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Abstract 
The increasingly meagre copper ore resources constitute one of the 
decisive factors influencing the price of this commodity. The demand 
for copper has been showing an accelerating trend since the Covid 
pandemic broke out. It is thereby imperative to estimate the future 
price movement of this material. The article focuses on a daily 
prediction of the forthcoming change in prices of copper on the 
commodity market. The research data were gathered from day-to-day 
closing historical prices of copper from commodity stock COMEX 
converted to a time series. The price is expressed in US Dollars per 
pound. The data were processed using artificial intelligence, 
recurrent neural networks, including the Long Short Term Memory 
layer. Neural networks have a great potential to predict this type of 
time series.  The results show that the volatility in copper price during 
the monitored period was low or close to zero. We may thereby argue 
that neural networks foresee the first three months more accurately 
than the rest of the examined period. Neural structures anticipate 
copper prices from 4.5 to 4.6 USD to the end of the period in 
question. Low volatility that would last longer than one year would 
cut down speculators’ profits to a minimum (lower risk). On the other 
hand, this situation would bring about balance which the purchasing 
companies avidly seek for. However, the presented article is solely 
confined to a limited number of variables to work with, disregarding 
other decisive criteria. Although the very high performance of the 
experimental prediction model, there is always space for 
improvement – e.g. effectively combining traditional methods with 
advanced techniques of artificial intelligence. 
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Introduction 

 
The trade of copper has increasingly assumed substantial significance on the commodity market. The year 

2016 saw a rise in exporting copper ores, concentrates, copper stones, and cement copper by 1.5 %, achieving 
USD 47.3 bill, while the import reached USD 43.9 bill (Comtrade, U. N., 2016). The average rates of copper 
mining ranged from 0.5 % to 2 % of Cu in 2010, which, for economic reasons, hampers direct smelting. Sulfide 
ores thereby go through a froth flotation process to gain concentrates containing ≈ 30% Cu, converting concentrates 
to main products offered by copper mining companies (Glöser, Soulier & Tercero-Espinoza, 2013). The market 
with negotiable copper concentrates lacks tangible references, public official or regulated markets which would 
provide stockholders with a practical guide to set a reference official price of the concentrates – yet, this 
information exists for basic commodities included in the concentrate (Díaz-Borrego et al., 2021). Copper 
concentrates are jointly negotiated between tradesmen and mining companies all over the world, which currently 
presents the principal source of refined copper, and as of 2017, it represents 67% of global production. On the 
other hand, SX-EW constitutes 16%, and secondary copper processing amounts to 17% of the global production 
(International Copper Study Group, 2018). The prediction of prices of copper was a subject of various surveys.   

Díaz-Borrego, Miras-Rodríguez & Escobar-Pérez (2019) point out a serious gap in the research on the price 
for which mining companies sell copper concentrates to smelters. The situation on the market is even more 
complicated as smelters receive negotiable copper from a concentrate produced by mining companies that process 
extracted ore. It is thereby necessary to precisely analyse the purchasing price of the concentrates bought by 
smelters from mining companies, except for the copper price. The evaluation of copper concentrates is a 
fundamental task carried out by miners or traders who follow processes involving market prices of copper and 
other precious metals such as gold, silver and also price mark-downs or coefficients, which usually comprise the 
highest part of yields received from negotiating for concentrates, smelting or refining (Vochozka & Horák, 2019). 
The main deductions of the market value of the metal contained in concentrates involve charges for the processing 
of copper (TC), charges for refinement of copper (RC), proviso on the price participation (PP) and liability to fines 
for criminal elements. Brabenec et al. (2020) consider the volatility in prices of metals to be the most effective 
criterion to evaluate worthwhile mining projects. Good command of volatility in metal prices can thereby help 
managers and shareholders of mining projects make sensible decisions either to nurture or limit their mining 
ambitions. Unfortunately, conventional methods tend to unreliably estimate the rapid price volatility of metals, as 
they have recently been subject to dramatic changes (Machová, Krulický & Horák, 2020). Therefore, it is necessary 
to use artificial algorithms, which can precisely predict the prices of copper. Wang et al. (2019) agree that prices 
of copper on international markets are unsteady, and an accurate prediction may hold a useful clue as to negotiate 
commodities and generate profits in the copper industry. The prognosis of prices of metals is imperative in various 
economic aspects, contributing to financial models for monitoring incomes, which constitute an effective pay-roll 
scheme used by resource policy creators Liu et al. (2017).  

The article intends to determine the future development of the time series of copper prices until the end of 
2022 based on previous price behaviour. The research questions are as follows: 

RQ1: What is the price volatility of copper in the period from July 1959 to the end of April 2021? 
RQ2: What will be the price movement of copper from May 2021 to December 2022? 
RQ3: What will be the volatility of the price movement of copper from May 2021 to December 2022?  

 

Literature Review 
 
A rapidly growing mass of data and technological development brings about continuous changes in the 

financial market, so that modelling and predicting time series comprise crucial data analysis methods that allow 
wiser decision-making on investments and risk management (Ni, 2019). Predicting time series data is an essential 
issue in economics, entrepreneurship and financing (Šuleř, Rowland & Krulický, 2021). There are several 
techniques to effectively foresee the next time series delay, e.g. Univariate Autoregressive (AR), Univariate 
Moving Average (MA, Simple Exponential Smoothing (SES) and Autoregressive Integrated Moving Average 
(ARIMA), the last including a lot of variations (Siami-Namini, Tavakoli & Siami Namin, 2018). Liu et al. (2017) 
used a machine learning algorithm based on the decision tree of copper price to predict the future movement. Their 
method was able to correctly and reliably anticipate prices of copper on a short-term (days) and long-term (years) 
basis with the mean percentage error not exceeding 4%. The experiment also proved that the current method is 
robust, objective and free of human bias. The approach is thereby applicable for predicting prices of other metals 
and other commodities as well and is likely to be useful in a wide range of professional fields. Copper price often 
depends on the global economy, supply and demand, production costs, current exchange rate of the dollar and 
other factors, which even more underline their inclination to unsteadiness and fluctuation. On the other hand, 
enterprises producing and processing non-ferrous metals usually spend more than 60% of overall costs on raw 
materials (Sharma, Saxena & Vagrecha, 2015). For a lot of companies in the mineral industry, including without 
limitations metallurgy and metal processing, metal is an essential produced material and price movements of 
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metals have a severe impact on their earnings (Chen et al., 2016). Various economic, geopolitical and technological 
factors influence prices of commodities either positively or negatively. These inconsistent price and market trends 
are hard to predict and require an accurate prognosis based on stochastic approaches combined with traditional 
methods, e.g. time series and econometric techniques (Tapia Cortez et al., 2018).   

Astudillo et al. (2020) compared the potential of SVR – a regressive method of supporting vectors Support 
Vector Regression (SVR) with external repetitions of predicting the final price of copper on London Metal 
Exchange 5, 10, 15, 20 and 30 days in advance. The best model of individual prognosis interval used a grid 
searching method and balanced cross-validation. The experiments on actual data sets suggest that parameters (C, 
ε, y) of the support vector regression of the model are not different among various prediction intervals. A large 
number of previous values used for estimations are not contrasting even within the estimated interval. The results 
show that the regressive model of supporting vectors has a lower prediction error and is more robust. The findings 
also suggest that the presented model can accurately forecast the price volatility of copper because the root mean 
square error (RMSE) was the same or lower than 2.2% for the prediction period of 5 and 10 days.    

Alipour, Khodayar and Jafari (2019) evaluated various prediction methods within econometrics and financial 
management. They applied techniques such as ARIMA, TGARCH and stochastic differential equations in time 
series predicting monthly prices of copper. The effectiveness of these approaches was tested even in predicting the 
time series of monthly prices of copper from 1987 until the end of 2014. The results show that the average of about 
one thousand runs using Stochastic Differential Equations (SDE) within 33 cases provide better prediction 
outcomes of prices of copper than traditional linear or non-linear techniques (ARIMA or TGARCH) modelling 
the price movement. Carrasco et al. (2018) examined the potential of artificial neural networks (ANN) and ANN 
predicting chaotic time series of prices of copper – all based on different combination structures and familiarity 
with large analysed data sets. The experiment comprised two models of neural networks predicting copper price 
on London Metal Exchange (LME) using algorithm Feed Forward Neural Network (FFNN) and Cascade Forward 
Neural Network CFNN) combining training, transfer and performance functions in MatLab. The obtained findings 
proved that ANN is best used in the financial prognosis of prices of copper. Predicting prices of copper with the 
use of various masses of data input may be improved by a different number of neurons or changing the transfer or 
performance function. 

Kulkarni and Haidar (2009) focused on feed-forward neural networks presenting a model of a multi-layer 
feed-forward neural network for predicting the spot price of oil on a short-term basis – three days forward. Seeking 
the optimal ANN model, the authors had tested several methods of data pre-processing. Lasheeras et al. (2015) 
explored the performance of ARIMA and other two models of artificial neural structures (multi-layer perceptron 
and Elman) through published data on the spot prices of copper from the New York Commodity Exchange 
(COMEX). The acquired empirical results showed a better performance of both models compared to ARIMA. The 
experiment supports the findings of previous studies confirming the superiority of the analysed neural networks 
over ARIMA models in relative research areas. Adebiyi, Adewumi & Ayo (2014) underline the discovery by 
comparing the prediction performance of ARIMA and an artificial neural network model with the published data 
on shares from the New York Stock Exchange. The achieved empirical results also proved the dominance of the 
neural network model over ARIMA. In spite of all the suggested advantages of artificial neural structures, their 
performance within specific real-time series is not satisfactory. Improving the prediction, including without 
limitations time series prognoses, is a crucial yet difficult task to get to grips with.   

Khashei Bijari (2010) argues that theoretical and empirical findings suggested that the integration of different 
models can effectively enhance the prediction performance, especially if the data set models are clearly contrasting. 
These reasons gave grounds to a new hybrid model of artificial neural networks based on models of autoregressive 
integrated moving average (ARIMA) to achieve a more accurate prediction model. Empirical results of three well-
known real data sets show that the proposed model may increase the prediction accuracy, so far provided by 
artificial neural networks. The model is a useful alternative for making predictions, particularly if a correct forecast 
is required. Kriechbaumer et al. (2014) explored an upgraded combined approach wavelet-autoregressive 
integrated moving average (ARIMA), foreseeing monthly prices of aluminium, copper, lead and zinc. The 
prediction accuracy of ARIMA models dramatically increases by wavelet multi-resolution analysis (MRA) before 
adapting to ARIMA. The method involves the optimum combination of wavelet transformation, wavelet function 
and a number of decay levels used in MRA to improve the accuracy substantially. The results indicated that the 
proposed framework could increase the prognosis correctness one month in advance by 53 $ / t for aluminium 126 
$ / t for copper, 50 $ / t for lead and 51 $ / t for zinc compared to conventional ARIMA methods.      

Abraham et al. (2021) forecast by the harvesting area, income and production of soya beans using artificial 
neural networks (ANN) compared to traditional methods of analysing time series. The authors collected data about 
soya production in Brasil between 1961 and 2016. The results indicate that ANN is the best technique of predicting 
the harvesting areas and soya production, whereas a conventional linear function is more effective to anticipate 
soya yields. Moreover, ANN presents a reliable model of foreseeing the time series that can help with the 
prediction of the future global supply of soya. Kurumatami (2020) explored agricultural commodities regarding 
their future price. The author devised a method of forecasting time series for future prices of agricultural products, 
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laying down criteria for evaluating predicted time series in terms of statistical characteristics. The prices of 
agricultural commodities are highly seasonal, and conventional techniques such as autoregressive integrated 
moving average (ARIMA and Box Jenkins method) did not appear to be very useful for the prediction. Recurrent 
neural networks (RNN) with a new technology of machine learning (ML) can anticipate time series more precisely 
than their conventional counterparts. Two methods of generating future time series TATP (Time-alignment of time 
point forecast) and DFTS (Discrete-time Fourier series), originated. Both approaches use unique RNN, including 
LSTM (Long-short term memories), GRU (Gated recurrent unit) for making prognoses. They can also apply 
simple RNN. The research heavily focused on the accuracy, including error rate in RMS – Root Mean Square and 
MA – Moving Average and the performance of statistical characteristics involving a continuous probability 
distribution, such as Lévy distribution.     

Sezer, Gudelek & Ozbayoglu (2020) reviewed relevant studies, outlining the current state of DL (Deep 
Learning) for predicting financial time series. The studies comprised individual assets together with a preferred 
DL model dealing with the problem. The findings reveal that although financial prognoses have long been subject 
to thorough research, the demand among the DL community is growing thanks to the wide applicability of new 
DL models; there are thus many opportunities for further research. Vochozka (2017) explored the regressive 
analysis of the price movement of palladium on The New York Stock Exchange by comparing only two statistical 
instruments. The curve produced by the least square method using negative exponential smoothing showed the 
best characteristics out of all linear regressions; all preserved structures from neural networks were applicable in 
practice. When looking at the performance of the correlation coefficient, only neural networks which do not reflect 
any difference will remain.    

Comparative studies focusing on algorithms demonstrated that LSTM delivers the most accurate performance 
(low error rate) and characteristic statistical performance only if the structure had been systematically trained by a 
sufficient number of learning periods in the right direction. Simple RNN as a general method of linear modelling 
showed better performance in the error rate than GRU and LSTM with a smaller number of learning periods. 
However, a comprehensively trained LSTM demonstrated higher performance than simple linear methods SRNN 
(Simple recurrent neural network (Kurumatami, 2020). Kamdem, Essomba & Berinyuy (2020) argue that applied 
models of deep learning have recently captured the attention of investors and researchers, who used a deep learning 
model and LSTM for predicting commodity prices. The obtained results accurately foresee prices of commodities, 
including oil (price 98.2; commodity price variability 88.2). Ly, Traore & Dia (2021) applied recurrent neural 
networks to forecast time series using the RNN method to anticipate cotton and oil prices. Their experiment 
showed how to successfully combine new machine learning techniques (including without limitations LSTM) with 
traditional approaches.     

The results indicate that methods of machine learning efficiently process the data yet do not overcome 
traditional techniques such as ARIMA models as far as prognoses outside the sample are concerned. However, 
averaging the prognoses of two types of models provides better results as contrasted to both methods. Compared 
to ARIMA and LSTM, the root means square error (RMSE) of an average prediction of the cotton price lowered 
by 0.21 and 21.49%. On the other hand, RMSE does not show any improvement in the average forecast of oil 
prices. Siami-Namini, Tavakoli & Siami Namin (2018) also contrasted traditional ARIMA models with LSTM 
model networks and revealed that algorithms based on deep learning, such as LSTM, surmount conventional 
algorithms, such as ARIMA. To put it more precisely, the average error lowering obtained by LSTM was between 
84 and 87% as contrasted to ARIMA, which demonstrates LSTM predominance. Further findings suggested that 
the number of training times, known as ‘periods’, in the deep learning did not bear any influence on the 
performance of the training prediction model, thus exhibiting randomness only. Based upon this knowledge, 
LSTM is the best method for analysing and predicting the time series of prices of copper on the commodity market. 

 
Materials and Methods 

 

The data for the analysis are available from Macrotrends (2021). The data are available for each trading day 
from the 2nd July 1959 to 28th April 2021. The closing price of the day will be taken.  

The formulated research questions assume the examination of time series volatility, smoothing, and prediction 
of its future development and volatility. However, the question is whether it is appropriate to use the data of the 
whole time series or only its part, to obtain a relevant result. Neural networks which use the LSTM layer also have 
the forget gate; nevertheless, it is not sure whether, despite this function, the result of the neural network will not 
be distorted by the information from the beginning of the time series development (Vochozka, Vrbka & Šuleř, 
2020). To find the answer to RQ1, the entire time series in the period 1959-2021 will be used. In the case of RQ2, 
however, we will use an experiment where in one part of it, the whole period will be considered; in the second 
part, the procedure will be the same, only with a significantly shorter time series, specifically a two-year period 
(from 29th April 2019 to 28th April 2021). The basic characteristics of both time series are presented in Table 1.  
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Tab. 1.  Characteristics of time series of copper prices intended for predicting its future development 

Characteristics Copper price in the years 1959–2021 Copper price in the years 2019–2021 
Mean value 1.316703 2.81593 

Standard error of mean 0.008462 0.028215 
Median 0.8325 2.7 
Modus 1 2.4 

Standard deviation 1.052575 0.634052 
Variance 1.107914 0.402022 
Kurtosis 0.412255 0.429509 

Skewness 1.271432 0.987279 
Difference of max-min 4.6828 2.9 

Minimum 0.2672 2 
Maximum 4.95 4.9 

Sum 20372.03 1422.045 
Number 15472 505 

The biggest (1) 4.95 4.9 
The lowest (1) 0.2672 2 

Confidence level (95.0%) 0.016587 0.055433 

 
The response to RQ3 will be obtained based on the prediction of the best generated neural network.  
 

Time series volatility (RQ1). Through the examination of annual volatility, the time series is calculated as 
follows: 

�� � �√�,       (1) 
where 
��  is the annual volatility of copper,     
T   time (one year),  
σ  standard deviation.  
The resulting value will be graphically illustrated.  

 
Prediction of future development of copper price (RQ2). An artificial neural network (“NN) which will contain 
Long Short Term Memory (hereinafter also referred to as “LSTM“) The layer will be generated by means of an 
experiment. The experiment consists of the different settings of three NN parameters: 

1. The number of elements in the matrix based on the LSTM layer.  
2. Activation functions (in the form of Elementwise Layer), which will be used for the propagation of 

the signal between the individual NN layers. Specifically, the following activation functions will be 
used: hyperbolic tangent, inverse tangent, inverse hyperbolic tangent, sine, ramp (sometimes also 
referred to as ReLu – Rectified Linear Unit), and logistic function.  

3. Time series lag, i.e. a sequence of previous values based on which the future values are predicted. 
The considered lag will be determined to 10, 20, and 30 days.  

The structure of the NN will be the same in all cases (except for the changing parameters mentioned above).  
The diagram of the NN is shown in Figure 1. 

 

 
 

Fig. 1.  Structure of NN with LSTM layer 

 
The NN consists of 8 layers, where two of them – input and output layer – are not assigned a number. The 

remaining six layers are considered the hidden layers.   
1. The input layer of neurons: consists of a matrix containing information about the copper price. Figure 

1 indicates it is a matrix 20 x 1; in fact, two more matrices, 10 x 1 and 30 x 1 will be tested within 
the experiment. The value m in the matrix indicates how many consecutive variables are necessary 
for calculating the next variable.  

2. 1st hidden layer of neurons: it consists of the LSTM layer; the output is a matrix m x n, where m is 
time series lag, and n is a defined number of elements in matrix determined by the experiment, with 
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the values of 10-2000 (for simplification, the figure shows a matrix 20 x 100, i.e. the matrix at the 
input LSTM 20 x 1 will generate a matrix 20 x 100 at the output)). The step for n will be 1.  

3. 2nd hidden layer: it is Elementwise Layer (a simple network working with perceptron). The activation 
functions for individual generated NN will be randomly selected from the activation functions 
specified above.  

4. 3rd hidden layer: it is an Elementwise Layer with the same setting as in the case of the Elementwise 
Layer in the 2nd hidden layer. 

5. 4th hidden layer of neurons: determined as Plus; it sums the values (signal) it will receive from the 
2nd and the 3rd hidden layer and send it to the 5th hidden layer.  

6. 5th hidden layer of neurons: Elementwise Layer with the same setting as in the case of the 
Elementwise Layer in the 2nd hidden layer.  

7. 6th hidden layer of neurons: Linear Layer with a data matrix at the input (the figure presents the 
matrix 20 x 100). The output of the layer is a vector with one element.   

8. Output layer: predicted copper price. 
 

Long-Short Term Memory Layer. The first hidden neural network consists of LSTM. LSTM can be an 
individual NN; in this case, however, it represents one layer only. It is a sophisticated recurrent NN whose structure 
is made up of four basic blocks: input gate, output gate, forget gate, and memory gate. The new state of the cell 
(prediction) is defined as follows: 

 
�� � �� ∗ ��
� + 
� ∗ �� ,      (2) 

where   
ct  is a new state of the variable,  
ft  forget gate,  
ct-1   the initial state of the variable, 
it   input gate, 
mt   memory gate. 
 
Input gate is defined as follows:  

 


� � ������� +�����
� + ���,     (3) 
where   
σ   is Logistic Sigmoid, 
Wix  is an input weight in the input gate, matrix n x k, 
xt   is an input variable, matrix n x k,  
Wis  weight of the state in the input gate, matrix n x n, 
st-1  the initial state, 
bi  bias, vector size n. 
 
The state is defined as follows:  

 

�� � �� ∗ ���ℎ����,      (4) 
where   
st  is a state of the variable,  
ot  output gate, 
Tanh hyperbolic tangent.  
 
Output gate is defined as follows:  

 

�� � ������� +�����
� + ���,     (5) 
where  
Wax  defines the input weight in output gate, matrix n x k, 
Was  weight of the state in output gate, matrix n x n, 
bo  bias, vector size n. 
 
Compared to, for example, Gated Recurrent Layer, the advantage of LSTM lies in forget gate:  

 

�� � ��� ��� +� ���
� + � !,     (6) 
where  
Wfx  is an input weight in forget gate, matrix n x k, 
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Wfs  is the weight of the state in forget gate, matrix n x n, 
bf  bias, vector size n. 
 
The main processes of LSTM include memory gate:  

 

�� � ���ℎ��"��� +�"���
� + �"�,    (7) 
where  
Wmx defines the input weight in memory gate, matrix n x k, 
Wms weight of the state in memory gate, matrix n x n, 
bm  bias, vector size n. 
Algorithm ADAM – method of stochastic optimisation, adaptive moment estimation (Kingma and Ba, 2015) 

will be used to create three sets of neural networks for each dataset. Each set contains 1990 NN, out of which the 
one with the best characteristics will be selected. In this case, the characteristics will be determined based on the 
Pearson correlation coefficient, i.e. the relationship between the set of input variables and smoothed time series. 
Another parameter for determining the best NN is the economic interpretability of the results (NN must not suffer 
from overfitting).  

After selecting NN, a prediction of the future development is made for each trading day until 31st December 
2022 (inclusive).   

 
Volatility of future development (RQ3). The procedure for determining the volatility of the future developments 
in the copper price will be analogous to the one used to identify the volatility of historical development. However, 
for this purpose, it is used the predicted data, from May 2021 to December 2022, as determined in the previous 
research question. 

 

Results 

 

Volatility of historical development. Figure 2 is a graphical representation of the volatility of the entire time 
series development (1959-2021) on a yearly basis. The peak is in the year 2008 when the volatility was 0.833669, 
which is a very high value. The lowest level of annual volatility of the time series was recorded for the year 1963 
(see Table 2) when the volatility reached its minimum of 0.00321.  

 
 

 
 

Fig. 2.  The volatility of historical development of copper price time series 

 

Table 2 shows the development of volatility on an annual basis for the period of 1959-2021. The values 
presented in the table are the data used for graphical representation of the volatility development in Figure 2. 
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Tab. 2.  Development of copper price volatility in 1959-2021 

Year Volatility Year Volatility Year Volatility 
1959 0.017019 1980 0.194572 2002 0.029963 
1960 0.014613 1981 0.041435 2003 0.080282 
1961 0.012453 1982 0.046211 2004 0.307575 
1962 0.00819 1983 0.053883 2005 0.304431 
1963 0.00321 1984 0.040501 2006 0.558947 
1964 0.074264 1985 0.018181 2007 0.468099 
1965 0.059692 1986 0.028098 2008 0.833669 
1966 0.089968 1987 0.194178 2009 0.607714 
1967 0.062971 1988 0.237367 2010 0.491891 
1968 0.077824 1989 0.353545 2011 0.554238 
1969 0.068808 1990 0.239732 2012 0.290891 
1970 0.09643 1991 0.046577 2013 0.290342 
1971 0.033103 1992 0.057453 2014 0.391797 
1972 0.017924 1993 0.088123 2015 0.287288 
1973 0.137727 1994 0.27339 2016 0.298412 
1974 0.302861 1995 0.290499 2017 0.414061 
1975 0.026252 1996 0.205737 2018 0.482174 
1976 0.065925 1997 0.14022 2019 0.291045 
1977 0.05289 1998 0.043971 2020 0.474418 
1978 0.038651 1999 0.073807 2021 0.453877 
1979 0.081153 2000 0.039484   

  2001 0.068361   

 
Prediction future copper price development. Obviously, the best results in terms of the correlation coefficient 
are provided by the NN with the lag of 10 trading days (for more details, see the Annex).   

 
Time series from the year 1959. Table 3 shows the performance of five selected neural networks with a 10-day 
lag. The performance is very similar (high) for all types of networks; however, the best performance (0.9869) 
shows the network 5NN10. Table X contains the number of elements in the matrix for individual networks and 
activation functions 1, 2 and 3. There can be seen the combination of the activation functions ArcTan, Ramp, and 
Sin. 

 
Tab. 3.  Basic setting of network parameters and network performance 

Network Performance Number of Matrix 
Members 

1. Activation 
Function 

2. Activation 
Function 

3. Activation 
Function 

1NN10 0.986710 378 ArcTan Ramp Sin 
2NN10 0.986714 41 Ramp Sin ArcTan 
3NN10 0.986762 203 Ramp Ramp Sin 
4NN10 0.986798 230 ArcTan ArcTan Sin 
5NN10 0.986900 21 ArcTan Ramp Ramp 

 
The basic statistics of the actual time series and smoothed time series are presented in Table 4. The basic 

statistics show the minimum and maximum values, mean, standard deviation, and variance. Based on the results 
presented in Table 4, it can be concluded that the best performance was achieved by the network 5NN10L, i.e. the 
network which considered a 10-day lag.   

 
Tab. 4.  Statistics of actual and smoothed time series 

 Minimum Maximum Mean Standard Deviation Variance 
Copper Price in 

USD 
0.2672 4.9500 1.31670 1.05257 1.10791 

1NN10L 0.2700 4.8300 1.35099 1.07525 1.15616 
2NN10L 0.2700 4.6100 1.34421 1.03096 1.06287 
3NN10L 0.2600 4.5500 1.26244 1.02056 1.04154 
4NN10L 0.3100 4.6600 1.35394 1.03823 1.07792 
5NN10L 0.2900 4.7000 1.36838 1.06972 1.14431 

 

Figure 3 shows a graph where the development of copper prices in USD is marked red. Other curves represent 
time series smoothed using the five best neural networks with a 10-day lag. It is not clear from the graph which of 
the smoothed time series corresponds most with the development of the actual copper price; however, the 
evaluation above showed that the best network is 5NN10L. 
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Fig. 3.  Time series smoothing using all networks 

 
It follows from the previous results, which determined the best network for smoothing the time series, that 

the focus will be on the network 5NN10L, especially its residuals. The graph of the 10 residual development is 
shown in Figure 4. It can be stated that until 2004, the range of residuals was not that wide; it is thus possible to 
estimate at least approximately in which periods the smoothed time series 5NN10 is most capable of predicting 
the actual development of the time series. After 2004, the range of residuals is very wide, and it is not possible to 
identify precisely the development of the residuals in this period.  

 

 
 

Fig. 4.  5NN10 residuals 

 
The prediction of the future development for each trading day until 31st December 2022 using all five selected 

NN is shown in Figure 5. When focusing on the violet curve of the predicted development using the network 
5NN10, the best development prediction can be seen, i.e. the development predicted using the NN with the best 
performance. 
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Fig. 5.  Predictions of all networks 

 
The basic characteristics of the future development prediction for each trading day until 31st December 2022 

for individual networks can be seen in Table 5 below. The basic statistics include the values of the minimum, 
maximum, mean, standard deviation, and variance.  

 
Tab. 5.  Prediction statistics 

 Minimum Maximum Mean Standard Deviation Variance 
1NN10L 4.68 4.87 4.86637 0.01986260 0.000394522 
2NN10L 4.44 4.52 4.44293 0.01122230 0.000125940 
3NN10L 4.25 4.46 4.26018 0.03188280 0.001016510 
4NN10L 4.53 4.57 4.55989 0.00200798 4.032x10-6 
5NN10L 4.52 4.68 4.67147 0.02535150 0.000642698 

 
Here, it is also necessary to focus on the prediction made by 5NN10L as a network with the best performance. 

Figure 6 shows the actual development of the time series since 1959. The following violet curve represents the 
development predicted using 5NN10L until 31st December 2022. 

 

 
 

Fig. 6.  5NN10 prediction 

 
A more detailed development can be seen in Figure 7, which represents a more detailed prediction of the 

development between 30th March 2020 and 31st December 2022. 
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Fig. 7.  Development from 30th March 2020 to 31st December 2022 

 
Time series since 2019. The second experiment concerning the prediction of copper price development was carried 
out on a shortened time series (2019-2021). Table 6 shows the performance of the individual five most successful 
NN, where the best performance was achieved by the network 5NN10 (0.923595). Compared to the first 
experiment carried out on the entire time series from the year 1959, there is also a different number of elements in 
the matrix.  

 
Tab. 6.  Basic setting of network parameters and network performance 

Network Performance Number of Matrix 
Members 

1. Activation 
Function 

2. Activation 
Function 

3. Activation 
Function 

1NN10 0.916636 92 Tanh Ramp Ramp 
2NN10 0.918096 69 Ramp ArcTan Ramp 
3NN10 0.920842 130 Ramp Sin ArcTan 
4NN10 0.922938 87 Ramp Ramp Sin 
5NN10 0.923595 59 Ramp Tanh Sin 

 
Table 7 shows the statistics of the actual time series (Copper Price in USD) and subsequently the statistics of 

five best and smoothed time series 1 - 5NN10. On the basis of the results presented in the table, it can be concluded 
that 5NN10 is the best one. 

 
Tab. 2.  Statistics of actual and smoothed time series 

 Minimum Maximum Mean Standard Deviation Variance 
Copper Price in 

USD 
2.00 4.90 2.81593 0.634052 0.402022 

1NN10 2.09 4.69 2.84592 0.582771 0.339622 
2NN10 2.17 4.67 2.81176 0.542128 0.293903 
3NN10 2.08 4.83 2.84463 0.603254 0.363915 
4NN10 2.10 4.80 2.76202 0.605319 0.366411 
5NN10 2.09 4.55 2.84046 0.586891 0.344441 

 

Figure 8 shows the graph with the development of copper price in USD as a red curve and other curves 
representing the smoothed time series using the five best networks with a 10-day lag. It is not clear from the graph 
which smoothed time series best correlates with the actual development of copper price; nevertheless, based on 
the evaluation above, it can be concluded that the network 5NN10 is the best one. 
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Fig. 8.  Time series smoothing using all networks 

 
At this point, it is also suitable to analyse the residuals of the network 5NN10 to determine the degree of 

deviation of the predicted values from the actually measured ones. The range of 5NN10 residuals is shown in 
Figure 9 below. Due to shortening the time series, it is possible to see the range of residuals in the monitored period 
(the range can be clearly seen thanks to uncondensed values).  Based on Figure 9, it can be concluded that the 
residuals are not large. 

 

   
Fig. 9.  5NN10 residuals 

 
Prediction. Prediction of the future development for each trading day until 31st December 2022 using all five 
selected NN is presented in Figure 10. For the purposes of this paper, the most important appears to be the 
development predicted by 5NN10. 
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Fig. 10.  Predictions of all networks 

 
The basic statistics of future development prediction for each trading day from 1st May 2021 to 31st December 

2022 for individual networks are presented in Table 8. The basic statistics include the values of minimum and 
maximum, mean, standard deviation, and variance.   

 
Tab.  8. Prediction statistics 

 Minimum Maximum Mean Standard Deviation Variance 
1NN10 4.55 4.63 4.61967 0.00480132 0.0000230527 
2NN10 4.64 4.83 4.78725 0.01579270 0.0002494100 
3NN10 4.58 4.91 4.63993 0.03299950 0.0010889700 
4NN10 4.69 5.56 5.53385 0.12096800 0.0146333000 
5NN10 4.49 4.54 4.50022 0.00270268 7.30446x10-6 

 
The development of the actual values (represented by red curve) and the predicted development from 1st May 

2021 to 31st December 2022 using the network 5NN10 can be seen in Figure 11. 
 

 
 

Fig. 11.  5NN10 prediction 

 
Figure 12 shows a more detailed development of copper price in USD from 30th March 2020 to the end of the 

year 2022. The predictions are made for each day and are marked violet in the period from 1st May 2021 to 31st 
December 2022. Based on Figure 12, it can be concluded that the predicted development is, to a large extent, 
constant. 
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Fig. 12.  Development from 30th March 2020 to 31st December 2022 

 
Comparison. After carrying out the two experiments, where one basic dataset was the time series from 1959 to 
2021 and the second dataset was the time series from 2019 to 2021, it can be concluded that more precise results 
were obtained when the shorter time series (Experiment 2) was used as a basis for predicting the future 
development. In the case of the longer time series, less precise results can be expected, as there were many extreme 
values that decrease the overall quality of the prediction and thus significantly extending the critical range of 
values.  

 
Volatility of future development. The results of the predicted volatility between May 2021 and December 2022 
are represented in the form of a number in Table 9. The graphical representation of the volatility development is 
presented in Figure 13.   

 

 
 

Fig. 13.  The volatility of future development of copper prices from 2021 to 2022 

 
Tab. 9.  Predicted volatility 2021-2022 

Year Volatility 

2021 0.004248 

2022 0 
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Discussion 

 
RQ1: What is the price volatility of copper in the period from July 1959 to the end of April 2021? 
The response to this research question can be found in the first part of the presented results, where the 

development of the copper price volatility is graphically illustrated; the table shows the annual volatility values. 
The lowest volatility was recorded in the years 1960-1963, where the volatility value is close to zero. This is 
probably due to the commencing development of this market and the very beginnings of trading with this 
commodity, where there were no fluctuations in the price of this commodity. The volatility of copper prices 
achieves its highest value in the year 2008 (0.833669). It can be concluded that the volatility was probably most 
influenced by the financial crisis, which affected the financial markets primarily. Such a high value of annual 
volatility was caused by a sharp decrease in copper price due to economic recession. The movement of copper 
price is a good indicator of future economic development since copper is an important commodity both for the 
construction industry and the consumer goods sector. At the turn of September 2008, the copper price fell sharply 
due to the slowdown in the economic development, during which even the activity in the construction and 
consumer goods sectors was reduced, and thus the demand for copper decreased significantly. At the end of 
December 2008, it achieved its minimum of USD/1,3150 per one pound. In the following months, the copper price 
started to grow, which reflected the economic recovery in that period; the increase in copper price was primarily 
due to the recovery of demand from China. This is confirmed by Langumier (2009), who states that copper price 
in the last months of 2008 was constantly decreasing; compared to the average prices in 2008, the impact of the 
recession on the global copper demand and the confidence of investors caused a 50% increase in the price in the 
first three years of the current year. However, the prices decreased only slightly for more than three months. 
Despite the pessimistic economic outlook, starting in mid-February 2009, with the renewed pressure of Chinese 
demand for copper and dollar depreciation, the copper price started to grow again, reaching its maximum of USD 
5200 / t in early June (which means a huge 90% increase compared to the minimum recorded in December 2008).  

Dehghani & Bogdanovic (2018) also add that on the one hand, the crisis had disturbed the balance of supply 
and demand for this commodity, which lead to the surplus of supply and inventories. On the other hand, it caused 
a capital flight from the copper market. Copper price thus decreased from USD 8985/ t to ca. USD 3000/t between 
mid-2008 and early 2009. For this reason, many mines and smelters were temporarily closed, and many projects 
were cancelled or suspended. In the following period, the positive performance of China´s economy and economic 
incentives lead to the increase in copper price by 140 % (USD 7400/t). 

RQ2: What will be the price movement of copper from May 2021 to December 2022? 
The development of copper prices with a subsequent prediction from May 2021 to December 2022 was 

examined in the first phase (time series smoothing) by means of two experiments. The first experiment concerned 
the prediction of the development using the complete time series (1959-2021); the second experiment used a 
shortened time series (2019-2021). The results of both experiments indicate that the shorter time series is a more 
suitable basis for predicting the future development of copper price for the period of May 2021 – December 2022. 
The subsequent prediction of future values was thus based on the shortened time series 2019-2021. The results 
showed that the neural network 5NN10L with the LSTM layer and considered 10-day lag is the most suitable 
network for predicting the development of future copper price values. Previous research conducted by Wang et al. 
(2019), who used three widely used methods of ANN, BPNN, RBFNN, and ELM for predicting copper prices 
after the reconstruction of the original data, and examined the predictive power of the proposed methods PVN-
ANN using the published data on the spot prices of copper from the New York Commodity Exchange (COMEX), 
concluded that compared to the conventional methods of ANN, the proposed hybrid methods of PVN-ANN could 
provide quality prediction both in terms of the level and directional predictions. This result clearly demonstrates 
the efficiency of the proposed hybrid predictive methods in identifying the basic non-linear patterns of 
international copper price behaviour. The higher efficiency of hybrid methods is confirmed by Hu, Ni & Wen 
(2020), whose results show that predictions made by GARCH may serve as informative features to significantly 
increase the predictive power of the model of the neural network and that the integration of LSTM and ANN 
networks is an efficient approach to create useful structures of deep neural networks to improve the predictive 
power. García & Kristjanpoller (2019) proposed a set of adaptive and non-adaptive models consisting of 
parametric models of time series, other non-parametric models using in the field of soft computing, and hybrid 
combinations of these models, and examined the accuracy of these models when predicting monthly volatility of 
copper prices. The results show that predicting using adaptive methods is essential for achieving robust and 
improved performance. The Adaptive-GARCH – FIS specification showed the best predictive power. Even in this 
case, it is the improvement of the ability to predict using hybrid models, where the application of artificial 
intelligence was crucial to achieving outstanding results. First, it improved predictions made by other models, 
which lead to the increase in the predictive power by 20 %, and up to 40 % in the case of the Adaptive Fuzzy 
Inference Systems models, thus outperforming other commonly used models; on the other hand, it created an 
additional tool to solve complex problems, such as using Terasvirtian test to detect non-linear relationships and 
GA for solving big problems. 
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The resulting predicted development of daily copper prices in our research can be described as largely 
constant. The correctness of this result can be disputed since the historical development of copper prices indicate 
that there has been no such a constant development of prices over a period longer than one year. The prediction 
can thus be considered inconclusive. It is worth considering a more detailed analysis of the prediction model 
configuration or adding another component, thus creating a hybrid model. As for the possibility to predict the 
future development of copper prices, it is not possible to start from the development of copper price during the 
economic crisis, which started in 2008, because the demand for copper decreased in this period. However, the 
Covid crisis in the year 2020 has a different character. Copper, specifically copper oxide, is used as a virus and 
bacteria deactivator; compared to silver, it is more easily accessible and less expensive to use. The demand for 
copper thus increase in the Covid crisis, and so does its price. Therefore, it is not possible to base our predictions 
on the historical development during the 2008 economic crisis.      

Based on the predictions made using neural networks, it can be expected that copper price will range between 
USD 4.5 and 4.6 until the end of the year; it will thus be relatively constant, which enables to plan both the 
extraction of this metal and production.  

RQ3: What will be the volatility of the price movement of copper from May 2021 to December 2022? 
The results show that the annual volatility of copper prices between May 2021 and December 2022 will equal 

0.004248 in 2021; in 2022, it will be 0. Here, a fuzzy approach can be used. Low or even zero values of volatility 
were recorded mainly at the beginning of the time series (the years 1960-3). In the case of predicting the 
development of volatility for the years 2021 and 2022, however, the prediction of copper price development is 
based on the shorter time series. As mentioned in the previous chapters, the prediction for the year 2022 appears 
to be constant. The predicted volatility will thus logically be zero, as there is no movement in the prices. 
 

Conclusion 

 
The article aimed at translating the past price movement of copper to the potential future trend of the time 

series until the end of 2022. The experiment involved prediction models built on artificial neural networks – NN 
with LSTM layer with a ten-day delay. The objective was fulfilled by exploring short historical time series (2019-
2021). We reliably predicted the price movement of copper and successfully found the answer to the second 
research question. The first and third research question dealt with the time series trend and its prediction. Upon 
detailed scrutiny of the price volatility from 1959 to 2021, we predicted the trend to the end of 2022, concluding 
that the future annual volatility value will equal zero in 2022. Yet, the forecast is not very reliable regarding the 
historical trend of the price volatility of this time series.          

Rather than that, the research results can be useful to competitors, e.g. brokers, on the commodity market or 
professionals focusing on the trade with the goods. The obtained findings may navigate the dealers through the 
treacherous market conditions; experts, on the other hand, can learn from the analysis to effectively monitor key 
factors such as supplies of copper in copper mines, the trend of the economic crisis brought about by the 
coronavirus pandemic in Europe, Asia and South America. These continents abound with the biggest mines with 
copper ore. The business experts will also be able to promptly respond to the potential demand from China. Donga, 
Tukkera & Van der Voeta (2019) argue that the most populated Asian country has a tremendous impact on the 
price of copper thanks to the rapid economic development in the last decades, including high production capacity 
and heavy consumption of copper. The country became the world’s largest consumer of copper in 2002. China’s 
share of the global demand for copper increased from 20% in 2006 to 46% in 2016, including the incremental 
year-to-year growth. The predicted values of the monitored price volatility of copper obtained from the research 
refer only to low or zero price volatility of copper on the market. Predictions that do not indicate big movement in 
the month of May and June 2021 achieved the same results, showing only constant zero volatility. Overall, we 
may conclude that the price of copper will be gently swinging between 4.5 and 4.6 USD. A relatively stable price 
allows careful advance planning of copper mining and a follow-up trade with this commodity.             

The above-mentioned findings confirm that the devised methodology is broadly applicable for predicting 
prices of copper, yet the predicted period must not exceed several months. The technique has so far been used only 
to forecast prices of copper and the price volatility of copper. However, the proposed model may also be useful 
for predictions in different spheres such as controlling, economics, production etc. The article is limited to an 
attempt to make a medium-term forecast, rather than getting stuck only in short-term prognoses, as it is in the event 
of Astudilla et al. (2020), and disregards other variables that influence the price movement of copper. The research 
may thereby continue by combining hybrid prediction models with artificial intelligence units of comparing 
various types of extended prediction models. 
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Appendix: NN with the best results 

 
Time series from the year 1959 

 
Time series lag by 10 trading days 

Network Performance 
Number of Matrix 

Members 
1. Activation 

Function 
2. Activation 

Function 
3. Activation 

Function 
1NN10 0.986710 378 ArcTan Ramp Sin 
2NN10 0.986714 41 Ramp Sin ArcTan 
3NN10 0.986762 203 Ramp Ramp Sin 
4NN10 0.986798 230 ArcTanh ArcTan Sin 
5NN10 0.986900 21 ArcTan Ramp Ramp 

 
Time series lag by 20 trading days 

Network Performance 
Number of Matrix 

Members 
1. Activation 

Function 
2. Activation 

Function 
3. Activation 

Function 
1NN20 0.986596 110 Ramp LogisticSigmoid Sin 
2NN20 0.986600 146 Ramp ArcTan Sin 
3NN20 0.986618 129 Ramp LogisticSigmoid Tanh 
4NN20 0.986636 59 ArcTan Ramp Sin 
5NN20 0.986777 94 Ramp ArcTanh Tanh 

 
Time series lag by 30 trading days 

Network Performance 
Number of Matrix 

Members 
1. Activation 

Function 
2. Activation 

Function 
3. Activation 

Function 
1NN30 0.986761 356 ArcTan Ramp Sin 
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2NN30 0.986763 58 Ramp ArcTan Tanh 
3NN30 0.986834 126 Ramp Sin Sin 
4NN30 0.986868 98 Ramp Ramp Sin 
5NN30 0.986914 138 Ramp ArcTan Tanh 

 
 

Time series from the year 2019 

 

Time series lag by 10 trading days 

Network Performance 
Number of Matrix 

Members 
1. Activation 

Function 
2. Activation 

Function 
3. Activation 

Function 
1NN10 0.916636 92 Tanh Ramp Ramp 
2NN10 0.918096 69 Ramp ArcTan Ramp 
3NN10 0.920842 130 Ramp Sin ArcTan 
4NN10 0.922938 87 Ramp Ramp Sin 
5NN10 0.923595 59 Ramp Tanh Sin 

 
Time series lag by 20 trading days 

Network Performance 
Number of Matrix 

Members 
1. Activation 

Function 
2. Activation 

Function 
3. Activation 

Function 
1NN20 0.914598 152 ArcTan ArcTan Ramp 
2NN20 0.915252 46 Ramp Tanh Tanh 
3NN20 0.917557 94 Ramp Tanh Tanh 
4NN20 0.917965 71 Ramp ArcTan ArcTan 
5NN20 0.921466 106 Ramp Sin Ramp 

 
Time series lag by 30 trading days 

Network Performance 
Number of Matrix 

Members 
1. Activation 

Function 
2. Activation 

Function 
3. Activation 

Function 
1NN30 0.910429 144 Tanh Sin Ramp 
2NN30 0.911271 112 Tanh ArcTan Ramp 
3NN30 0.915636 98 Ramp ArcTan Ramp 
4NN30 0.916220 114 Sin Sin Ramp 
5NN30 0.921063 68 ArcTan Ramp Ramp 

 
 


