m, which determines 
the shape of the PDF function. An estimate (m~) of this 
parameter can be evaluated through the Maximum 
Likelihood (ML) method. It has been shown that this 
estimate leads to [11] 

1. Introduction 
The Nakagami-m distribution has founded many 

applications in technical sciences. It has been shown by 
extensive empirical measurement that this distribution is 
an appropriate model for radio links [2]. The next fast 
growing area of Nakagami-m distribution application is 
the ultrasound tissue characterization. The envelope of 
the ultrasound radiofrequency (RF) signal could be de-
scribed by this distribution and the parameters can be 
used to distinguish between various kinds of tissues, e.g. 
detection and identification of abnormalities in breast, 
liver or kidney. However, in echocardiography little 
work has been done. In this article we compare various 
estimation methods for the Nakagami m parameter (Sec-
tion 2 and 3). Section 4 deals with the use of the estima-
tion in ultrasound tissue modeling. Section 5 presents 
some results for parametric tissue imaging in echocardi-
ography. 
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is called the digamma function. This function can be 
easily evaluated in Matlab using the function psi( k, x), 
where k is the order of the derivative. The right side of 
(3) is 
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1µ ,  (6) 2. Nakagami-m Distribution and 
Estimators and 

The probability density function (PDF) of the Nakagami-
m distribution for an envelope Vi of ultrasonic RF signal 
is given by [2], [5], [6], [8] 
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These are the mostly used estimators, particularly the 
m~

INV, although its performance is not as good as for 
other estimators, as we will see in next section. 

Solving the equation (3) is not easy due to the fact that 
there is no simple expansion of digamma function. One 
possibility is to use the Tolparev-Polyakov estimation 
rising from the second-order approximation of ψ( m~). 
This estimator is [1], [9] 

3. Estimators Comparison ( )
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.  (8) In this section the six above estimators are com-
pared in order to decide, which is more convenient and 
accurate. For this purpose the Nakagami random number 
generator, based on Monte-Carlo simulation, was cre-
ated. For the fixed parameter Ω =1 and any fixed m from 
the set {0.25, 0.5, 0.75, 1, ..., 15}, the signal of length 
1 million samples was generated using Matlab. The PDF 
of one generated sequence for m = 3 and the correspond-
ing theoretical function is shown in Fig. 1. These sets 
were stored on the hard disc for the following conse-
quential simulation. 

The next possibility is to use the Lorenz estimator [1]: 

( ) ,
)(

4.17
)(

4.4~
29.12

12
2

12
dBdBdBdBLORm

µµµµ −
+

−
=  (9) 

where 

( )∑= k
i

dB
k V

N 10log201µ .  (10)  
 

The next approximation was proposed by Greenwood 
and Durand in 1960 and it is given by [11]: 
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for 0.5772 < y < 17. The maximum relative errors of this 
expression are 0.0088 % and 0.0054 %, resp. [11]. 

An alternative technique to solving the ML equ-
ation (3) is by recursive equation, as suggested by 
Bowman [11] 

Fig. 1. The PDF of one generated sequence for m = 3 (bar 
graph) and the corresponding theoretical function 
(solid line). 
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From these sets a 200 sequences of length N = 500 and 
N = 2000 were randomly chosen and the estimation was 
performed using the six above listed estimators. The 
comparison was done by plotting the estimated value m~ 
as a function of true value m. 

This algorithm converges rapidly and is quite powerful. 

From the moment method the so call inverse 
normalized variance estimator can be derived [1], [6], 
[9]. This is the most widely used estimator, which is 
given by: Fig. 2a) shows the dependencies for N=500 and we 

can conclude that the estimators m~
INV and m~

LOR are less 
accurate. However, all estimators give similar results for 
m ≤ 4. For higher values, the estimators m~

BOW, m~
GD, 

m~
TP, seem to be the most appropriate. Fig. 2a) shows 

only the m~
BOW estimation, because it gives almost the 

same results as m~
GD. 
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In [3], Cheng and Beaulieu proposed generalized mo-
ment estimator, which is based on non-integer moments. 
This is similar to (12) and is given as 
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Fig. 2b) shows the results for N = 2000 and the 

same conclusion can be drawn. The comparison of Fig. 
2a) and b) shows that longer sequences (higher N) result 
in more accurate estimations.  where p > 0. 
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Fig. 2. Comparison of the estimated and the true values of the 

Nakagami m parameter for a) N = 500, b) N = 2000. 

If we should make a decision, which estimation method 
is the best, we would choose the m~

BOW and m~
GD estima-

tors, that give almost the same results and are more accu-
rate, especially for m < 1. 

4. Experiments on Ultrasound 
Simulation 
Computer simulation was carried out to verify the 

usefulness of the Bowman and Greenwood-Durand esti-
mators for ultrasound tissue characterization. A one-
dimensional discrete scattering model was used in our 
simulation [6]. A set of 20 A-scans of length 3 cm was 
generated as a model of real tissue with different scat-
tering conditions. Along each A-scan, uniformly dis-

tributed scatters were positioned and the received echo 
signal (RF signal) was computed as a superposition of 
echoes from all the scatters: 
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where αi is the amplitude of the ith scatter assumed to 
have Gamma distribution [6] and c is the ultrasound 
velocity 1540 m/s. The emitted ultrasound wave is repre-
sented by p( t). It is modeled in a frequency domain as a 
Gaussian-shaped spectrum: 
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where β is the bandwidth and f0 is the center frequency. 
The inverse Discrete Fourier Transform is performed to 
obtain the time function. 

The transmit frequency f0 = i3 MHz was used. Tis-
sue types with various numbers of scatters were simula-
ted and the Nakagami m parameter was estimated for 
each type. Before that the envelope detection of simula-
ted RF data had been performed, using the theory of 
analytic signal and Hilbert transformer [4]. No additional 
processing was done (envelope dynamic compression or 
decimation). 

χ2 tests were conducted to test the hypothesis that 
the envelope of the RF signal was Nakagami distributed. 
This test was performed for each fixed scatter density n 
(in a resolution cell) from the set n = {1,2...15}. The two 
estimates: m~

BOW and m~
GD were computed and a χ2 test 

performed for each of these estimates and corresponding 
simulated images. In order to reduce the estimate varia-
tion, the procedure was repeated 50 times. The average 
values of this statistic are given in Tab. 1. The Nakagami 
hypothesis seems to be acceptable within the limits of 
error. 

The Chi-square is calculated as the sum of the 
squares of the differences of the observed values from 
the mean value divided by the mean value itself. More 
details could be found in [11]. 

Here, we present only the Bowman estimator 
m~

BOW. The m~
GD estimator was tested too, but both of 

them provide practically the same values. The other 
estimation techniques (including Tolparev-Polyakov 
estimator) lead to less appropriate values, because they 
have lower χ2 values that in some cases lie under the 
critical value. 

 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

χ2 851 593 1146 57 28 6228 401 56 24 103 2375 662 1686 539 107 

Tab. 1.  χ2 values for the Bowman estimator BOWm~ . 
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5. Experiments on Real RF Data  Fig. 4a) shows the original B-mode image of the 
heart (long-axis view). Fig. 4b) and c) show the corre-
sponding parametric images of the m and Ω. One can 
see, that the Ω-image has brighter values for the specular 
reflections and higher echogenity regions; and dark 
values for regions with no specular reflections, because 
it represents the average power within the window. The 
low values at the edges of the different tissues mean, that 
only few scatters are present, which is due to the pres-
ence of specular reflections. The parts of a tissue with 
higher scatter densities have high values of m and there-
fore are brighter. 

A simple test was applied to real echocardiography 
data to investigate whether the Nakagami distribution is 
appropriate for the characterization of cardiac tissues. 

5.1 Data Description 
The data were measured with the GE VingMed 

System 5 scanner in cooperation with the Faculty Hospi-
tal, Masaryk University Brno. The envelope images were 
saved on the computer hard disc before any scan conver-
sion or dynamic compression and could be directly used 
for Nakagami parameters estimation. The logarithmic compression was utilized before 

the visualization. Moreover, the matrix of m parameter is 
median filtered (3×3 mask) to reduce the variation of 
estimated parameters. After that, Ω-image and m-image 
were created by bilinear interpolation. 

The images were stored in a matrix, where the 
number of columns is the number of A-scans and the 
number of rows is determined by the acquisition depth 
and sampling frequency. In our case, the size of the 
matrix was 486 × 35, corresponding to the depth span 
15 cm and the view angle 45o (see Fig. 3). 6. Conclusion 

 

Various estimators has been studied and compared 
in this article. The Greenwood-Durand and Bowman 
estimators seem to be the most appropriate m estimators. 
The model based on Nakagami-m distribution has been 
explored as a promising model for ultrasonic tissue 
characterization in echocardiography. The model is easy 
to use, because the computation is straightforward, com-
pared to other models (e.g. K-distribution). The advan-
tage of this model is also given by its ability to incorpo-
rate several scattering conditions and makes it therefore 
attractive for ultrasound characterization. 
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Fig. 3.  Scan conversion was done using the bilinear interpolation. 

5.2 m and Ω Estimation 
The m and Ω parameters were computed within a 

sliding window, moving along the image, before scan 
conversion. The size of this window is important, be-
cause it determines the spatial resolution of the resulting 
parametric image and the accuracy of the estimate. The 
larger the window, the higher is the accuracy, but lower 
spatial resolution. The number of columns was set to 3; 
therefore three A-lines are included in the computation. 
This is, in fact, the minimum width. The more A-lines 
are added, the more blurred results are obtained. The 
number of rows is not so critical because the axial reso-
lution is higher. However, the value about 11 was se-
lected in this application. It corresponds to the height 
about 3.3 mm. 
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