
VYSOKÉ UÈENÍ TECHNICKÉ V BRNÌ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAÈNÍCH
TECHNOLOGIÍ
ÚSTAV MIKROELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF MICROELECTRONICS

DESIGN OF DIGITAL IP BLOCK FOR DISCRETE
COSINE TRANSFORM

NÁVRH DIGITÁLNÍHO IP BLOKU PRO DISKRÉTNÍ KOSINOVU TRANSFORMACI

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. FILIP VEŠKRNA
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. LUKÁŠ FUJCIK, Ph.D.
SUPERVISOR

BRNO 2015

VYSOKÉ UÈENÍ
TECHNICKÉ V BRNÌ

Fakulta elektrotechniky
a komunikaèních technologií

Ústav mikroelektroniky

Diplomová práce
magisterský navazující studijní obor

Mikroelektronika

Student: Bc. Filip Veškrna ID: 134434
Roèník: 2 Akademický rok: 2014/2015

NÁZEV TÉMATU:

Návrh digitálního IP bloku pro diskrétní kosinovu transformaci

POKYNY PRO VYPRACOVÁNÍ:

Navrhnìte na úrovni RTL v jazyce Verilog2001 digitální blok 2D diskrétní kosinovy transformace (DCT
II) 8x8 pro HW akceleraci MJPEG komprese video dat z digitální IP kamery s rozlišením 640x480 a
snímkovací frekvencí 30 fps. V teoretické èásti semestrální práce rozeberte problematiku algoritmu DCT
II, princip využití této transformace v JPEG/MJPEG kompresi a výpoèetnì efektivní algoritmy
implementace.
Pro vybranou implementaci DCT algoritmu vytvoøte model v jazyku C a ovìøte jeho správnost proti
referenènímu modelu programu Matlab/Octave. Správnou funkcionalitu navrženého DCT II 2D bloku na
úrovni RTL ovìøte simulací. V simulaci použijte porovnání s výsledky døíve vytvoøeného C modelu
stejného DCT bloku. Syntézou napø. do technologie TSMC 65nm ovìøte celkovou velikost, maximální
rychlost a spotøebu bloku. Výsledky ze syntézy (velikost, spotøeba) mohou být porovnány s nabízeným
øešením z knihovny DesignWare (Synopsys).

DOPORUÈENÁ LITERATURA:

Podle pokynù vedoucího práce

Termín zadání: 10.2.2015 Termín odevzdání: 28.5.2015

Vedoucí práce: doc. Ing. Lukáš Fujcik, Ph.D.
Konzultanti diplomové práce:

prof. Ing. Vladislav Musil, CSc.
Pøedseda oborové rady

UPOZORNÌNÍ:

Autor diplomové práce nesmí pøi vytváøení diplomové práce porušit autorská práva tøetích osob, zejména nesmí
zasahovat nedovoleným zpùsobem do cizích autorských práv osobnostních a musí si být plnì vìdom následkù
porušení ustanovení § 11 a následujících autorského zákona è. 121/2000 Sb., vèetnì možných trestnìprávních
dùsledkù vyplývajících z ustanovení èásti druhé, hlavy VI. díl 4 Trestního zákoníku è.40/2009 Sb.

ABSTRACT
This diploma thesis deals with design of IP block for discrete cosine transform. The-
oretical part summarizes algorithms for computation of discrete cosine transform and
their hardware usability is discussed. Chosen algorithm for hardware implementation is
modeled in C language. Algorithm is described at RTL level, verified and synthesized to
TSMC 65 nm technology. Hardware implementation is then evaluated with respect of
throughput, area, speed and power consumption.

KEYWORDS
DCT VLSI C model IP-block Verilog-2001

ABSTRAKT
Tato diplomová práce se zabývá návrhem IP bloku pro diskrétní kosinovou transformaci.
V teoretické části jsou shrnuty algoritmy pro výpočet diskrétní kosinové transformace
a diskutována jejich použitelnost v hardwaru. Zvolený algoritmus pro hardwarovou im-
plementaci je modelován v jazyce C. Poté je popsán na RTL úrovni, verifikován a je
provedena syntéza v technologii TSMC 65 nm. Hardwarová implementace je poté zhod-
nocena s ohledem na datovou propustnost, plochu, rychlost and spotřebu.

KLÍČOVÁ SLOVA
DCT VLSI C model IP-block Verilog-2001

VEŠKRNA, Filip Design of digital IP block for discrete cosine transform: master’s thesis.
Brno: Brno University of Technology, Faculty of Electrical Engineering and Communi-
cation, Department of Microelectronics, 2014. 71 p. Supervised by doc. Ing. Lukáš
Fujcik, PhD.

DECLARATION

I declare that I have written my master’s thesis on the theme of “Design of digital IP
block for discrete cosine transform” independently, under the guidance of the master’s
thesis supervisor and using the technical literature and other sources of information which
are all quoted in the thesis and detailed in the list of literature at the end of the thesis.

As the author of the master’s thesis I furthermore declare that, as regards the creation
of this master’s thesis, I have not infringed any copyright. In particular, I have not
unlawfully encroached on anyone’s personal and/or ownership rights and I am fully aware
of the consequences in the case of breaking Regulation S 11 and the following of the
Copyright Act No 121/2000 Sb., and of the rights related to intellectual property right
and changes in some Acts (Intellectual Property Act) and formulated in later regulations,
inclusive of the possible consequences resulting from the provisions of Criminal Act
No 40/2009 Sb., Section 2, Head VI, Part 4.

Brno .
(author’s signature)

ACKNOWLEDGEMENT

I would like to thank to Mr. doc. Ing. Lukáš Fujcik, PhD. and Mr. Ing. Milan Tůma for
professional guidance, consultation and suggestive ideas to work. Also I would like to
thank to Prague site S3 company crew for their willingness and providing software and
hardware resources.

Brno .
(author’s signature)

CONTENTS

Introduction 12

1 Theoretical part 13
1.1 Fourier transform . 13

1.1.1 Definition of Fourier transform 13
1.2 Discrete cosine transform . 14

1.2.1 Definition of discrete cosine transform 14
1.2.2 DCT-II . 16
1.2.3 Two dimensional DCT-II . 17

1.3 Applications of DCT . 19
1.3.1 JPEG . 19
1.3.2 M-JPEG . 20

1.4 Overview of DCT computation methods 21
1.4.1 DCT via DFT . 21
1.4.2 Using sparse factorization scheme 22
1.4.3 Decimation-in-Time (DIT) and Decimation-in-Frequency (DIF) 22
1.4.4 DCT via other discrete transforms 22
1.4.5 DCT via Prime Factor Algorithm 23
1.4.6 DCT via recursive computation 23
1.4.7 DCT realization via planar rotations 23

1.5 Algorithms for DCT . 23
1.5.1 Loeffler’s DCT algorithm . 23
1.5.2 Multiplierless approx. of DCT with lifting scheme 27

1.6 Algorithms for 2-D DCT . 29
1.6.1 2-D DCT with row-column transposition 30
1.6.2 2-D DCT using lexicographical reordering 31
1.6.3 Other methods for 2-D DCT 31

1.7 Human visual perception . 31
1.7.1 Color models . 32
1.7.2 Chroma subsampling . 33

1.8 Number representation . 34
1.8.1 Q number format . 34

2 Practical part 36
2.0.1 Hardware prerequisites . 36
2.0.2 DCT algorithm choice . 36
2.0.3 Design methodology . 37

2.1 Hardware modeling . 38
2.1.1 Precision modeling . 39
2.1.2 One-dimensional bin DCT modeling 39
2.1.3 Two-dimensional bin DCT modeling 40
2.1.4 Reference data comparison . 40

2.2 RTL . 45
2.2.1 One-dimensional DCT block 45
2.2.2 Two-dimensional DCT block 49

2.3 Verification . 55
2.3.1 Verification methodology . 55
2.3.2 Code coverage . 55

2.4 Physical implementation . 56
2.4.1 Synthesis workflow . 56
2.4.2 Synthesis results . 57

Conclusion 60

Bibliography 62

List of symbols, physical constants and abbreviations 67

List of used software 69

List of appendices 70

A Contents of the attached CD 71

LIST OF FIGURES
1.1 Mean-square error performance of various transforms for scalar Wiener

filtering; 𝜌 = 0.9 [3] . 15
1.2 8-samples signal . 16
1.3 8-point one-dimensional discrete transforms 17
1.4 Frequency representation of 8 × 8 DCT coefficients [7] 18
1.5 DCT-based encoder processing steps [8] 19
1.6 DCT-based decoder processing steps [8] 20
1.7 N-point DCT via 2N-point DFT [1] 21
1.8 8-point DCT algorithm with 11 multiplications. Symbols are de-

scribed in figure 1.9 [4] . 24
1.9 Symbols used to display an algorithm structure [4] 25
1.10 Inversion of stages 2 and 3 of the even part [4] 25
1.11 Variations of stage 1 of the algorithm [4] 25
1.12 Variations of stages 2, 3 and 4 of the odd part [4] 26
1.13 Variations of stage 2, 3 and 4 by inverting add/subtract modules [4] . 27
1.14 8-point BinDCT algorithm version A [24] 27
1.15 8-point BinDCT algorithm version B [24] 28
1.16 8-point BinDCT algorithm version C [24] 29
1.17 8-point Inverse BinDCT algorithm version A [24] 29
1.18 8-point Inverse BinDCT algorithm version B [24] 30
1.19 8-point Inverse BinDCT algorithm version C [24] 30
1.20 Block diagram of the row-column approach for 2D DCT [1] 31
1.21 Rods and cones density on human retina [29] 32
1.22 Additive color mixing . 33
1.23 Chroma subsampling schemes . 34
2.1 Design process diagram [33] . 38
2.2 One dimensional binDCT model flowchart 39
2.3 Two dimensional binDCT model flowchart 40
2.4 Rounding half to even function . 41
2.5 Comparing model with reference MATLAB definition 42
2.6 Test image generated by various DCT algorithms 43
2.7 Error representation of various DCT algorithms 44
2.8 Arithmetical operation within 1-D binDCT block 45
2.9 Defining bit width of internal signals methodology 46
2.10 Defining bit width of internal signals of 1-D DCT block 47
2.11 Block diagram of 1-D binDCT RTL design 48
2.12 Interface 1-D binDCT RTL design . 48

2.13 Interface of 2-D binDCT RTL design 49
2.14 Data order of input and output samples row/column vector 49
2.15 Data order of input and output samples in 8 × 8 block 50
2.16 Schematic of 2-D binDCT block . 50
2.17 Block diagram of 8 × 8 transpose buffer 51
2.18 FSM diagram . 52
2.19 Testbench methodology and flow . 55
2.20 Code coverage report . 56
2.21 Synthesis workflow . 57

LIST OF TABLES
1.1 Comparison of operations effort for different 8-point DCT [4] 24
1.2 Number of operations needed for different 8-point binDCT [24] 28
2.1 Hardware requirements for various resolutions 37
2.2 Comparision of 8-point binDCT algorithms [24] 37
2.3 Comparision of C/C++ and SystemC modeling methodology 39
2.4 Comparision of DCT algorithms’ PSNR 45
2.5 1-D binDCT design hierarchy summary (Cadence HAL) 47
2.6 Operation modes of Transpose buffer 52
2.7 Outputs of FSM depending on the state (part 1 of 2) 53
2.8 Outputs of FSM depending on the state (part 2 of 2) 54
2.9 Power estimation for frequency 4 𝑀𝐻𝑧 and register configuration

000001 . 57
2.10 Area report for frequency 4 𝑀𝐻𝑧 and register configuration 000001 . 58
2.11 Power estimation for frequency 300 𝑀𝐻𝑧 and register configuration

111111 . 58
2.12 Area report for frequency 300 𝑀𝐻𝑧 and register configuration 111111 59
2.13 Summary of synthesis with different configuration and performance

comparison . 59
A.1 List of folders and their content description 71

INTRODUCTION
Constantly growing need to transfer more and more information in today’s commu-
nication requires efficient encoding of the communication channel while preserving
the speed requirements and power efficiency at receiver/decoder side. One of meth-
ods for reducing data amount is discrete cosine transform (DCT) which is related to
widely used fourier transform. Since DCT has been derived in 1974 by N. Ahmed,
T. Natarajan and K. R. Rao, DCT and similar transforms are used in numerous
applications in engineering and science. It is common compression method for au-
dio formats such MP3, AAC, etc. and both still and moving pictures formats such
JPEG, MPEG or H.26x.

This diploma thesis is focused on design of IP block for calculation of DCT. It
is divided to two parts: theoretical and practical.

Theoretical part is focused on definition of DCT and its properties, explanation
of DCT techniques and describes why DCT is better for compression than other dis-
crete transforms. Its usage in JPEG and MJPEG compression formats is covered by
this chapter. Different types of DCT are described. Furthermore there are described
some algorithms for both 1-D and 2-D DCT and their hardware requirements are
discussed.

Practical part maps design process of IP block in Verilog 2001 language. After
some hardware prerequisites are discussed, design methodology is described. Com-
plete workflow of design starts with model in language C description and its veri-
fication against reference. Detailed RTL design using Verilog 2001 language based
on C model is then depicted. Thereafter verification methodology of created RTL
is discussed and then synthesis is done in TSMC 65 nm technology.

12

1 THEORETICAL PART
Theoretical part is in the first place focused on Discrete Cosine Transform (DCT)
definition and summary of methods for computation DCT. Then usage of DCT
in JPEG and MJPEG compression is summarized. Thereafter some perspective
algorithms and their requirements are described followed by summary of human
visual perception. At the final of this chapter Q number representation is described.

1.1 Fourier transform
For the beginning, it is useful to define and briefly describe Fourier transform. It is
used to express a time domain function to frequency domain.

1.1.1 Definition of Fourier transform

Fourier transform is defined in equation 1.1, where 𝑗 =
√

−1, 𝜔 = 2𝜋𝑓 is radian
frequency and 𝑓 is the frequency in Hertz. [1]

𝑋(𝜔) ≡ 𝐹 [𝑥(𝑡)] =
⎛⎝ 1

2𝜋

⎞⎠1/2 ∞∫︁
−∞

𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 (1.1)

Reversely, function 𝑥(𝑡) could be obtained by the inverse Fourier transform as de-
scribed in equation 1.2. [1]

𝑥(𝑡) ≡ 𝐹 −1[𝑋(𝜔)] =
⎛⎝ 1

2𝜋

⎞⎠1/2 ∞∫︁
−∞

𝑋(𝜔)𝑒−𝑗𝜔𝑡𝑑𝑡 (1.2)

Functions in Equations 1.1 and 1.2 describe forward and inverse Fourier trans-
form. If 𝑥(𝑡) is defined only for 𝑡 > 0 a function 𝑦(𝑡) can be constructed as given
by:

𝑦(𝑡) = 𝑥(𝑡) 𝑡 ≥ 0,

𝑥(−𝑡) 𝑡 ≤ 0.

Then

𝐹 [𝑦(𝑡)] =
⎛⎝ 1

2𝜋

⎞⎠1/2⎧⎨⎩
∞∫︁

0

𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 +
0∫︁

−∞

𝑥(−𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

⎫⎬⎭
=
⎛⎝ 1

2𝜋

⎞⎠1/2 ∞∫︁
0

𝑥(𝑡)[𝑒−𝑗𝜔𝑡 + 𝑒𝑗𝜔𝑡]𝑑𝑡

=
⎛⎝ 1

2𝜋

⎞⎠1/2 ∞∫︁
0

𝑥(𝑡) cos(𝜔𝑡)𝑑𝑡 (1.3)

13

Given by equation 1.3, Fourier cosine transform (FCT) can be defined as shown in
Equation 1.4.

𝑋𝑐(𝜔) ≡ 𝐹𝑐[𝑥(𝑡)] =
⎛⎝ 1

2𝜋

⎞⎠1/2 ∞∫︁
0

𝑥(𝑡) cos(𝜔𝑡)𝑑𝑡 (1.4)

Fourier inversion as defined in equation 1.3 now can be applied to equation 1.4,
because 𝑋𝑐(𝜔) is an even function of 𝜔. [1] Resulting equation is shown in 1.5.

𝑦(𝑡) = 𝑥(𝑡) ≡ 𝐹𝑐
−1[𝑋𝑐(𝜔)] =

⎛⎝ 2
𝜋

⎞⎠1/2 ∞∫︁
0

𝑋𝑐(𝜔) cos(𝜔𝑡)𝑑𝜔 (𝑡 ≥ 0) (1.5)

1.2 Discrete cosine transform
In previous section Fourier cosine transform was defined. In this section DCT will
be presented and described. The DCT introduces no loss to the source image. It
transforms image to a frequency domain where coefficients can be encoded more
effectively.

1.2.1 Definition of discrete cosine transform

There are four types of discrete cosine transform as classified by [2]. Each one is
defined by following equation:

DCT-I

[𝐶𝐼
𝑁+1]𝑚𝑛 =

⎛⎝ 2
𝑁

⎞⎠1/2⎡⎣𝑘𝑚𝑘𝑛 cos
⎛⎝𝑚𝑛𝜋

𝑁

⎞⎠⎤⎦ (1.6)

DCT-II

[𝐶𝐼𝐼
𝑁]𝑚𝑛 =

⎛⎝ 2
𝑁

⎞⎠1/2⎡⎣𝑘𝑚 cos
⎛⎝𝑚(𝑛 + 1

2)𝜋
𝑁

⎞⎠⎤⎦ (1.7)

DCT-III

[𝐶𝐼𝐼𝐼
𝑁]𝑚𝑛 =

⎛⎝ 2
𝑁

⎞⎠1/2⎡⎣𝑘𝑛 cos
⎛⎝(𝑚 + 1

2)𝑛𝜋

𝑁

⎞⎠⎤⎦ (1.8)

DCT-IV

[𝐶𝐼𝑉
𝑁]𝑚𝑛 =

⎛⎝ 2
𝑁

⎞⎠1/2⎡⎣𝑘𝑛 cos
⎧⎨⎩(𝑚 + 1

2)(𝑛 + 1
2)𝜋

𝑁

⎫⎬⎭
⎤⎦ (1.9)

14

As shown in Figure 1.1 discrete cosine transform has almost equal mean-square
error as Karhunen-Loeve transform (KLT). KLT provides a benchmark against other
discrete transforms may be judged. It is ideal (in the decorrelation sense) but
impractical tool. It can be also used for solving partial differential equations using
spectral methods. [1] DCT has some advantages over Fourier transform:

• it has only real results (no complex)
• it has strong energy compaction property – most of the information of the

signal is concentrated in a few low-frequency components

0 2 4 8 16 32 64
0.2

0.3

0.4

0.5

Quality factor (Q)

M
ea

n−
sq

ua
re

 e
rr

or
 (

e Q
)

Discrete cosine
Discrete Fourier
Haar
Karhunen−Loeve
Walsh−Hadamard

Fig. 1.1: Mean-square error performance of various transforms for scalar Wiener
filtering; 𝜌 = 0.9 [3]

DCT-II is one of the best tools in digital signal processing due to following
properties [1]:

• it has best variance distribution compared to other non-KLT transforms
• it has only real coefficients

Generally, DCT-II is called DCT. From this point expression ’DCT’ refers to DCT-II
variation.

15

1.2.2 DCT-II

Equation 1.10 defines the N-point DCT-II as follows: An input data sequence
{𝑥𝑛, 𝑛 = 0, 1, 2, . . . , 𝑁 −1} is transformed into the N-point output sequence {𝑦𝑛, 𝑛 =
0, 1, 2, . . . , 𝑁 − 1} [4].

𝑦(𝑘) = 𝐶 · 𝑎𝑘 ·
𝑁−1∑︁
𝑛=0

𝑥(𝑛) · cos
⎛⎝2𝜋 · (2𝑛 + 1) · 𝑘

4𝑁

⎞⎠ (1.10)

where

𝑎𝑜 = cos
⎛⎝𝜋

4

⎞⎠
𝑎𝑘 = 1, . . . 𝑁 − 1

According to MATLAB specification (which implementation is used as reference),
one dimensional DCT is described in Equation 1.11. [5]

𝑦(𝑘) = 𝑤(𝑘)
𝑁∑︁

𝑛=1
𝑥(𝑛) cos

(︃
𝜋

2𝑁
(2𝑛 − 1)(𝑘 − 1)

)︃
, 𝑘 = 1, 2, . . . , 𝑁, (1.11)

where

𝑤(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
𝑁

, 𝑘 = 1,√︃
2
𝑁

, 2 ≤ 𝑘 ≤ 𝑁,

Note that DCT values are scaled by this definition, whereas values at the output of
binDCT algorithm aren’t scaled. This has to be taken into account when evaluating
results of model against MATLAB specification. Figure 1.2 shows 8 samples of input

0 1 2 3 4 5 6 7

−100

−50

0

50

100

samples

va
lu

es

Fig. 1.2: 8-samples signal

signal. Spectra are shown in Figure 1.3a and 1.3b. Input have 8-bit resolution with
2nd complement (values −128 to 127) as well as output DCT and DFT coefficients.

16

0 1 2 3 4 5 6 7

�100

�50

0

50

100

DCT coe�cients

va
lu

es

(a) DCT of input signal

0 1 2 3 4 5 6 7

�100

�50

0

50

100

DFT coe�cients

va
lu

es

(b) DFT of input signal

Fig. 1.3: 8-point one-dimensional discrete transforms

Note there is visible important property of DCT when compared with DFT – its
coefficients are much more concentrated near DC component1

1.2.3 Two dimensional DCT-II

We suppose that [𝑔] is an (𝑀 × 𝑁) matrix representing input data that are two-
dimensional and [𝐺] are two-dimensional DCT-II coefficients. This is described in
Equation 1.12. [1]

𝐺𝑢𝑣 = 2𝑐(𝑢)𝑐(𝑣)√
𝑀𝑁

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑔𝑚𝑛 cos
⎡⎣(2𝑚 + 1)𝑢𝜋

2𝑀

⎤⎦ cos
⎡⎣(2𝑛 + 1)𝑢𝜋

2𝑁

⎤⎦ (1.12)

where 𝑢 = 0, . . . , 𝑀 − 1, 𝑣 = 0, . . . , 𝑁 − 1, and
if 𝑘 = 0

𝑐(𝑘) = 1√
2

otherwise
𝑐(𝑘) = 1

Two-dimensional DCT of M-by-N matrix according to MATLAB is defined as
described in Equation 1.13 [6]

𝐵𝑝𝑞 = 𝑎𝑝𝑎𝑞

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝐴𝑚𝑛 cos 𝜋(2𝑚 + 1)𝑝
2𝑀

cos 𝜋(2𝑛 + 1)𝑞
2𝑁

(1.13)

where

𝑎𝑝 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
𝑀

, 𝑝 = 0,√︃
2

𝑀
, 1 ≤ 𝑝 ≤ 𝑀 − 1,

1It means coefficient number 0

17

𝑎𝑞 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
𝑀

, 𝑞 = 0,√︃
2

𝑀
, 1 ≤ 𝑞 ≤ 𝑁 − 1,

Its Inverse DCT is defined as described in Equation 1.14. [6]

𝐴𝑚𝑛 =
𝑀−1∑︁
𝑝=0

𝑁−1∑︁
𝑞=0

𝑎𝑝𝑎𝑞𝐵𝑝𝑞 cos 𝜋(2𝑚 + 1)𝑝
2𝑀

cos 𝜋(2𝑛 + 1)𝑞
2𝑁

(1.14)

where

𝑎𝑝 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
𝑀

, 𝑝 = 0,√︃
2

𝑀
, 1 ≤ 𝑝 ≤ 𝑀 − 1,

𝑎𝑞 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
𝑀

, 𝑞 = 0,√︃
2

𝑀
, 1 ≤ 𝑞 ≤ 𝑁 − 1,

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

u

v

Fig. 1.4: Frequency representation of 8 × 8 DCT coefficients [7]

Figure 1.4 illustrates frequency representation of DCT coefficients matrix of size
8 × 8. Element [0, 0] represents DC coefficient. As 𝑢 is increasing, elements in ma-
trix represents higher vertical frequencies as well as 𝑣 for horizontal frequencies so
element [7, 7] represents highest vertical and horizontal frequency.

18

1.3 Applications of DCT
DCT or its derivatives like modified discrete cosine transform (MDCT) which is
based on DCT-III are used in various applications in engineering and science. One-
dimensional version is part of compression methods for audio like AAC, Vorbis,
WMA or MP3. Two-dimensional version is used in compression methods for still
pictures like JPEG or moving pictures like MJPEG, MPEG or H.26x.

1.3.1 JPEG

JPEG is a method of lossy compression for digital images developed by Joint Photo-
graphic Experts Group and introduced in 1992. It is popular method for compressing
images produced by most digital cameras because of its relatively good compression
ratio 1:10, which could be easily achieved. [8] As mentioned above, DCT is part of

FDCT Quantizier Enthropy
encoder

8x8 blocks

Table
specifications

Table
specifications

Source image
data

Compressed
image data

Fig. 1.5: DCT-based encoder processing steps [8]

JPEG compression method. An example of DCT-based encoder is shown in Figure
1.5.

We suppose that source image data are matrix 8 × 8 of 8-bit signed grayscale
values (-128 – 127). At the encoder’s input source image data are grouped into 8×8
blocks and routed to Forward DCT (FDCT). DCT and IDCT computation of 8 × 8
block as defined by JPEG standard is described by Equation 1.15 and 1.16. [9]

𝑆𝑣𝑢 = 1
4𝐶𝑢𝐶𝑣

7∑︁
𝑥=0

7∑︁
𝑦=0

𝑠𝑦𝑥 cos (2𝑥 + 1)𝑢𝜋

16 cos (2𝑦 + 1)𝑣𝜋

16 (1.15)

𝑆𝑦𝑥 = 1
4

7∑︁
𝑥=0

7∑︁
𝑦=0

𝑠𝑦𝑥𝐶𝑢𝐶𝑣𝑆𝑣𝑢 cos (2𝑥 + 1)𝑢𝜋

16 cos (2𝑦 + 1)𝑣𝜋

16 (1.16)

where

𝐶(𝑢), 𝐶(𝑣) =

⎧⎪⎪⎨⎪⎪⎩
1√
𝑁

, 𝑢, 𝑣 = 0,

1, 1 ≤ 𝑢, 𝑣 ≤ 𝑁,

19

This is followed by Quantizier and Enthropy encoder whose parameters are depen-
dent on Table specifications (JPEG quality). There are compressed image data on
the output of the encoder chain.

QuantizierEnthropy
encoder

Table
specifications

Table
specifications

Reconstructed
image data

Compressed
image data

IDCT

Fig. 1.6: DCT-based decoder processing steps [8]

Figure 1.6 shows a simplified DCT-based decoder. Compressed image data are
brought to Enthropy decoder, then to Quantizier (whose parameters are also de-
pendent on JPEG quality). Thereafter quantized data are input to Inverse DCT
(IDCT) block and reconstructed as image on the output.

1.3.2 M-JPEG

Motion JPEG (M-JPEG or MJPEG) is a video compression format. Each frame or
interlaced field of digital video is compressed separately using JPEG compression
algorithm. It means that there is not any motion-prediction method used unlike
MPEG2 [10] or MPEG4 codec [11]. MJPEG is widely used in consumer electronics
devices like digital cameras, IP cameras, webcams and game consoles. It has some
advantages over motion-prediction based formats [12]:

• Resulting quality is independent from the motion in the image – MPEG4 visual
quality is often reduced when footage contains lots of movement

• Latency of image processing is minimized
• Simple implementation
• Hardware requirements are low due to its simplicity

Otherwise, there are some disadvantages:
• Single exact format is not specified – Microsoft has its own method to store

M-JPEG in AVI files [13] as well as Matroska MJPEG container is being
developed [14].

• M-JPEG is not as much efficient as more modern formats such Motion JPEG
2000 or motion prediction based codecs H.264/MPEG-4 AVC.

20

1.4 Overview of DCT computation methods
Many algorithms for computing DCT-II have been developed. Some of them are
optimal to be used in software for general-purpose CPU. What is advantageous for
software implementation is not generally optimal for a programmable DSP processor,
FPGA or dedicated VLSI chip.

Development of DCT efficient algorithms began after publication by Ahmed et
al [3] in 1974 when DCT was first described. Generally, computation methods can
be categorized [1]:

• Via DFT
• Using sparse factorization scheme
• Decimation-in-Time (DIT)
• Decimation-in-Frequency (DIF)
• Via other discrete transform
• Through prime factor decomposition
• Recursive computation
• Via planar rotation

1.4.1 DCT via DFT

Since DCT is related to DFT, many algorithms have been developed, for example
[15] and [16]. Block diagram of DCT algorithm via DFT computation is shown in
Figure 1.7. In first section N-point signal is merged to 2N-point signal. Then signal

2N-point 2N-point DFT or
two N-point DFTs

x(n) XC(2) (m)

N-point

y(n)

N-point
1
2
W m/ 2

2N

Fig. 1.7: N-point DCT via 2N-point DFT [1]

is transformed via DFT and converted from complex values to real values.
Equation 1.17 shows how number of multiplication needed can be computed.

Since this method has reduced number of multiplications needed, this is at the cost
of increased topology complexity – it is slow. [1]

⎛⎝𝑁

2

⎞⎠ log2 𝑁 (1.17)

21

1.4.2 Using sparse factorization scheme

Sparse factorization scheme is another method of calculation DCT. This is done
by normalization factor of input matrix and decomposition into sparse matrices [1].
Number of real additions required can be calculated by equation 1.18. Calcula-
tion of multipliers needed is shown in equation 1.19. First algorithm using sparse
factorization scheme was developed by Chen. [17]

3𝑁

2 (log2 𝑁 − 1) + 2 (1.18)

𝑁 log2 𝑁 − 3𝑁

2 + 4 (1.19)

1.4.3 Decimation-in-Time (DIT) and Decimation-in-Frequency
(DIF)

These algorithms consists of input sequence rearrangement. DIT algorithm [18]
requires number of real additions as shown in equation (1.20) and number of real
multiplications as shown in equation (1.21).⎛⎝3𝑁

2 − 1
⎞⎠ log2 𝑁 + 𝑁

4 + 1 (1.20)

⎛⎝𝑁

2

⎞⎠ log2 𝑁 + 𝑁

4 (1.21)

Number of operations needed for calculating DCT components via DIF [19] is shown
in equations (1.22) –number of additions and (1.23) – number of multiplications. All
operations are real can be calculated by using real arithmetic only thus not complex.

⎛⎝3𝑁

2

⎞⎠ log2 𝑁 − 𝑁 + 1 (1.22)

⎛⎝𝑁

2

⎞⎠ log2 𝑁 (1.23)

1.4.4 DCT via other discrete transforms

Using other discrete transform, there are 2 common methods to compute DCT:
• DCT via Walsh-Hadamard Transform (WHT) [20]
• DCT via Discrete Hardley Transform (DHT) [1]

22

1.4.5 DCT via Prime Factor Algorithm

Since PFA was originally developed for computation DFT coefficients and DCT
can be directly related to the DFT, so the PFA can be used for DCT computation
[21]. Advantage of this method is that it is not restricted to radix-2 but has one
disadvantage – it requires very complex index mapping.

1.4.6 DCT via recursive computation

DCT coefficient can be computed by recursive algorithm. This was first proposed
by Hou [22]. It is fast, require simple index map but it is slower when implemented
without multiplexing. The number of operations needed is shown in Figure 1.24 for
additions and in Figure 1.25 for multiplication.

𝑁 − 1 (1.24)

⎛⎝𝑁2 + 𝑁 − 7
3

⎞⎠ (1.25)

1.4.7 DCT realization via planar rotations

This method requires only rotations that replace adders and multipliers, but it is
slow. [23].

1.5 Algorithms for DCT
In this section some perspective algorithms for computation of DCT coefficients will
be described.

1.5.1 Loeffler’s DCT algorithm

In 1989 Loeffler [4] proposed fast algorithm for 8-point DCT computation which
requires only 11 multiplications and 29 additions. Number of multiplications has
been reduced to the theoretical lower bound. For 16-point DCT these values are 31
multiplications and 81 additions. Table 1.1 shows number of operations needed for
8-point DCT calculation using different algorithms.

Algorithm’s structure is shown in Figure 1.8. Symbols used are described in
Figure 1.9. Data in stages 1 to 4 are being executed in series and are depended to
each other, so it cannot be evaluated in parallel. After stage 1 algorithm is divided
in two parts – one for calculation of even coefficient (upper 4 signals) and one for

23

Tab. 1.1: Comparison of operations effort for different 8-point DCT [4]

Algorithm Chen’s Wang’s Lee’s Vetterli’s Suehiro’s Hou’s Loeffler’s
mult. 16 (13) 13 12 12 12 12 11
add. 26 (29) 29 29 29 29 29 29

c3
c1

c1

Stage 1 Stage 2 Stage 3 Stage 4

0
1
2
3
4
5
6
7

0
4
2
6
7
3
5
1

2

Fig. 1.8: 8-point DCT algorithm with 11 multiplications. Symbols are described in
figure 1.9 [4]

calculation of odd coefficients (lower 4 signals). Even part is 4-point DCT, which is
again separated in two parts after stage 2. Second building block shown in Figure
1.9 can be calculated using only 3 multiplications and 3 additions.

24

kcn

I0

I1

O0

O1

I0

I1

O0

O1

I O

symbol equations effort

2 add

3 add

1 mult

3 mult +

O0 = I 0 + I 1

O1 = I 0 − I 1

O0 = I 0 · k · cos
nπ
2N

+ I 1 · k · sin
nπ
2N

O1 = − I 0 · k · sin
nπ
2N

+ I 1 · k · cos
nπ
2N

O =
√
2 · I

Fig. 1.9: Symbols used to display an algorithm structure [4]

Variations of Loeffler’s DCT algorithm

Different variations of stages can be derived from original structure shown in Figure
1.8. Figure 1.10 shows possible variations of stages 2 and 3 of the even part. This is
achieved by inverting stages 2 and 3. Different variations of stage 1 with same low

c(n) c(N‒n)

Fig. 1.10: Inversion of stages 2 and 3 of the even part [4]

complexity are shown in Figure 1.11. Figure 1.12 illustrates different combinations

Fig. 1.11: Variations of stage 1 of the algorithm [4]

of rotation angles of stage 2, 3 and 4 of the odd part. Note that this combinations
have different coefficients order and sign at the output. Another combinations of
stages 2, 3 and 4 for the odd part can be obtained by inverting cross-add module

25

c3
c1

4
5
6
7

1
‒7
5
‒3

c3
c‒7

4
5
6
7

5
1
‒7
‒3

c7
c5

4
5
6
7

1
3
5
‒7

c7
c‒3

4
5
6
7

1
7
5
3

c‒1
c5

4
5
6
7

‒7
1
‒3
5

c‒1
c‒3

4
5
6
7

‒3
‒7
1
5

c‒5
c1

4
5
6
7

‒3
‒7
‒1
‒5

c‒5
c‒7

4
5
6
7

‒3
5
‒1
‒7

Fig. 1.12: Variations of stages 2, 3 and 4 of the odd part [4]

or combination of them – exchanging the adder and subtractor. This is shown in
Figure 1.13.

26

c3
c1

4
5
6
7

1
‒7
5
‒3

c3
c1

4
5
6
7

c3
c1

4
5
6
7

7
1
5
‒3

1
3
5
‒7

c3
c1

4
5
6
7

7
3
5
1

c3
c1

4
5
6
7

‒5
1
7
3

c3
c1

4
5
6
7

c3
c1

4
5
6
7

‒5
‒7
1
‒3

‒5
3
1
‒7

c3
c1

4
5
6
7

‒5
3
7
1

Fig. 1.13: Variations of stage 2, 3 and 4 by inverting add/subtract modules [4]

1.5.2 Multiplierless approx. of DCT with lifting scheme

0

1

2

3

4

5

6

7

7/16
–

11/16 3/8

–

3/16

–

3/16 7/8
–

1/2

3/8
–

3/8

1/2

–

0

4

6

2

7

5

3

1

Fig. 1.14: 8-point BinDCT algorithm version A [24]

Another VLSI perspective method how to compute N-point DCT is using fast
multiplierless approximation with the lifting scheme called Binary Discrete Cosine
Transform (binDCT). This method uses only shift and add operations that can be
implemented using simple binary arithmetic. As described in section 1.5.1, DCT
can be directly computed using 11 multiplications and 29 additions. Number of
operations for three similar binDCT algorithms compared to direct method are
shown in Table 1.2. When compared to common DCT computation method, which
has coding gain 8.83 dB, binDCT has coding gain ranges 8.77 to 8.82 dB. It means

27

Tab. 1.2: Number of operations needed for different 8-point binDCT [24]

Algorithm No. of mul. No. of add. No of. shifts Coding gain
8-point DCT (Loeffler) 11 29 0 8.83 dB
8-point binDCT-A 0 36 19 8.82 dB
8-point binDCT-B 0 31 14 8.77 dB
8-point binDCT-C 0 30 13 8.77 dB

binDCT is only 0.1 to 0.5 dB below the standard DCT. Figures 1.14, 1.15 and 1.16
show structure of three similar version of binDCT algorithm.

Three versions of Inverse binDCT are shown in Figure 1.17, 1.18 and 1.19.

0

1

2

3

4

5

6

7

3/8 5/8

–

1/8

–

1/2
–

1/8

3/8
–

3/8

1/2

–

0

4

6

2

7

5

3

1

–
3/4

Fig. 1.15: 8-point BinDCT algorithm version B [24]

Note that binDCT is approximation of standard floating-point DCT. Best results
are achieved when binDCT algorithms are used on both side encoder and decoder – it
means forward binDCT is used as encoder while inverse binDCT is used as decoder.
However if combined with standard floating-point DCT, compatibility between these
transforms is satisfactory. [26]

28

0

1

2

3

4

5

6

7

3/8 5/8

–

1/8

–

7/8
–

1/2

3/8
–

3/8

1/2

–

0

4

6

2

7

5

3

1

Fig. 1.16: 8-point BinDCT algorithm version C [24]

0

1

2

3

4

5

6

7

11/163/8
–

3/16

–

7/8
–

1/2

3/8
–

3/8

1/2

–

0

4

6

2

7

5

3

1

–

3/16

–

7/16

Fig. 1.17: 8-point Inverse BinDCT algorithm version A [24]

1.6 Algorithms for 2-D DCT
Two-dimensional DCT could be obtained with following methods [1]:

• 2-D DCT by reduction to 1-D DCT with row-column transposition
• 2-D DCT by reduction to 1-D DCT using lexicographical reordering
• Block matrix decomposed algorithm
• Computation via two-dimensional DFT
• Computation via two-dimensional WHT

Since algorithms using some other discrete transforms (DFT and WHT) are advan-
tageous to be used if there is some flexibility required (for example DSP processor,
not dedicated VLSI block)

29

0

1

2

3

4

5

6

7

3/85/8
–

1/81/2
–

1/8

3/8
–

3/8

1/2

–

0

4

6

2

7

5

3

1

–

3/4

Fig. 1.18: 8-point Inverse BinDCT algorithm version B [24]

0

1

2

3

4

5

6

7

3/85/8
–

1/8

–

7/8
–

1/2

3/8
–

3/8

1/2

–

0

4

6

2

7

5

3

1

–

Fig. 1.19: 8-point Inverse BinDCT algorithm version C [24]

1.6.1 2-D DCT with row-column transposition

Due to separability property of two-dimensional DCT-II can be expressed by 𝑀𝑁 -
point DCTs along the rows of [𝑔] (Equation 1.12) followed by 𝑁𝑀 -point DCTs
along the comumns of the matrix obtained after the row transformation. Order of
row-column transformation is theoretically immaterial. [1]

If desired to have one shared N-point DCT block2, block diagram of DCT row-
column approach is shown in Figure 1.20. Input data are loaded from 𝑀 × 𝑁

matrix by rows. Every N-point row is transformed by 1-D N-point row DCT block
and loaded to transpose buffer. After filing transpose buffer and performing trans-

2For example if smaller chip area is a goal or designed block’s purpose will be computing both
one-dimensional and two-dimensional DCTs

30

position, data are input to 1-D N-point column DCT by columns. Timing control
block controls correct data inputs and transpose operation.

1-D
N-point
row DCT

Transposition operation
1-D

N-point
column DCT

Timing control

data
in

data
out

Fig. 1.20: Block diagram of the row-column approach for 2D DCT [1]

1.6.2 2-D DCT using lexicographical reordering

Using lexicographical reordering two-dimensional DCT can be reduced to only one-
dimensional DCT. For example two-dimensional DCT of 4 × 4 matrix can be ex-
pressed as 16-point one-dimensional array. This algorithm require 24 real multipli-
cations and 68 real additions. This method is fast and low latency can be achieved
but due to its non-recursion calculation it has many parallel operations hence it is
large in terms of area. [1]

1.6.3 Other methods for 2-D DCT

There are other methods for computing 2-D DCT coefficients for example using
some other discrete transform like Discrete Fourier Transform (DFT) [27] or Walsh-
Hadamard Transform (WHT).

Another method for 2-D DCT computation is block matrix decomposed algo-
rithm. Unfortunately this method is more easily applied to Inverse DCT-II or the
forward DCT-III.

1.7 Human visual perception
Most of methods for reducing bitrate of video or size of an image (or increasing
compression ratio, if you want) are based on human visual perception model and
its imperfections. This area is extremely complex and many of its properties are
still not well understood. Many of these properties are not taken into account in
MJPEG compression so they are not described in this section. [28] However, MJPEG
compression benefits from following human visual perception imperfections:

31

• Human eye has low-pass filter characteristics (there are limited number of
rods) so human visual perception is less sensitive to higher frequencies.

• Much greater sensitivity to luminance than color resolution. There two types
of photoreceptors in the human retina, rods and cones. The rods are much
more numerous than cones (120 milions against 6–7 milions) and they are more
sensitive than cones. Rods provides sensitivity to luminance, whereas cones
provides sensitivity to color. [29] Rods and cones density on human retina are
shown on Figure 1.21.

• Since cones are concentrated in the center of the fovea, rods are responsible
for peripheral vision.

Fig. 1.21: Rods and cones density on human retina [29]

1.7.1 Color models

RGB color model

The color model named RGB is an additive color model. Its name is derived from
three colors included - Red, Green and Blue. These colors are added together in
various levels to reproduce hues of colors. This model is based on existence of three
types of cones in the human eye (also known as trichromacy), each sensitive to
particular wavelength of light. Meaning of additive color mixing is shown on Figure
1.22.

32

Fig. 1.22: Additive color mixing

YCbCr color model

In the YCbCr model color is composed from 3 components: Y – luminance (or
brightness of the pixel)and two chroma components Cb – blue chrominance, Cr –
red chrominance, whose can be converted from RGB space by formulas in Equation
1.26. [30]

𝑌 = 0.299 · 𝑅 + 0.587 · 𝐺 + 0.114 · 𝐵

𝐶𝑏 = 128 − 0.1687 · 𝑅 − 0.3313 · 𝐺 + 0.5 · 𝐵 (1.26)

𝐶𝑟 = 128 + 0.5 · 𝑅 − 0.4187 · 𝐺 + 0.0813 · 𝐵

And YCbCr color model can be converted to RGB vice versa by formulas de-
scribed in Equation 1.27. [30]

𝑅 = 𝑌 + 1.402(𝐶𝑟 − 128)

𝐺 = 𝑌 − 0.34414(𝐶𝑏 − 128) − 0.71414(𝐶𝑟 − 128) (1.27)

𝐵 = 𝑌 + 1.772(𝐶𝑏 − 128)

1.7.2 Chroma subsampling

Subsampling of chroma matrices is one of basic lossy technique of encoding images.
This is done by implementing less resolution for chrominance matrix (or chroma
information) than for luminance matrix. As described in section 1.7, human vi-
sual perception is much more sensitive to luminance than chrominance therefore
chrominance information could have less resolution without significant degradation

33

of visual image quality. [28] It is used in both analog and digital video encoding
schemes.

4:4:4 4:2:2

4:1:1 4:2:0

Pixel with Y value

Pixel with Cr an Cb
value

Fig. 1.23: Chroma subsampling schemes

In standard RGB color model without conversion to YCbCr model no chroma
subsampling can be applied – RGB has to be converted to YCbCr by formulas
in Equation 1.26. Then subsampling is applied only to chrominance information.
Scheme for subsampling is usually expressed using three part ratio J:a:b (when
alpha channel is not present as one component):
Where:

• J is horizontal sampling reference
• a is number of chrominance samples
• b is number of changes of chrominance samples between first and second row

of J pixels
Most used subsampling schemes are shown in Figure 1.23. Subsampling schemes
have different types of sitting depending on compression standard used. This is
not subject of this master’s thesis. MJPEG standard supports both 4:2:2 and 4:2:0
schemes.

1.8 Number representation

1.8.1 Q number format

Q is fixed point number format. Number of fractional and integer bits is specified.
For example Q12 number has 12 fractional bits only no integer bits, Q8.0 has no

34

fractional bit and 8 integer bits, Q13.7 has 7 fractional bits and 13 integer bits.
Number of bits is without sign bit. [31]

Numbers are stored as regular binary numbers (signed integers), but according
to its fractional part it allows to perform rational number calculations.

For a given Qm.n format applies:

• it is using 𝑚 + 𝑛 + 1 bits
• its resolution is 2−𝑛

• its range is [−(2𝑚), 2𝑚 − 2−𝑛]

So for example format Q13.7 has:

• 21 bits
• resolution 0.0078125
• range [−8192, 8191.9921875]

35

2 PRACTICAL PART
Practical part is focused on defining some necessary parameters of DCT block. Also,
DCT algorithm choice is discussed and its model in language C is described and
compared with reference definition. After verification of model, RTL description of
chosen algorithm is depicted from bottom up. There is verification and synthesis
section at the end of the practical part.

2.0.1 Hardware prerequisites

Designed hardware has to be able to process data provided by digital IP camera.
Output from camera has resolution 640 × 480 pixels and frame rate is 30 fps. We
expect that raw data from camera sensor have been already de-interpolated from
Bayer-mask values to RGB values and then converted to YCbCr space. Chrominance
matrices of data have same resolution as luminance in worst case, so chrominance
subsampling is not considered.

Data throughput of designed hardware depending on video resolution and num-
ber of fps can be calculated by Equation 2.1. For video with 640 × 480 pixels and
frame rate 30 fps value 27.65 is obtained. Table 2.1 summaries hardware require-
ments for DCT calculation of various resolutions used in consumer media and TV
broadcasting.

𝑁 = 3 · (𝑥 · 𝑦) · 𝑛fps · 𝑑

106 (2.1)

where
• 𝑥 is number of horizontal pixels
• 𝑦 is number of vertical lines
• 𝑛fps is number of frames per second
• 𝑑 is number of bits per pixel

2.0.2 DCT algorithm choice

As described in the section 1.4 above, some techniques and alg. For DCT are suitable
for software, hardware implementation or both. Since main requirement of hardware
is to be fast, small and has low power consumption, this is better fullfilled with fixed
point arithmetics rather than floating point arithmetics. [32]

Loeffler’s algorithm for computation of DCT is effective in terms of number of
multiplications and additions needed. Its floating point implementation is not effec-
tive in term of area and speed. Similar results can be achieved with implementation

36

Tab. 2.1: Hardware requirements for various resolutions

Format 𝑥 dim. 𝑦 dim. Chroma subs. fps Mbit/s
QVGA 320 240 4:4:4 30 55.30
VGA 640 480 4:2:0 30 110.59
VGA 640 480 4:4:4 30 221.18
720p 1280 720 4:2:0 25 276
1080p 1920 1080 4:2:0 25 622
2K 2048 1080 4:2:0 25 664
4K 4096 2160 4:2:0 25 2654
8K 7680 4320 4:2:0 25 9953
8K 7680 4320 4:2:2 25 13271

of one of binary DCT algorithms whose requirements for hardware resources are
compared in Table 2.2.

Tab. 2.2: Comparision of 8-point binDCT algorithms [24]

Algorithm No. of add. No of. shifts Coding gain
binDCT-A 36 19 8.82 dB
binDCT-B 31 14 8.77 dB
binDCT-C 30 13 8.77 dB

Since implementation of binary DCT version C has lowest number of adders and
shifts needed with preservation of coding gain which is similar to standard DCT
(described in section 1.5.2), it has been chosen to be implemented in this master’s
thesis.

2.0.3 Design methodology

Choosing effective methodology is important part of design on which future modifi-
cations will be depend on. Process diagram of design is shown in Figure 2.1. It has
3 levels of design – System design, RTL design and Synthesis, which is part of
Physical implementation.

Firstly, conceptual model written in C/C++ language is made. It is verified
against specification. When any bugs are found or model’s output and expected
behavior does not met specification, concept can be easily and flexibly changed by

37

Write conceptual C/C++ model

Verify against specification

Partition design

Write each block in HDL

ReverifyWrite
testbenches

Synthesize

System design RTL design

To implementation

Create
reference
stimulus

Constraints

Fig. 2.1: Design process diagram [33]

modifying higher-level hardware description. Once C model outputs are correct and
specifications are fulfilled, reference stimulus for RTL design is created.

Then existing conceptual model is designed and described by HDL Verilog lan-
guage. When any change needs to be done to concept, re-writing of conceptual model
is necessary. After re-verification against reference stimulus created previously by
model is done, next step of design can be advanced – Synthesis.

Synthesis is process when HDL description in Verilog is synthesized to netlist
of available cells and gates in specific process technology. These cells are provided
by vendor in library. Synthesizer is software tool for doing this and its algorithm is
trying to met provided constraints.

2.1 Hardware modeling
One of advantages of creating executable model is that no external tool needs to be
launched when simulating. It is used only for compiling so once model is made, it
is packed in one executable file. Basically, modeling by executable program written
in C can be done using standard C/C++ libraries or SystemC library. SystemC
libraries are developed by Accellera Initiative as Open Source Licence. [34] Their

38

comparison is shown in Table 2.3. SystemC is C++ based library which adds support
for describing more hardware-like behavior and time based simulation as well as
custom precision data types. However, these features complicate development of
models and could be counterproductive for small design.

Tab. 2.3: Comparision of C/C++ and SystemC modeling methodology

C/C++ language SystemC library
Synthesizability complicated easier
Suitable for design size small medium & large
Time based no yes
Custom data types no yes

Even SystemC has many advantages over standard C/C++ libraries, its higher
complexity could slower design process in final when designing smaller system. For
this reason, modeling using standard C/C++ libraries has been chosen as this step
in design workflow.

2.1.1 Precision modeling

As was discussed in section 2.0.2, target RTL implementation is going to use fixed
point arithmetics. This could be easily modeled by double-precision floating point
format specified by the IEEE 754 which is part of C programing language. [35]

2.1.2 One-dimensional bin DCT modeling

Principle of modeling one-dimensional binDCT algorithm is shown in Figure 2.2.
Input one-dimensional array consisting of 8 samples in double precision is calculated
according to Figure 1.16 in section 1.5.2. Intermediate calculation is done in double
precision resolution. Because all multiplying is two-based and can be done by simple
bit-shift, division by two is modeled in double precision. There is round half to even
implemented on the output of the chain.

Input 8x1 array 1-D binDCT
(double precision) Output 8x1 arrayRound half

to even

Fig. 2.2: One dimensional binDCT model flowchart

39

2.1.3 Two-dimensional bin DCT modeling

As described in Section 1.6.1 two-dimensional DCT can be done by row-column
transposition of one-dimensional DCT. Figure 2.3 shows its principle. Input integer
values are converted to double an then column-by-column brought to input of 1-D
binDCT function. Its output is rounded and input to temporary array of size 8 × 8.
Then samples are read out in different order – by rows and on the output of one-

Temporary array 8x8

Input 8x8 array 1-D binDCT
(columns)

Output 8x8 array 1-D binDCT (rows)

Round half
to even

Round half
to even

Fig. 2.3: Two dimensional binDCT model flowchart

dimensional binDCT model are rounded again. Output 8 × 8 array is a result of C
model.

Output rounding

Using standard rounding values are always rounded in the same direction. Result
can be a bias that grows with every rounding operation. At the output of the
one-dimensional binDCT model data are rounded by half to even algorithm (often
called banker’s rounding). This is illustrated in Figure 2.4. Half-way values are
always rounded toward the nearest even number. Major advantage of this technique
is minimization this bias. [36]

2.1.4 Reference data comparison

Since binDCT output coefficients are not compatible with standard DCT as de-
scribed by MATLAB definition, metric of comparing these two output is shown in
Figure 2.5. Input image data which consists of unsigned 8 bits resolution pixels
(hence its value is from 0 to 255) are decomposed into 8 × 8 blocks and then level

40

1 2 3-1-2-3

1

2

3

-1

-2

-3

x

round(x)

Fig. 2.4: Rounding half to even function

shifted to 8-bit signed values by subtracting 128 as defined in JPEG specification.
[37]

Level shifted 8 × 8 blocks are input to binDCT model and MATLAB DCT
reference, then rounded and inverse transform is done on both outputs. Regarding
to Inverse binDCT algorithm, its output samples are scaled by constant 4 so besides
inverse level shift, scaling (dividing each value by 4) is done. After process on each
block 8 × 8 pixels is done, these blocks are composed back to whole image data and
PSNR calculation is done for enumerating of reconstruction error.

MSE = 1
mn

m∑︁
i=1

n∑︁
j=1

(︁
Ŷij − Yij

)︁2
(2.2)

PSNR = 10 log 2552

MSE (dB) (2.3)

Firstly, Mean-Squared Error – MSE calculation of output data and input image
data are done as described in Equation 2.2. Then Peak Signal-to-Noise Ratio is
calculated as described in Equation 2.3.

Note that this methodology only compares performance of various DCT and
IDCT algorithms, no its usage in JPEG Interchange File Format including quanti-
zation (depending on quality set) and coding.

41

Input image
data

Bin DCT Bin IDCT

PSNR
comparisonLevel shift

Rounding Scale &
level shift

8x8 block
decomposition

8x8 block
composition

MATLAB DCT MATLAB
IDCTRounding Level shift

8x8 block
composition

Output image
data

Output image
data

Rounding

Rounding

Fig. 2.5: Comparing model with reference MATLAB definition

Result of model and reference comparison is shown in Figure 2.6a for output of
Matlab DCT, Figure 2.6b and Figure 2.6c. Because of any changes are not noticeable
visually in the output images, Figures 2.7a, 2.7b and 2.7c show error representation
between original image and output from DCT algorithms. These results has only
illustration information. Pixels with error are represented as white, pixels without
error are black. It is obvious that output from BinDCT chain has much less errors
than Matlab DCT and binDCT transformed via IDCT algorithm. Values of calcu-
lated PSNRs are summarized in Table 2.4. Matlab DCT performs value 58.91 dB,
binDCT PSNR is 62.96 dB and binDCT via IDCT performs 33.70 dB when output
rounding (after inverse transform) is not considered. However when output rounding
is implemented, PSNR value of Matlab DCT chain is slightly improved to 58.93 dB
binDCT via IDCT drops to 33.69 dB whereas value of BinDCT chain is dramatically
improved to 70.80 dB.

One of reasons of this binDCT advantage over Matlab DCT could be that its
coefficients are not scaled like Matlab’s. Another reason could be incorrectly derived
Inverse BinDCT algorithm which has gain of 4 when compared to input samples.
This gain could brought advantage over Matlab definition.

Figure 2.6c shows result when binDCT algorithm is used on the coder side and
standard IDCT algorithm is used on the decoder side. Its result is noticeably worse
than other two benchmarks, but shows backward compatibility with standard IDCT.
Whereas without quantization its results are worse, when quantization is imple-

42

(a) DCT via IDCT (b) binDCT via binIDCT

(c) binDCT via IDCT

Fig. 2.6: Test image generated by various DCT algorithms

43

(a) DCT via IDCT (b) binDCT via binIDCT

(c) binDCT via IDCT

Fig. 2.7: Error representation of various DCT algorithms

44

mented (JPEG quality ≤ 90) PSNR values are comparable. [24]

Tab. 2.4: Comparision of DCT algorithms’ PSNR

Algorithm PSNR [dB] PSNR (rounding) [dB]
DCT by IDCT 62.96 70.80
BinDCT by binIDCT 58.91 58.93
BinDCT by IDCT 33.70 33.69

2.2 RTL
Once requirements are met and model’s output is fulfilling expected behavior, RTL
shall be described by Verilog HDL language. Firstly RTL design of one-dimensional
bin DCT is written and then verified against previously created C model.

2.2.1 One-dimensional DCT block

RTL implementation of binDCT algorithm needs define bit width of internal signals.

Resolution of internal signals

Because of no intermediate rounding is implemented between operations in model,
all internal signals within block for computing one-dimensional binDCT have full
accuracy.

+

Q8.0

3/8 = 1/8 + 1/4

Stage1_out5

Stage1_out6 Stage2_out6
Q8.0 Q9.3

Fig. 2.8: Arithmetical operation within 1-D binDCT block

Methodology of defining this bit resolution in fixed point arithmetic is illustrated
in Figure 2.8 and 2.9. 8-bit resolution of input samples is considered. After coef-
ficient 5 and 6 is being calculated, it is followed by bit shift of sample 5 (3 bits to

45

the right) and thereafter adding operation with sample 6. Resulting resolution is 13
bits (10 bits for integer and 3 fractional bits).

Stage1_out5

9

08

Stage1_out6

9

08

6

05

3

Stage1_out5 x 1/8

7

06

2

Stage1_out5 x 1/4

8

07

3

Stage1_out5 x 3/8

10

09

3

Stage2_out6

Fig. 2.9: Defining bit width of internal signals methodology

Bit resolution derived for all internal signals in 1-D binDCT block is shown in
Figure 2.10. This diagram consider block parametrization of N-bit input resolution.
Output coefficients have different resolution.

RTL parametrization

Block described in Verilog is fully parameterized in the terms of input samples bit
resolution – N and registering between stages – REG. Combinational logic of 1-D
binDCT block is divided into 6 stages. Every stage has its own parameter which
describes if this stage has register on the output. Length of combinational logic can
be parametrized thus some registers can be saved in signal path when smaller speed
is a goal.

Clock and reset signal is brought to every stage instance. Each instance of stages
has different input and output resolution as described in Figure 2.10.

Block interface

Block interface is illustrated in Figure 2.12. In case of 8-bit resolution of input data,
input vector of first 1-D binDCT block is 64-bits wide while output vector is 104-bits
wide. Second block has 104-bits wide input and 144-bits wide output. With every
clock rising edge 8 coefficients are calculated if there is at least one register at design

46

0

1

2

3

4

5

6

7

3/8 5/8

–

1/8

–

7/8
–

1/2

3/8
–

3/8

1/2

–

0

4

6

2

7

5

3

1

Q(N-1).0 QN.0

Q(N+1).3

Q(N+2).6

Q(N+1).0

Ro
un

d
ha

lf
to

 e
ve

n

Q(N-1).0

Q(N-1).0

Q(N-1).0

Q(N-1).0

Q(N-1).0

Q(N-1).0

Q(N-1).0

QN.0

QN.0

QN.0

QN.0

QN.0

QN.0

QN.0

Q(N+1).0

Q(N+1).0

Q(N+1).0

Q(N+3).6

Q(N+3).6

Q(N+2).3

Q(N+2).3

Q(N+2).0

Q(N+2).1

Q(N+2).3

Q(N+2).6

Q(N+4).6

Q(N+4).6

Q(N+4).7

Q(N+2).3

Q(N+4).0

Q(N+4).0

Q(N+4).0

Q(N+4).0

Q(N+4).0

Q(N+4).0

Q(N+4).0

Q(N+4).0

stg1 stg2 stg3 stg4 stg5 stg6

Fig. 2.10: Defining bit width of internal signals of 1-D DCT block

defined by parameter. Input and output valid data indication is controlled by FSM
in upper module.

Cadence Incinsive HDL analysis

Incinsives HDL analysis helps find errors early in design process, before simulation.
This tool identifies coding errors and improper RTL design styles through a com-
prehensive analysis of HDL source code. [38] HAL analysis was done without errors
and its results are summarized in Table 2.5.

Tab. 2.5: 1-D binDCT design hierarchy summary (Cadence HAL)

Instances Unique
Modules 7 7
Registers 36 36
Scalar wires 3 -
Vectored wires 112 -
Always blocks 13 14
Cont. assignments 63 152

47

ST
AG

E
3

ST
AG

E
4

ST
AG

E
5

ST
AG

E
6

ST
AG

E
1

ST
AG

E
2

ONE-DIMENSIONAL DCT

clk

Parameters:

reset

� BIT RESOLUTION N
� STAGE REGISTERS [1:6]

Input
samples

Output
coefficients

Fig. 2.11: Block diagram of 1-D binDCT RTL design

8 x N 8 x (N+5)

clk

data_in data_out

reset

1-D binDCT

en

Fig. 2.12: Interface 1-D binDCT RTL design

Computation latency

Since one-dimensional binDCT block has register configuration set by parameter,
its latency is variable and depended on number of registered stages. When all stages
has register on their output, block’s computation latency is 6 clock cycles. However,
when block is generated without any registers (although it is not recommended),
block has latency given only by combinational logic path.

48

2.2.2 Two-dimensional DCT block

Block interface

Figure 2.13 shows interface of 2-D binDCT block. There is 64-bit wide signal on
the input – data_in (in case that input resolution is 8-bit per sample) and 144-bit
wide signal on the output – data_out. All handshake signals are active high. Input
signal named dv_in indicates valid data in the input, output signal dv_out indicates
valid data in the output.

Signal clk is rising-edge sensitive, reset is asynchronous active low.

8 x N 8 x N+10

clk

data_in data_out

reset

2-D binDCT

dv_in dv_out

en

Fig. 2.13: Interface of 2-D binDCT RTL design

data[0]data[1]data[7]

...

LSBMSB

Fig. 2.14: Data order of input and output samples row/column vector

Order of input data in terms of rows/columns is immaterial. This is described
in Figure 2.15. When input vector contains row samples, output vector contains
column coefficient in different order – last is first.

Module overview

Figure 2.16 illustrate schematic of 2-D binDCT module. There are two blocks for
computing one-dimensional binDCT, each has different bit resolution. Data are
continuously input to the first 1-D block. Its output is de-multiplexed between two
transpose buffers. These complementary buffers allow continuous operation of both

49

00 10 20 30 40 50 60 70

01 11 21 31 41 51 61 71

02 12 22 32 42 52 62 72

03 13 23 33 43 53 63 73

04 14 24 34 44 54 64 74

05 15 25 35 45 55 65 75

06 16 26 36 46 56 66 76

07 17 27 37 47 57 67 77

column index

ro
w

 in
de

x First input
sample

First output
sample

Fig. 2.15: Data order of input and output samples in 8 × 8 block

Transpose
buffer

Transpose
buffer

1-D
DCT

WE RE

WE RE

selsel

8 x 13

8 x
13 8 x 13

8 x
13

8 x 13
1-D
DCT

8 x 138 x 8
8 x
18

FSM control

dv_in dv_out

0

1

0

1

full

full

en

reset

ety

ety

en_o

enen

Fig. 2.16: Schematic of 2-D binDCT block

1-D blocks hence 8-samples are computed each clock cycle. Alternating of WE and RE
signals is controlled by FSM as well as sel signal of multiplexor and de-multiplexor.
This architecture allows continuous operation and high speed computation can be
achieved.

50

Block latency

Total latency done by two blocks for calculating binDCT and transpose buffer can
by calculated by Equation 2.4 where 𝑅 is number of registers in one-dimensional
binDCT block.

𝑁clk = 2 · 𝑅 + 8 [clk cycles] (2.4)

De-multiplexor and multiplexor

These components are created using combinational logic only. Both have parametric
bit width of input hence their combinational logic is generated according to top
module settings.

Transpose buffer

Figure 2.17 shows transpose buffer module for configuration with 8-bit input reso-
lution per sample. Its operation modes depending on inputs configuration are sum-
marized in Table 2.6. It contains 3-bit up counter counting clock cycles and after
reaches value 7 (8 clock cycles were done), ety or full flag is set active depending
on current mode set by WE or RE.

13

13

13

13

13

13

13

13

13 13 13 13 13 13 13 13

clk

WEREreset

Input data

Output
data

3-bit
counter

en

clk

Comb.
logic

3

fullety

Fig. 2.17: Block diagram of 8 × 8 transpose buffer

51

Tab. 2.6: Operation modes of Transpose buffer

WE RE Description
0 0 Input data are ignored. All outputs set to zero.
0 1 Read Enable. Input data are ignored. Output data are

sample-shifted with clock rising-edge from bottom down.
1 0 Write Enable. All outputs set to zero. Input data are sample-

shifted from left to right. Data from 8th column are discarded
with every clock rising-edge.

1 1 Write Enable has higher priority than reading. Function is
same as previous.

FSM control

IDLE

BF1_WRT

BF2_WRT

BF1_RD_
BF2_WRT

BF1_WRT_
BF2_RD

dv_in

buf1_full

buf2_ety

buf1_ety

buf2_full buf1_ety &
buf2_full

buf1_full &
buf2_ety

Fig. 2.18: FSM diagram

Diagram of FSM control is shown in Figure 2.18. FSM description, coding and
output states are shown in Tables 2.7 and 2.8. Although binary coding is relatively
slow, it has lowest number of flip-flops hence it is suitable for ASIC implementation.

After reset is de-asserted FSM remains in state IDLE. When input dv_in is
set to ’1’ (which mean that there are valid data in the input), FSM switches to
state BF1_WRT and after calculating column DCT coefficients, these are written to

52

transpose buffer 1. When buffer is filled with intermediate calculations, its output
named buf1_full goes active and FSM next state is set to BF1_RD_BF2_WRT. There
are two possibilities of FSM transition from this state – BF2_WRT (which is set when
reading from buffer 1 is done by setting signal buf1_ety before writing to buffer 2 is
completed) or BF1_WRT_BF2_RD (which is set when reading from buffer 1 is completed
together with writing to buffer 2 by setting signals buf1_ety and buf2_full to ’1’).
This transition is done when there are maximum data rate in the input.

In all states except IDLE, WE (write enable) of both transpose buffers is driven
by delayed dv_in input signal. Number of D flip-flops (which provide delay) is
generated according to number of registers set by parameter.

Tab. 2.7: Outputs of FSM depending on the state (part 1 of 2)

State name Code Outputs Description
IDLE 0’b000 dv_out = ’0’ Idle state.

buf1_we = ’0’ Waiting for input
buf1_re = ’0’ data.
buf2_we = ’0’
buf2_re = ’0’
demux_sel = ’0’
mux_sel = ’0’
dct1_en = ’0’
dct2_en = ’0’

BF1_WRT 0’b001 dv_out = dv_o_reg Data from DCT1
buf1_we = dv_i_del block are written
buf1_re = ’0’ to Buffer1.
buf2_we = ’0’
buf2_re = ’0’
demux_sel = ’0’
mux_sel = ’1’
dct1_en = ’1’
dct2_en = ’1’

53

Tab. 2.8: Outputs of FSM depending on the state (part 2 of 2)

State name Code Outputs Description
BF1_RD_BF2_WRT 0’b010 dv_out = dv_o_reg Data from DCT1

buf1_we = ’0’ block are written
buf1_re = ’1’ to Buffer2. Data
buf2_we = dv_i_del from Buffer1 are
buf2_re = ’0’ read and input
demux_sel = ’1’ to DCT2 block.
mux_sel = ’0’
dct1_en = ’1’
dct2_en = ’1’

BF1_WRT_BF2_RD 0’b011 dv_out = dv_o_reg Data from DCT1
buf1_we = dv_i_del block are written
buf1_re = ’0’ to Buffer1. Data
buf2_we = ’0’ from Buffer2 are
buf2_re = ’1’ read and input
demux_sel = ’0’ to DCT2 block.
mux_sel = ’1’
dct1_en = ’1’
dct2_en = ’1’

BF2_WRT 0’b100 dv_out = dv_o_reg Data from DCT1
buf1_we = ’0’ block are written
buf1_re = ’0’ to Buffer1.
buf2_we = ’0’
buf2_re = ’0’
demux_sel = ’0’
mux_sel = ’0’
dct1_en = ’0’
dct2_en = ’0’

others 0’b101 dv_out = ’0’ Unused combina-
0’b110 buf1_we = ’0’ tions.
0’b111 buf1_re = ’0’

buf2_we = ’0’
buf2_re = ’0’
demux_sel = ’0’
mux_sel = ’0’
dct1_en = ’0’
dct2_en = ’0’

54

2.3 Verification

2.3.1 Verification methodology

RTL description of design needs to be verified. Verification methodology and flow is
illustrated in Figure 2.19. Testbench environment loads testcases where are defined
input stimuli and output reference data, which could be loaded from file.

Input stimuli data are brought to DUT (Design Under Test) input then DUT
output is compared with output reference data and if there is any mismatch, test-
case’s status is marked as failed otherwise is marked as passed.

DUT

Input reference
data

Data comparison

Testbench

Output reference
data

Testcases

Generate code
coverage database

Fig. 2.19: Testbench methodology and flow

Addition to this output monitoring is also creating of code coverage database
based on input stimuli data and DUT. Code coverage is a measure used to describe
the degree to which the source code is tested by a particular testcase.

2.3.2 Code coverage

Once code coverage database is generated, it is opened by software tool, which
allows enumerate its results. Incinsive Code Coverage Report (ICCR) is one of
these tools. Reports could be obtained as standard textfiles or HTML files. ICCR
allows quantify degree of code coverage of whole DUT as well as each instantiated
module or sub-block.

Figure 2.20 shows code coverage report for top module and its sub-modules.
Total code coverage 91% has been achieved. Most of sub-modules have code coverage

55

Fig. 2.20: Code coverage report

nearly 100% except FSM module. DUT has been tested to continuous data flow
(dv_out was active during testcase running time) so FSM has not passed to states
where writing to transpose buffer is not present.

All stages of one-dimensional DCT block have been covered at least 99% of tran-
sitions in total so they could be considered as successfully verified when compared
to C model reference data.

2.4 Physical implementation

2.4.1 Synthesis workflow

Next step in design flow is first level of physical implementation – synthesis. As
a software tool for synthesis is used dc shell version 2014.09-SP2 from Synopsys.
Workflow of synthesis is shown in Figure 2.21. Constrains define rules of design and
physical implementation – including target frequency, driving cells for input ports,
load cells for outputs ports, maximum and minimum input delay, and much more
options could be set.

Also, technological library have to be defined. It contains cells references avail-
able in current technology. Once Synthesis tool is run, after many optimizations,
netlist of cells and report files are generated. Report contains information about

56

registers, estimation of power consumption, hierarchy, timing, references, area and
if any exist, timing violators.

Implementation for ASIC utilizes different approach when compared to imple-
mentation for FPGA. When synthesis for FPGA is done, its output is maximum
achievable frequency in target FPGA. Synthesizer for ASICs works differently. It is
trying to achieve defined frequency with defined corners (maximum area, maximum
power consumption, etc).

Verified RTL

Synthesis toolConstrains Netlist &
report

Technology
library

Fig. 2.21: Synthesis workflow

2.4.2 Synthesis results

Synthesis has been run for different target frequencies and register configuration
depending on required performance of 2-D binDCT block. TSMC 65 nm technology
process family includes General Purpose (GP), Low Power (LP), Ultra-Low Power
(ULP) and LPG options. Each process supports low, standard, and high 𝑉t options.
Operating voltages range from 0.9 V to 1.26 V. [39] Low Power option has been
chosen because it provides compromise between speed and power consumption.

Global operating voltage for all synthesis settings is 1.08 V.

Tab. 2.9: Power estimation for frequency 4 MHz and register configuration 000001

Power group
Internal

power [mW]
Switch.

power [mW]
Leakage

power [nW]
Total power

[mW]
clock network 3.1971e-02 3.2878 8.5846 3.3198
register 3.8694e-02 4.1302e-04 4.2204e+03 4.3327e-02
combinational 3.3019e-03 2.0206e-03 3.6300e+03 8.9526e-03
Total 7.3967e-02 3.2902 7.8591e+03 3.3721

57

Requirements for the block are to be able compute DCT of VGA resolution in
30 fps. As seen in Table 2.1, in worst case (without any chrominance subsampling)
221.18 MBit/s has to be computed. This is achieved when working frequency is
4 MHz. Table 2.9 shows power estimation and Table 2.10 shows area report after
synthesis for clock frequency 4 MHz.

Tab. 2.10: Area report for frequency 4 MHz and register configuration 000001

Number of ports 213
Number of nets 6066
Number of cells 5356
Number of combinational cells 3454
Number of sequential cells 1896
Number of buf/inv 641
Number of references 65
Area type Area [𝜇m2]
Combinational area: 12232.80
Buf/Inv area: 734.04
Noncombinational area: 19374.48
Total cell area: 31607.28

When correctly configured, clock is also capable running at higher frequencies.
This is achieved by registering output of every stage in 1-D DCT block (parameter
REG = 111111). Table 2.11 shows power estimation and Table 2.12 shows area
report for clock frequency 300 MHz.

Tab. 2.11: Power estimation for frequency 300 MHz and register configuration
111111

Power group
Internal

power [mW]
Switch.

power [mW]
Leakage

power [𝜇W]
Total power

[mW]
clock network 2.38 244.59 8.58 246.97
register 2.90 3.12e-02 4289.2 2.94
combinational 0.26 0.16 4135.3 0.42
Total 5.54 244.78 8433 250.33

58

Tab. 2.12: Area report for frequency 300 MHz and register configuration 111111

Number of ports 213
Number of nets 7807
Number of cells 7007
Number of combinational cells 4039
Number of sequential cells 2962
Number of buf/inv 766
Number of references 79
Area type Area [𝜇m2]
Combinational area: 13974.48
Buf/Inv area: 906.12
Noncombinational area: 30501.36
Total cell area: 44475.84

Power consumption and area for different register configuration and working
frequency is summarized in Table 2.13. With working frequency 4 MHz DCT coeffi-
cients of VGA resolution video stream with 30 fps can be calculated. With working
frequency 300 MHz DCT block is able to calculate video stream with 8K resolution
(Table 2.1) with 25 fps and 4:2:2 chrominance subsampling scheme, because it re-
quires bandwith 13271 MBit/s and block is able to compute 19200 MBit/s at this
frequency.

Tab. 2.13: Summary of synthesis with different configuration and performance com-
parison

Frequency
[MHz]

Registers
Total power

[mW]
Area
[𝜇m2]

Bandwidth
[MBit/s]

1 000001 0.84 31607.64 64
4 000001 3.37 31607.28 256

10 000001 8.53 33750.36 640
50 111111 41.97 43095.95 3200

100 111111 83.46 43100.28 6400
300 111111 250.3 44475.84 19200

59

CONCLUSION
Goal of this master’s thesis was to create theoretical summary of Discrete Cosine
Transform (DCT) definition, computational principles, areas of usage, compare dif-
ferent algorithms for DCT computation and clarify its usage in compression method
like JPEG and MJPEG. Practical goal was to create IP block for hardware acceler-
ation of MJPEG compression of video data with resolution of 640 × 480 pixels and
frame rate of 30 fps.

There is comparison of some known DCT algorithms in theoretical part. Two
of them have been found as VLSI-perspective solution. First of them is called Lo-
effler’s algorithm achieves theoretical minimum of arithmetical operations needed –
11 multiplications and 29 additions. It requires floating-point multiplication hence
it is not effective in term of area and speed. Second of perspective algorithms is
DCT approximation using lifting scheme also called as binary DCT algorithm. It
requires no multiplication – these computation steps are approximated by binary
shifts and additions only. For this reason bin DCT algorithms has been chosen to
be implemented.

In first step model in C language has been created and then verified against
MATLAB specification as reference. Then block has been described at RTL level
using Verilog 2001 language. For usage with MJPEG compression which uses 8 × 8
blocks for DCT computation and 8-bit resolution per pixel, it requires 64-bit input
vector of data. It consist from 8 input samples (no matter if it is row or column).
After 10 to 20 clock cycles (depending on the register setting) there are 144-bit wide
output vector consists from 8 output DCT coefficients.

Synthesis to TSMC 65 nm low power technology revealed block’s performance,
area and power consumption. Performance and power consumption is dependent on
working clock frequency.

For accelerating video data with resolution of 640 × 480 pixels and frame rate of
30 fps, at least 110.6 Mbps throughput is needed when considering 4:2:0 chrominance
subsampling scheme. Otherwise at least 221.2 Mbps is needed for 4:4:4 scheme.
Block synthesized to 4 MHz target clock constrain is able to provide throughput up
to 256 Mbps hence it allows acceleration VGA video for both considered chrominance
subsampling schemes. Its area is 31607.64 𝜇m2 and estimated power consumption
is 3.37 mW.

With respect to maximum combinational path in design and synthesized tech-
nology, there are some limits with working frequency. When runs on maximum

60

frequency 300 MHz, block is capable of data throughput 19.2 Gbps which is enough
for acceleration of 8K video (7680 × 3840) pixels with 8-bits per pixel and 25 fps.
Chrominance subsampling scheme is considered as 4:2:2. Current consumer elec-
tronics trends head to use this resolution in digital television broadcasting. Block’s
area is 44475.84 𝜇m2 and estimated power consumption is 250.3 mW.

All goals of this thesis have been successfully fulfilled.

61

BIBLIOGRAPHY
[1] RAO, K and P YIP. Discrete cosine transform: algorithms, advantages,

applications. Boston: Academic Press, 1990, xviii, 490 p. ISBN 01-258-0203-X.

[2] ZHONGDE W. Fast algorithms for the discrete W transform and for the
discrete Fourier transform. In: IEEE Transactions on Acoustics, Speech, and
Signal Processing. 1984, p. 803-816. ISSN 0096-3518. DOI:
10.1109/TASSP.1984.1164399. Available from: <http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1164399>

[3] AHMED, N., T. NATARAJAN and K.R. RAO. Discrete Cosine Transform.
In: IEEE Transactions on computers. New York: IEEE Computer Society,
1974, p. 90-93. ISSN 0018-9340. Available from:
<https://www.ic.tu-berlin.de/fileadmin/fg121/Source-Coding_WS12/
selected-readings/Ahmed_et_al.__1974.pdf>

[4] LOEFFLER, C., A. LIGTENBERG and G.S. MOSCHYTZ. Practical fast
1-D DCT algorithms with 11 multiplications. International Conference on
Acoustics, Speech, and Signal Processing. IEEE, 1989, vol.2, p. 988-991. DOI:
10.1109/ICASSP.1989.266596. Available from:
<http://www3.matapp.unimib.it/corsi-2007-2008/informatica/
calcolo-numerico/jpeg/papers/11-multiplications.pdf>

[5] Discrete cosine transform (DCT). Mathworks documentation [online]. 2015
[cit. 2015-05-03]. Available from:
<http://www.mathworks.com/help/signal/ref/dct.html>

[6] Discrete Cosine Transform. 2015. MathWorks Documentation [online]. [cit.
2015-05-11]. Available from: <http:
//www.mathworks.com/help/images/discrete-cosine-transform.html>

[7] SOVIČ, D. Kompresný štandard JPEG. Dušanové stránky o kopresii:
Základné kompresné algoritmy a štandardy [online]. 2000 [cit. 2014-12-17].
Available from: <http://pakuj.brek.sk/jpeg/jpeg.html>

[8] WALLACE, G. The JPEG Still Picture Compression Standard. IEEE
Transactions on Consumer Electronics. 1991. Available from: <http:
//www-ee.eng.hawaii.edu/~treed/EE416/Project_4/jpeg-wallace.pdf>

[9] INFORMATION TECHNOLOGY – DIGITAL COMPRESSION AND
CODING OF CONTINUOUS-TONE STILL IMAGES – REQUIREMENTS

62

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1164399
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1164399
https://www.ic.tu-berlin.de/fileadmin/fg121/Source-Coding_WS12/selected-readings/Ahmed_et_al.__1974.pdf
https://www.ic.tu-berlin.de/fileadmin/fg121/Source-Coding_WS12/selected-readings/Ahmed_et_al.__1974.pdf
http://www3.matapp.unimib.it/corsi-2007-2008/informatica/calcolo-numerico/jpeg/papers/11-multiplications.pdf
http://www3.matapp.unimib.it/corsi-2007-2008/informatica/calcolo-numerico/jpeg/papers/11-multiplications.pdf
http://www.mathworks.com/help/signal/ref/dct.html
http://www.mathworks.com/help/images/discrete-cosine-transform.html
http://www.mathworks.com/help/images/discrete-cosine-transform.html
http://pakuj.brek.sk/jpeg/jpeg.html
http://www-ee.eng.hawaii.edu/~treed/EE416/Project_4/jpeg-wallace.pdf
http://www-ee.eng.hawaii.edu/~treed/EE416/Project_4/jpeg-wallace.pdf

AND GUIDELINES. 1993. In: CCITT T.81 [online]. [cit. 2015-05-05].
Available from: <http://www.w3.org/Graphics/JPEG/itu-t81.pdf>

[10] MPEG-2 Video. The Moving Picture Experts Group [online]. 2006 [cit.
2014-11-30]. Available from:
<http://mpeg.chiariglione.org/standards/mpeg-2/video>

[11] MPEG-4 Visual. The Moving Picture Experts Group [online]. 2005 [cit.
2014-11-30]. Available from:
<http://mpeg.chiariglione.org/standards/mpeg-4/video>

[12] MJPEG vs MPEG4. In: Understanding the differences, advantages and
disadvantages of each compression technique: White Paper [online]. 2006 [cit.
2014-11-30]. Available from: <http:
//www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf>

[13] Microsoft Windows Bitmap Format. FileFormat.Info [online]. 1993 [cit.
2014-11-30]. Available from: <http://www.fileformat.info/format/bmp/
spec/b7c72ebab8064da48ae5ed0c053c67a4/view.htm>

[14] Codec Specs. Matroska [online]. 2005 [cit. 2014-11-30]. Available from:
<http://www.matroska.org/technical/specs/codecid/index.html>

[15] HARALICK. A Storage Efficient Way to Implement the Discrete Cosine
Transform. IEEE Transactions on Computers. 1976, C-25, issue 7, pp.
764-765. DOI: 10.1109/tc.1976.1674687.

[16] VETTERLI, M., M. EURASIP and H. J. NUSSBAUMER. Simple FFT and
DCT algorithms with reduced number of operations. Signal Processing. 1984,
vol. 6, issue 4, pp. 267-278. DOI: 10.1016/0165-1684(84)90059-8.

[17] W. CHEN, C. SMITH and S. FRALICK. A Fast Computational Algorithm
for the Discrete Cosine Transform. In: IEEE Transactions on
Communications. 1977, pp. 1004-1009. ISSN 0096-2244. DOI:
10.1109/TCOM.1977.1093941. Available from: <http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1093941>

[18] SUEHIRO, N., M. HATORI. Fast algorithms for the DFT and other sinusoidal
transforms. IEEE Transactions on Acoustics, Speech, and Signal Processing.
1986, vol. 34, issue 3, pp. 642-644. DOI: 10.1109/tassp.1986.1164854.

[19] YIP, P., K. RAO. DIF Algorithms for DCT and DST. ICASSP ’85. IEEE
International Conference on Acoustics, Speech, and Signal Processing. 1985,
pp. 88-121. DOI: 10.1109/icassp.1985.1168246.

63

http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://mpeg.chiariglione.org/standards/mpeg-2/video
http://mpeg.chiariglione.org/standards/mpeg-4/video
http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf
http://www.onssi.com/downloads/OnSSI_WP_compression_techniques.pdf
http://www.fileformat.info/format/bmp/spec/b7c72ebab8064da48ae5ed0c053c67a4/view.htm
http://www.fileformat.info/format/bmp/spec/b7c72ebab8064da48ae5ed0c053c67a4/view.htm
http://www.matroska.org/technical/specs/codecid/index.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1093941
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1093941

[20] HEIN, D. and N. AHMED. On a real-time Walsh-Hadamard cosine transform
image processor. IEEE Trans. Electromag. Compat. 1978, vol. EMC-20, pp.
453-457.

[21] YANG, P. and M. NARASIMHA. Prime factor decomposition of the discrete
cosine transform and its hardware realization. ICASSP ’85. IEEE
International Conference on Acoustics, Speech, and Signal Processing. 1985,
pp. 944-965. DOI: 10.1109/icassp.1985.1168330.

[22] HOU, H. A fast recursive algorithm for computing the discrete cosine
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing.
1987, vol. 35, issue 10, pp. 1455-1461. DOI: 10.1109/tassp.1987.1165060.

[23] LICHTENBERG, A. and J. H. O’NEILL. A single chip solution for an 8 by 8
two dimensional DCT. Intl. Symp. on Circuits and System. 1987, ISCAS 87,
pp. 1128-1131.

[24] TRAN, T.D. The binDCT: fast multiplierless approximation of the DCT.
IEEE Signal Processing Letters. 2000, vol. 7, issue 6, pp. 141-144. DOI:
10.1109/97.844633. Available from: <http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=844633>

[25] LIANG, J. and T.D. TRAN. Fast multiplierless approximations of the DCT
with the lifting scheme. IEEE Transactions on Signal Processing. 2001, vol.
49, issue 12, pp. 3032-3044. DOI: 10.1109/78.969511. Available from:
<http://thanglong.ece.jhu.edu/Tran/Pub/binDCT.pdf>

[26] DANG, P., P. NGUYEN and T. TRAN. 2005. BinDCT and Its Efficient VLSI
Architectures for Real-Time Embedded Applications. JOURNAL OF
IMAGING SCIENCE AND TECHNOLOGY. (2). Available from:
<http://thanglong.ece.jhu.edu/Tran/Pub/binDCT-VLSI.pdf>

[27] NASRABADI, N. and R. KING. Computationally efficient discrete cosine
transform algorithm. Electronics Letters. 1983, vol. 19, issue 1. DOI:
10.1049/el:19830017.

[28] LAMBRECHT, J. Vision models and applications to image and video
processing. Boston: Kluwer Academic, 2001, x, 229 p. ISBN 07-923-7422-3.

[29] Rods and Cones. Hyperphysics [online]. 2014 [cit. 2015-04-23]. Available from:
<http://hyperphysics.phy-astr.gsu.edu/hbase/vision/rodcone.html>

[30] JPEG File Interchange Format. W3.org [online]. 1992 [cit. 2015-04-23].
Available from: <http://www.w3.org/Graphics/JPEG/jfif3.pdf>

64

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=844633
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=844633
http://thanglong.ece.jhu.edu/Tran/Pub/binDCT.pdf
http://thanglong.ece.jhu.edu/Tran/Pub/binDCT-VLSI.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/vision/rodcone.html
http://www.w3.org/Graphics/JPEG/jfif3.pdf

[31] Fixed Point vs Floating Point. Imperial College London [online]. 2005 [cit.
2015-05-27]. Available from: <http://www.ee.ic.ac.uk/pcheung/
teaching/ee3_Study_Project/lecture%205(4).pdf>

[32] Fixed versus Floating Point. The Scientist and Engineer’s Guide to Digital
Signal Processing [online]. 2011 [cit. 2015-04-30]. Available from:
<http://www.dspguide.com/ch28/4.htm>

[33] BHASKER, J. A systemC primer: [system design, IP, RTL, embedded
software, verification]. Allentown, Pa: Star Galaxy Publ, 2002. ISBN
09-650-3918-8.

[34] SystemC. Accellera Systems Initiative [online]. 2014 [cit. 2015-05-03].
Available from: <http://accellera.org/downloads/standards/systemc>

[35] IEEE standard for floating-point arithmetic. New York, NY: Institute of
Electrical and Electronics Engineers, 2008. ISBN 978-073-8157-528. Available
from: <http://www.math.fsu.edu/~gallivan/courses/FCM1/
IEEE-fpstandard-2008.pdf.gz>

[36] An introduction to different rounding algorithms. EE Times [online]. 2006
[cit. 2015-05-16]. Available from:
<http://www.eetimes.com/document.asp?doc_id=1274485>

[37] INFORMATION TECHNOLOGY – DIGITAL COMPRESSION AND
CODING OF CONTINUOUS-TONE STILL IMAGES – REQUIREMENTS
AND GUIDELINES. 1993. In: CCITT T.81 [online]. [cit. 2015-05-05].
Available from: <http://www.w3.org/Graphics/JPEG/itu-t81.pdf>

[38] HDL analysis (HAL) User Guide. Cadence [online]. 2004 [cit. 2015-05-17].
Available from:
<http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:
DocumentViewer;src=pubs;q=/hal/hal9.2/titlecopy.html>

[39] 65nm Technology. TSMC [online]. 2010 [cit. 2015-05-26]. Available from:
<http:
//www.tsmc.com/english/dedicatedFoundry/technology/65nm.htm>

[40] SMITH, M. Application-specific integrated circuits. Reading, Mass:
Addison-Wesley, 2008. ISBN 03-216-0275-7.

[41] VEENDRICK, Harry. Deep-submicron CMOS-ICs: from basics to ASICs. 2.
Engl. ed. Dordrecht [u.a.]: Kluwer Acad. Publ, 2000. ISBN 90-440-0111-6.

65

http://www.ee.ic.ac.uk/pcheung/teaching/ee3_Study_Project/lecture%205(4).pdf
http://www.ee.ic.ac.uk/pcheung/teaching/ee3_Study_Project/lecture%205(4).pdf
http://www.dspguide.com/ch28/4.htm
http://accellera.org/downloads/standards/systemc
http://www.math.fsu.edu/~gallivan/courses/FCM1/IEEE-fpstandard-2008.pdf.gz
http://www.math.fsu.edu/~gallivan/courses/FCM1/IEEE-fpstandard-2008.pdf.gz
http://www.eetimes.com/document.asp?doc_id=1274485
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=pubs;q=/hal/hal9.2/titlecopy.html
http://support.cadence.com/wps/mypoc/cos?uri=deeplinkmin:DocumentViewer;src=pubs;q=/hal/hal9.2/titlecopy.html
http://www.tsmc.com/english/dedicatedFoundry/technology/65nm.htm
http://www.tsmc.com/english/dedicatedFoundry/technology/65nm.htm

[42] CILETTI, Michael D. Advanced digital design with the Verilog HDL. Upper
Saddle River: Prentice Hall, 2003, xxi, 982 p. ISBN 01-308-9161-4.

[43] BHASKER, Jayaram. A Verilog HDL primer. 2nd ed. Allentown, PA: Star
Galaxy Pub., 1999, xix, 294 p. ISBN 09-650-3917-X.

[44] BERGERON, Janick. Writing testbenches: functional verification of HDL
models. Boston: Kluwer Academic, 2000, xxii, 354 p. ISBN 07-923-7766-4.

[45] The Verilog Golden reference guide. Version 2.0. Ringwood, GB: Doulos, 2003.
ISBN 09-537-2804-8.

[46] Low power design methodologies. Editor Jan M Rabaey, Massoud Pedram.
Boston: Kluwer Academic Publishers, 1996, x, 367 p. ISBN 07-923-9630-8.

[47] WILLIAMS, J. Digital VLSI design with verilog: a textbook from Silicon
Valley Technical Institute. Dordrecht: Springer, 2008, xxiii, 435 p. ISBN
978-1-4020-8445-4.

[48] JAIN, K. Fundamentals of digital image processing. Englewood Cliffs, NJ:
Prentice Hall, 1989, xxi, 569 p. ISBN 01-333-6165-9.

[49] SystemVerilog Golden Reference Guide. 2004. Ringwood, UK: Doulos Ltd.
ISBN 0-9547345-0-5.

[50] Asic World [online]. 2014 [cit. 2015-05-23]. Available from:
<http://www.asic-world.com>

66

http://www.asic-world.com

LIST OF SYMBOLS, PHYSICAL CONSTANTS
AND ABBREVIATIONS
DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

MDCT Modified Discrete Cosine Transform

VLSI Very-Large-Scale integration

HDL Hardware Description Language

RTL Register Transfer Level

CMOS Complementary-Metal-Oxide-Semiconductor

ASIC Application-Specific Integrated Circuit

JPEG Joint Photographic Experts Group

MPEG Moving Picture Experts Group

MP3 MPEG-1 or MPEG-2 Audio Layer III

KLT Karhunen-Loeve transform

AVC Advanced Video Codec

CPU Central Processing Unit

DSP Digital Signal Processing

FPGA Field Programable Logic Array

DIT Decimation-in-Time

DIF Decimation-in-Frequency

DHT Discrete Hardley Transform

WHT Walsh-Hadamard Transform

PFA Prime Factor Algorithm

binDCT Binary Discrete Cosine Transform

fps Frames per second

67

PSNR Peak Signal-to-Noise Ration

MSE Mean-Squared Error

FSM Finite State Machine

HAL HDL Analysis

DUT Design Under Test

HTML Hyper-Text Markup Language

ICCR Incinsive Code Coverage Report

TSMC Taiwan Semiconductor Manufacturing Company

IP Intellectual Property

68

LIST OF USED SOFTWARE
• MATLAB (R2014a)
• TEXnic Center 2.02
• Microsoft Visio 2010
• Adobe Illustrator CS5.1
• Microsoft Visual Studio 2010
• Paint.NET
• Red Hat Enterprise Linux Workstation 6.5 (Santiago)
• Cadence Incinsive 13.10.003
• Synopsys 2014.09-SP2
• NEdit 2.3.1

69

LIST OF APPENDICES

A Contents of the attached CD 71

70

A CONTENTS OF THE ATTACHED CD

Tab. A.1: List of folders and their content description

Folder name Description

c

Model in C and reference images. Model
can be run by c_model_golded_vector file.
It generates output images and both input
and output vectors for the RTL simulation.

CONSTRAINS Contains constrains files for synthesis.

nccoex
Simulation of RTL and HEL debug. Can be
run by run_simulation and run_hal
scripts.

RTL Verilog files with RTL description of design.

synopsys
Synthesis folder. Contains synthesis results
and reports. Synthesis can be run by
run_synopsys script.

TESTBENCH
Contains testbench and textcases files as
well as input and output test vectors
generated by model

verdi Folder for verdi debuging tool.

71

	Introduction
	Theoretical part
	Fourier transform
	Definition of Fourier transform

	Discrete cosine transform
	Definition of discrete cosine transform
	DCT-II
	Two dimensional DCT-II

	Applications of DCT
	JPEG
	M-JPEG

	Overview of DCT computation methods
	DCT via DFT
	Using sparse factorization scheme
	Decimation-in-Time (DIT) and Decimation-in-Frequency (DIF)
	DCT via other discrete transforms
	DCT via Prime Factor Algorithm
	DCT via recursive computation
	DCT realization via planar rotations

	Algorithms for DCT
	Loeffler's DCT algorithm
	Multiplierless approx. of DCT with lifting scheme

	Algorithms for 2-D DCT
	2-D DCT with row-column transposition
	2-D DCT using lexicographical reordering
	Other methods for 2-D DCT

	Human visual perception
	Color models
	Chroma subsampling

	Number representation
	Q number format

	Practical part
	Hardware prerequisites
	DCT algorithm choice
	Design methodology

	Hardware modeling
	Precision modeling
	One-dimensional bin DCT modeling
	Two-dimensional bin DCT modeling
	Reference data comparison

	RTL
	One-dimensional DCT block
	Two-dimensional DCT block

	Verification
	Verification methodology
	Code coverage

	Physical implementation
	Synthesis workflow
	Synthesis results

	Conclusion
	Bibliography
	List of symbols, physical constants and abbreviations
	List of used software
	List of appendices
	Contents of the attached CD

