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HIDDEN MODALITIES IN ALGEBRAS WITH

NEGATION AND IMPLICATION

JOUNI JÄRVINEN, MICHIRO KONDO, JORMA K. MATTILA

and SÁNDOR RADELECZKI

Abstract.  Lukasiewicz 3-valued logic may be seen as a logic with hidden truth-

functional modalities defined by ♦A := ¬A → A and �A := ¬(A → ¬A). It is
known that axioms (K), (T), (B), (D), (S4), (S5) are provable for these modalities,

and rule (RN) is admissible. We show that, if analogously defined modalities are

adopted in  Lukasiewicz 4-valued logic, then (K), (T), (D), (B) are provable, and
(RN) is admissible. In addition, we show that in the canonical n-valued  Lukasiewicz-

Moisil algebras Ln, identities corresponding to (K), (T), and (D) hold for all n ≥
3 and �1 = 1. We define analogous operations in residuated lattices and show

that residuated lattices determine modal systems in which axioms (K) and (D) are

provable and �1 = 1 holds. Involutive residuated lattices satisfy also the identity
corresponding to (T). We also show that involutive residuated lattices do not satisfy

identities corresponding to (S4) nor (S5). Finally, we show that in Heyting algebras,

and thus in intuitionistic logic, ♦ and � are equal, and they correspond to the double
negation ¬¬.

1. Some historical remarks

We refer here to Nicholas Rescher, who has considered the history of many-valued
logics in Chapter 1 of his book Many-valued Logic [17], and William and Martha
Kneale’s book The Development of Logic [11]. Rescher ([17], pp. 1–2) writes:

“In Chap. 9 of his treatise De interpretatione Aristotle discussed
the truth status of alternatives regarding “future-contingent” mat-
ters, whose occurrence – like that of the sea battle tomorrow – is
not yet determinable by us, and may indeed actually be unde-
termined. His views on the matter are still disputed, but many
commentators, both in antiquity and later, held him to maintain
that propositions about future contingents, like that asserting the
occurrence of the sea battle tomorrow, are neither actually true
nor actually false, but potentially either, thus having – at least
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prior to the event – a third, indeterminate truth status. The ac-
ceptance of the principle of bivalence was, in antiquity, closely
bound up with the doctrine of determinism.”

The indeterminate truth status has been the main question. How to model it?
A solution to this question gives the third truth value. Several attempts have
appeared. These attempts have centralized into two different groups of modalities,
namely alethic and probabilistic modalities. The alethic modalities are (see Rescher
[17, p. 3])

• necessarily true,
• contingently (i.e., actually but not necessarily) true,
• contingently false,
• necessarily false.

The probabilistic modalities are

• certainly true,
• probably true,
• probably false,
• certainly false.

These modalities were studied already in the ancient time of the development
of logic, that is, in the period from Plato’s Academy to the second half of 19th
century. Particularly, Aristoteles constructed a theory of modal statements and
modal syllogisms (see Subsection 7 Aristotle’s Modal logic of Section II in Kneale
& Kneale [11]).

According to Rescher, the early historical period is the period 1875–1916.
The systematic study of many-valued logic began in this period. According to
Rescher, the founding fathers of many-valued logic were Scotsman Hugh MacColl
(1837-1909), American Charles Sanders Peirce (1839–1914), and Russian Nikolai
A. Vasilév (1880–1940).

MacColl sketched a system of propositional logic in which propositions can take
on several distinct truth values, like the modal values of certainty, impossibility,
and variability (contingency). He characterized his system as a “logic of three
dimensions”. So, MacColl counted mainly on probabilistic modalities.

Peirce approached the ideas of many-valued logic from several points of de-
parture. For one thing, he conceived of the idea of a neutral truth value in the
traditional context of Aristotle’s problem of future contingency. Peirce seemed
to study mainly alethic modalities, and so did Vasilév, for creating indeterminate
truth values.

In the period 1910–1914 Vasilév published several papers about what he called
“imaginary non-Aristotelian logics”. He described his work as an attempt to do
for Aristotelian logic the same as an earlier professor at Kazan University, Nikolai
Lobachevsky, had done for Euclidean geometry. Vasilév wanted to see what logical
principles could be changed or eliminated from logic without its ceasing to be logic.

According to Rescher, the period 1920–1932 is called the pioneering era in the
development of many-valued logics. Rescher writes:
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“The actual inauguration of many-valued logic must be dated from
the pioneering papers of the Pole Jan  Lukasiewicz and the Amer-
ican Emil L. Post, published in the early 1920s, in which the
first development systematizations of many-valued logic are pre-
sented.”

Some history of these pioneering things is also given in Subsection 5 of Section IX
of Kneale & Kneale [11].

 Lukasiewicz first published his 3-valued system of logic in a lecture before the
Polish Philosophical Society in Lwów in 1920.  Lukasiewicz’ motivation for defining
the derived connectives disjunction and conjunction by means of the primitive
connectives negation and implication, and further the modal operation possible,
on the suggestion of his pupil A. Tarski, is described largely in Subsection 5 of
Section IX of Kneale & Kneale [11].

What is followed from those earlier periods can be seen in the next period
1932–1965. The theory and applications of many-valued logic were developed
along a great variety of lines during the period 1920–1932. Various writers have
recently carried further the study of the initial 3-valued logic of  Lukasiewicz and his
later many-valued generalizations of it. In this regard, apart from the continuing
contributions of  Lukasiewicz himself and the results of Wajsberg, the work of other
logicians of the Polish school – Alfred Tarski, Jerzy S lupeci, Boles law Sobociński,
and others – is especially important. The same can be said about the joint works
of James Barkley Rosser and Atwell R. Turquette, and papers by Emil L. Post,
Helena Rasiowa, Allan Rose, and Chen Chung Chang.

In the late 1950s, the interest in many valued logics appeared to decrease. The
main reason may have been that further applications did not appear, especially in
the field of philosophy.

A new outcome of many-valued logics appeared after Lotfi A. Zadeh’s introduc-
tion to fuzzy set theory. Particularly, algebraic theories of many-valuation began
to develop again. A Polish counterpart to fuzzy sets, namely rough sets was due
to Zdzis law Pawlak. A new topic of research, soft computing was formed by the
connection of fuzzy sets, rough sets, probability, neural networks and genetic al-
gorithms into the same field. So, a new period began, which we may call recent
period or soft computing period (1965–).

2.  L3 as a modal logic

Three-valued system of propositional calculus was constructed by Jan  Lukasiewicz.
In his 3-valued logic, propositions can have the truth values T , I, and F , where
T stands for “true”, I means “neither true or false”, called also “intermediate”,
and F denotes “false”. These values may be ordered by F < I < T . Obeying
the philosophical tradition, we mostly use these letter symbols for the truth values
instead of numeric symbols, such as 0, 1

2 , and 1.
 Lukasiewicz chose the connectives of negation and implication as primitives and

defined them in his 3-valued logic, denoted by  L3, as in Table 1.
In 1930’s, Mordchaj Wajsberg proposed an axiomatization for  L3:

(Ax1) A→ (B → A),
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¬
T F
I I
F T

→ T I F
T T I F
I T T I
F T T T

Table 1. Truth tables for negation (left) and implication (right).

(Ax2) (A→ B)→ ((B → C)→ (A→ C)),
(Ax3) ((A→ B)→ B)→ ((B → A)→ A),
(Ax4) (¬B → ¬A)→ (A→ B).

The only rule of inference is modus ponens:

(MP)
A A→ B

B
.

A proof is any finite sequence of formulas, each of which is an axiom or an im-
mediate consequence, by applying (MP), of preceding formulas of the sequence.
Any proof is said to prove its last formula, which is called a theorem or provable
formula.

A valuation is a mapping v assigning to each propositional variable p its truth
value v(p) ∈ {F, I, T}. Every valuation v extends canonically to all formulas by

v(¬A) = ¬v(A) and v(A→ B) = v(A)→ v(B)

A formula A is valid, if v(A) = T for all valuations v. As proved by Wajsberg, the
axiom system (Ax1)–(Ax4) with the rule modus ponens is complete with respect
to the 3-element chain equipped with the operations presented in Table 1, that is,
a formula of this system is provable if and only if it is valid.

 Lukasiewicz also introduced 3-valued modal operations of possibility and neces-
sity (see [17, p. 25] for further details) presented in Table 2.

♦ �
T T T
I T F
F F F

Table 2. Truth tables for ♦ and �.

Based on the truth-table semantics of Table 2, we can define valuations for the
formulas ♦A and �A by setting

v(♦A) = ♦v(A) and v(�A) = �v(A),

for any formula A.
Notice that � and ♦ are mutually dual, that is, �A ≡ ¬♦¬A and ♦A ≡ ¬�¬A

for all formulas A, where A ≡ B means that the formulas A and B are semantically
equivalent, that is, v(A) = v(B) for all valuations v. A complete analysis of 3-
valued valuations and evaluation rules in  L3 is given, e.g., in Mattila [13].
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Alfred Tarski, being at that time  Lukasiewicz’ assistant, found out that the
formula

¬A→ A (1.1)

has exactly the same truth table as the formula ♦A. Analogously, it is easy to
see that the formulas ¬(A→ ¬A) and �A have identical truth tables. The above
then means that in  L3, the modalities ♦ and � can be defined in terms of the
negation ¬ and the implication → by setting

♦A := ¬A→ A and �A := ¬(A→ ¬A). (1.2)

Thus,  L3 can be viewed as a logic of hidden modalities.
In the sequel, we use (1.2) as the definitions for truth-functional modal operators.

Recall that a connective is truth-functional if and only if the truth value of any
compound statement obtained by applying that connective is a function completely
determined by the individual truth values of the constituent statements that form
the compound.

Most of the so-called normal modal logical systems can be characterized in terms
of the following axiom schemata:

(K) �(A→ B)→ (�A→ �B),
(T) �A→ A,
(B) A→ �♦A,
(D) �A→ ♦A,
(S4) �A→ ��A,
(S5) ♦A→ �♦A.

In addition, the inference rule (RN) is usually included:

(RN)
A

�A
.

First, we consider these schemata in the framework of the logic  L3. The next
proposition can be easily verified by applying truth-tables (cf. [13]).

Proposition 2.1.  Lukasiewicz 3-valued logic  L3 is sound with respect to ax-
ioms (K), (T), (B), (D), (S4), (S5), that is, they are valid formulas. Additionally,
the rules (MP) and (RN) preserve validity.

It is well known that the propositional two-valued modal logic is not truth-
functional.  Lukasiewicz’ motivation for his 3-valued logic was to construct a truth-
functional logic for modal operators. In that task he succeeded completely.

We note that if these definitions are done in propositional two-valued logic,
then ♦A ≡ A ≡ �A for all formulas A. In Section 4, we study the properties
of modalities (1.2) in  Lukasiewicz–Moisil algebras, and Section 4 is devoted to
the operators in residuated lattices and Heyting algebras generalizing the above
3-valued system.

3.  Lukasiewicz-Moisil algebras

In 1940, Grigore Moisil introduced the n-valued  Lukasiewicz algebras. Nowadays,
these algebras are commonly called as  Lukasiewicz–Moisil algebras. They are
distributive lattices with a De Morgan negation and n−1 modal operators fulfilling
the axioms given in Definition 3.2 defined on them.
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First, we recall the definition of De Morgan algebras from [1].

Definition 3.1. A De Morgan algebra is an algebra (L,∨,∧,¬, 0, 1), where
(L,∨,∧, 0, 1) is a bounded distributive lattice and ¬ is a unary operator satisfying
the conditions:

(DM1) ¬x ∨ ¬y = ¬(x ∧ y),
(DM2) ¬x ∧ ¬y = ¬(x ∨ y),
(DM3) ¬¬x = x.

Note that De Morgan algebras are also called quasi-Boolean algebras (see, e.g.,
[16]).

The following definition of n-valued  Lukasiewicz–Moisil algebras can be found
in [5], for example.

Definition 3.2. An n-valued  Lukasiewicz–Moisil algebra, for n ≥ 2, is a de Mor-
gan algebra (L,∨,∧,¬, 0, 1) with unary operators φ1, φ2, . . . , φn−1 fulfilling the
conditions:

(LM1) φi(x ∨ y) = φi(x) ∨ φi(y) for all 1 ≤ i ≤ n− 1.
(LM2) φi(x) ∨ ¬φi(x) = 1 for all 1 ≤ i ≤ n− 1.
(LM3) φi(φj(x)) = φj(x) all 1 ≤ i, j ≤ n− 1.
(LM4) φi(¬x) = ¬φn−i(x) for all 1 ≤ i ≤ n− 1.
(LM5) φ1(x) ≥ φ2(x) ≥ · · · ≥ φn−1(x).
(LM6) If φi(x) = φi(y) for all 1 ≤ i ≤ n− 1, then x = y.

The condition (LM6) is called the determination principle. Let us mention that
there exists also a variant of the definition in which condition (LM5) is replaced
by the condition

φ1(x) ≤ φ2(x) ≤ · · · ≤ φn−1(x).

Note also that an equational characterization of n-valued  Lukasiewicz–Moisil al-
gebras can be found in [1].

In particular, for 3-valued  Lukasiewicz–Moisil algebras, we have that

φ1(x) = ¬φ2(¬x)

by ( L4), that is, φ1 and φ2 are dual. This means that the conditions of Defini-
tion 3.2 can be presented in a simpler form by using only one operator ♦ = φ1
corresponding to “possibility”.

Example 3.3. Three-valued  Lukasiewicz–Moisil algebras have an interesting
connection to rough sets introduced by Zdzis law Pawlak in [15]. In rough set
theory, knowledge about objects is given in terms of an equivalence relation ≈,
which is interpreted so that two objects x and y of some universe of discourse U
are ≈-related, that is, x ≈ y if and only if x and y are indiscernible with respect
to their properties known by us. Let [x]≈ denote the ≈-class of x ∈ U , that is, the
elements of U that have exactly the same properties as x. The lower approximation
of X ⊆ U is defined by

X = {x ∈ U | [x]≈ ⊆ X},
and the upper approximation of X is defined as

X = {x ∈ U | [x]≈ ∩X 6= ∅}.
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The set X can be interpreted as a set of elements that certainly are in X in view
of the knowledge restricted by ≈, because if x ∈ X, then all elements that are
indiscernible with x are also in X. Analogously, X may be viewed as the set of
elements possibly in X in view of the knowledge ≈, because if x ∈ X, there exists
at least one element y ∈ X such that x ≈ y. The set of all rough sets is then
defined as

RS = {(X,X) | X ⊆ U}.
As noted in [14], on RS, a three-valued  Lukasiewicz–Moisil algebra

(RS,∨,∧,♦,�,¬, 0, 1)

can be defined by setting for all X,Y ⊆ U :

(X,X) ∨ (Y , Y ) = (X ∪ Y ,X ∪X);

(X,X) ∧ (Y , Y ) = (X ∩ Y ,X ∩X);

♦(X,X) = (X,X);

�(X,X) = (X,X);

¬(X,X) = (U \X,U \X);

0 = (∅, ∅);
1 = (U,U).

Note that in [9], Jouni Järvinen and Sándor Radeleczki considered rough sets
determined by quasiorders (reflexive and transitive binary relations), and showed
that they form Nelson algebras.

Next we recall canonical n-valued  Lukasiewicz–Moisil algebras (see [2], for ex-
ample). They are structures

(Ln,∨,∧,¬, φ1, . . . , φn, 0, 1),

where

Ln =

{
0,

1

n− 1
,

2

n− 1
, . . . ,

n− 2

n− 1
, 1

}
and the operations are defined as

x ∨ y = max{x, y},
x ∧ y = min{x, y},
¬x = 1− x, and

φi

(
j

n− 1

)
=

{
1 if j ≥ i
0 if j < i.

So-called  Lukasiewicz t-norm is defined in Ln by

x� y = max{0, x+ y − 1}
and the corresponding to  Lukasiewicz implication is defined as:

x→ y =

{
1 if x ≤ y,
1− x+ y otherwise.
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So, the structure

(Ln,∨,∧,�,→, 0, 1)

is an involutive residuated lattice. Note that residuated lattices are considered in
detail in Section 4.

Next we study in Ln the properties of the operators ♦ and � defined as in (1.2).
This means that, for all n ≥ 3,

♦x = min{1, 2x} and �x = max{0, 2x− 1}

in Ln. It is now easy to observe that

♦x = 1 ⇐⇒ x ≥ 1

2
and �x > 0 ⇐⇒ x >

1

2
.

In particular, if n = 3, then φ1 = ♦ and φ2 = �. Hence, ♦x = 0 if x = 0 and
♦x = 1 if x = 1 or x = 1

2 . Similarly, �x = 1 if x = 1 and �x = 0 if x = 0 or

x = 1
2 . For n = 4, the values are presented in Table 3. So, in L4,

φ1 ≥ ♦ ≥ φ2 ≥ � ≥ φ3.

In addition, �1 = 1.

φ1 ♦ φ2 � φ3
0 0 0 0 0 0
1
3 1 2

3 0 0 0
2
3 1 1 1 1

3 0

1 1 1 1 1 1

Table 3. Values of φ1, ♦, φ2, �, φ3 for the case n = 4.

It is also easy to observe that for n ≥ 5,

φ1 ≥ ♦ ≥ � ≥ φn−1,

but the other functions φ2, . . . , φn−2 are often incomparable with ♦ and �. For
instance, if n = 6, then

φ2
(
1
5

)
= 0 < 2

5 = ♦
(
1
5

)
,

but

φ2
(
2
5

)
= 1 > 4

5 = ♦
(
2
5

)
.

The law of excluded middle A∨¬A is valid in classical propositional logic, but
not in most many-valued logics such as intuitionistic logic or  L3. Note that in the
literature expressions like x∨¬x or ¬(x∨¬x) are called abnormal objects and are
intensively studied by several logicians. It is easy to see that, in Ln,

x ∨ ¬x =
∣∣x− 1

2

∣∣+ 1
2 .

Thus,

♦(x ∨ ¬x) = 1
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for any x ∈ Ln. On the other hand,

�(x ∨ ¬x) = max{0, 2
(∣∣x− 1

2

∣∣+ 1
2

)
− 1}

= max{0, 2
∣∣x− 1

2

∣∣}
= 2

∣∣x− 1
2

∣∣ .
This means that �(x ∨ ¬x) = 0 if and only if x = 1

2 . This is possible only in Ln

with n odd. In other words, if n is even, then �(x ∨ ¬x) > 0 for all x ∈ Ln.
In the next section, we will show that, in involutive residuated lattices,

�(x→ y)→ (�x→ �y) = 1 and �x→ x = 1.

Thus, equations corresponding to axiom schemata (K) and (T) are valid in Ln.
In addition, by applying “truth tables”, we can observe that the equation

x→ �♦x = 1

corresponding to schema (B) is valid in L4. However, if n ≥ 5, then for x = 1
n−1 ,

♦x = 2
n−1 and �♦x = 0.

Thus, the equation x→ �♦x = 1 corresponding to schema (B) is not valid in Ln

if n ≥ 5.
Concerning (S4), for n ≥ 4 and x = n−2

n−1 ,

�x = n−3
n−1 and ��x = max{0, n−5

n−1}.

This means that �x→ ��x = 1 does not hold in Ln if n ≥ 4.
Finally, for n ≥ 4, let x = 1

n−1 . Then

♦x = 2
n−1 and �♦x = max{0, 5−n

n−1}.

So, the equation ♦x → �♦x = 1 corresponding to (S5) does not hold in Ln for
n ≥ 4.

Our observations are summarized in the following proposition.

Proposition 3.4. The following propositions hold in canonical n-valued
 Lukasiewicz–Moisil algebras.

(a) For all n ≥ 3, �1 = 1 in Ln.
(b) For all n ≥ 3, the identities corresponding to axiom schemata (K), (T), and

(D) hold in Ln.
(c) The identity corresponding to schema (B) holds only in L3 and L4.
(d) The identities corresponding to schemata (S4) and (S5) hold only in L3.

As noted in [2], [3], it was observed by Alan Rose in 1965 that for n ≥ 5, n-
valued  Lukasiewicz algebras do not correspond to n-valued  Lukasiewicz logic. By
the above observations, we can deduce the following proposition.

Proposition 3.5.  Lukasiewicz 4-valued logic  L4 is sound with respect to axioms
(K), (T), (B), (D), that is, they are valid formulas. Additionally, the rules (MP)
and (RN) preserve validity.
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As proved by Luisa Iturrioz in [8], one may always define in an n-valued
 Lukasiewicz–Moisil algebra L a so-called Heyting implication by

x→ y = y ∨
∧
{¬φi(x) ∨ φi(y) | 1 ≤ i ≤ n− 1}.

Therefore, (L,∨,∧,→, 0, 1) is a Heyting algebra (see also [5]). In a Heyting algebra,
the pseudocomplement (negation) of x is defined as x→ 0. It is obvious that for any
n-valued  Lukasiewicz–Moisil algebras, this induced pseudocomplement negation
differs from the “original” negation ¬. Modalities (1.2) in Heyting algebras are
studied in the following section.

4. Hidden modalities in residuated lattices and Heyting algebras

In the previous sections, we defined ♦ and � as truth functional modal operations
in terms of negation and implication by setting

♦A = ¬A→ A and �A = ¬(A→ ¬A).

We also notice that, in the case of Boolean algebras, these operations are equal,
that is, ♦x = �x = x.

In this section, our purpose is to study the properties of these hidden modalities
in residuated lattices and Heyting algebras. First, we recall from [6] the definition
of residuated lattices.

Definition 4.1. A residuated lattice is an algebra

(L,∨,∧,�,→, 0, 1)

with four binary operations and two constants such that:

(i) The algebra (L,∨,∧, 0, 1) is a lattice with the greatest element 1 and the
least element 0 with respect to the lattice-ordering ≤ of L.

(ii) The algebra (L,�, 1) is a commutative monoid, that is, � is commutative
and associative, and 1� x = x for all x.

(iii) The operations � and → form an adjoint pair, that is, for all x, y, z,

z ≤ (x→ y) ⇐⇒ x� z ≤ y.

Noti that we assume that, in residuated lattices, the operation � is commu-
tative, but in the literature, there exist definitions in which this assumption is
omitted. Also in some definitions, the identity element 1 need not be the greatest
element of the lattice L with respect to its order ≤. In a residuated lattice,

x→ (y → z) = (x� y)→ z,

for all elements x, y, z. We may define negation ¬ on L by setting for all x ∈ L,

¬x = x→ 0.

It is easy to see that

(i) ¬0 = (0→ 0) = 1 and ¬1 = 1→ 0 = 1� (1→ 0) ≤ 0, that is, ¬1 = 0;
(ii) x� x ≤ x, x� ¬x = 0, and x ≤ y ⇐⇒ x→ y = 1;
(iii) x ≤ ¬¬x and ¬x = ¬¬¬x for any x.

In the sequel, we will need the following lemma.
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Lemma 4.2. Let (L,∨,∧,�,→, 0, 1) be a residuated lattice. Then, for all x, y ∈
L,

¬¬x� ¬¬y ≤ ¬¬(x� y).

Proof. For all x, y ∈ L,

¬¬x� ¬¬y → ¬¬(x� y) = ¬¬x→ (¬¬y → ¬¬(x� y))

= ¬¬x→ (¬(x� y)→ ¬y)

= ¬(x� y)→ (¬¬x→ ¬y)

= ¬(x� y)→ (y → ¬x)

= ¬(x� y)� y → ¬x
= ¬(x� y)� y → (x→ 0)

= ¬(x� y)� (y � x)→ 0

= 0→ 0

= 1.

Hence, ¬¬x� ¬¬y ≤ ¬¬(x� y). �

Let us assume that, for a residuated lattice (L,∨,�,→,∧, 0, 1), the operators
♦ and � are defined as in (1.2), that is,

♦A := ¬A→ A and �A := ¬(A→ ¬A).

Then, we can write the following proposition.

Proposition 4.3. Let (L,∨,∧,�,→, 0, 1) be a residuated lattice. Then, for all
x, y ∈ L,

(i) �x = ¬¬(x� x),
(ii) ♦0 = �0 = 0 and ♦1 = �1 = 1,
(iii) x→ ♦x = 1, ¬¬x→ ♦x = 1, and �x→ ¬¬x = 1,
(iv) x→ y = 1 implies ♦x→ ♦y = 1 and �x→ �y = 1,
(v) �(x→ y)→ (�x→ �y) = 1.

Proof. (i) Obviously, ¬(x� x) = (x� x)→ 0 = x→ (x→ 0) = x→ ¬x. This
implies �x = ¬(x→ ¬x) = ¬¬(x� x).

(ii) Now ♦0 = 1 → 0 = 0 and �0 = ¬(0 → 1) = ¬1 = 0. Similarly, ♦1 = 0 →
1 = 1 and �1 = ¬(1→ 0) = ¬0 = 1.

(iii) For all x ∈ L, x → ♦x = x → (¬x → x) = (x � ¬x) → x = 0 → x = 1.
Similarly, ¬¬x → ♦x = ¬¬x → (¬x → x) = (¬¬x � ¬x) → x = 0 → x = 1.
Because x� x ≤ x, �x = ¬¬(x� x) ≤ ¬¬x. Thus, �x→ ¬¬x = 1.

(iv) Let x → y = 1, that is, x ≤ y. Thus, ♦x = ¬x → x ≤ ¬x → y ≤ ¬y →
y = ♦y. Moreover, x ≤ y implies x � x ≤ x � y ≤ y � y. So, �x = ¬¬(x � x) ≤
¬¬(y � y) = �y.
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(v) By Lemma 4.2,

�(x→ y)��x = ¬¬((x→ y)� (x→ y))� ¬¬(x� x)

≤ ¬¬((x→ y)� (x→ y)� x� x)

= ¬¬(x� (x→ y) � x� (x→ y))

≤ ¬¬(y � y)

= �y.

Thus, �(x→ y) ≤ �x→ �y, that is, �(x→ y)→ (�x→ �y) = 1. �

Let us now consider the above result from the viewpoint of modal logic. In [12],
Michiro Kondo et al. introduced logic wUL, which is determined by the class of
(commutative) residuated lattices. Statements (ii) and (v) of Proposition 4.3 are
interesting since they mean that the hidden modalities � and ♦ defined in wUL
are normal in the sense that the necessitation rule (RN): “if A is a theorem, then
�A is a theorem” and the distribution axiom (K) �(A→ B)→ (�A→ �B) can
be included. By (iv),

(RM)
A→ B

�A→ �B
is naturally a rule of inference. By Proposition 4.3(iii), A→ ♦A, which is the dual
of (T), may be adopted, but not (T) itself unless ¬¬A → A. In addition, we see
that axiom (D) is provable.

Let us now consider such residuated lattices that x = ¬¬x for all x; these are
often called involutive residuated lattices.

Proposition 4.4. If (L,∨,∧,�,→, 0, 1) is an involutive residuated lattice,
then, for all x, y ∈ L,

(i) �x = x� x,
(ii) �x→ x = 1,

(iii) �¬x = ¬♦x and ♦¬x = ¬�x,
(iv) ♦(x→ y) = �x→ ♦y.

Proof. Cases (i) and (ii) are obvious by Proposition 4.3.
(iii) �¬x = ¬(¬x → ¬¬x) = ¬(¬x → x) = ¬♦x and ¬�x = ¬�¬¬x =

¬(¬♦¬x) = ♦¬x.
(iv) Because x → y = ¬(x � ¬y), we have ¬(x → y) = ¬¬(x � ¬y) = x � ¬y.

Hence,

♦(x→ y) = ¬�¬(x→ y)

= ¬(¬(x→ y)� ¬(x→ y))

= ¬((x� ¬y)� (x� ¬y))

= ¬((x� x)� (¬y � ¬y))

= ¬(�x��¬y)

= ¬(�x� ¬¬�¬y)

= ¬(�x� ¬(♦y))

= �x→ ♦y.

�



HIDDEN MODALITIES 17

Note that, if (L,∨,∧,�,→, 0, 1) is a residuated lattice such that x = ¬¬x for
all x ∈ L, then

�x→ ��x = 1 ⇐⇒ x� x = x� x� x� x.

for all x ∈ L.
From the viewpoint of modal logic, Proposition 4.4(ii) means that axiom schema

(T) may be adopted – (T) is called the reflexivity axiom referring to reflexive ac-
cessibility relation in Kripke semantics of classical modal logic: axiom (T) holds
if and only if, in the respective Kripke models, the accessibility relation is reflex-
ive. As we showed in the previous section, the schemata (B), (S4), (S5) are not
necessarily valid in all involutive residuated lattices.

Case (iii) of Proposition 4.4 means that � and ♦ are dual, that is, each can be
expressed by the other and negation. Hence, we have obtained so-called classical
modal logic. Case (iv) means that ♦(A→ B) is logically equivalent to �A→ ♦B,
which is interesting.

Equation (i) of Proposition 4.4 expresses the essential property of a so-called
substantial modifier, because �x ≤ x by (ii) – the connective � can be interpreted
as a hedge “very” (cf. [7]).

Note that Proposition 4.4(iv) is an axiom introduced by Gisele Fischer Servi in
[4] as an axiom of minimal intuitionistic modal logic IK establishing De Morgan-
type of duality between � and ♦.

Example 4.5. Let us consider the connectives � and ♦ in the setting of fuzzy
sets. We take the real unit interval [0, 1] as the set of elements of the algebra and
assume that the interval is ordered with its usual order ≤ of real numbers. Then,
the ordered set ([0, 1],≤) is a lattice such that

x ∨ y = max{x, y} and x ∧ y = min{x, y}.

Next we will extend this algebra to a residuated lattice. We consider the following
three cases of defining � that can be found, e.g, in [6].

(a) As in Ln, the  Lukasiewicz t-norm is defined by

x� y = max{0, x+ y − 1}.

The corresponding implication is defined so that x→ y = 1 if x ≤ y and

x→ y = 1− x+ y,

otherwise. So, the negation is ¬x = 1 − x. In this setting, ¬¬x = x and the
modal operators have the form

�x = max{0, 2x− 1} and ♦x = min{1, 2x}.

(b) Gödel t-norm is defined by

x� y = min{x, y} = x ∧ y.

The Gödel implication is defined by

x→ y = y
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in the case x > y, otherwise the value is 1. The corresponding negation is
defined by ¬0 = 1 and ¬x = 0 for x > 0. This implies that the modal
operators are defined by

♦0 = �0 = 0 and ♦x = �x = 1 for x > 0 .

Note that, in this case, the algebra is in fact a Heyting algebra.
(c) Product t-norm is defined by

x� y = x · y.
So-called Goguen implication is defined by x → y = y/x in case x > y, and
the value is 1 otherwise. The complement is the same as in case (b).

In this setting, �x = ¬¬x2. Unfortunately, since the complement is only
two-valued, this leads to the same values of � and ♦ as in case (b).

Let us mention that in [10] a plenty of t-norms of different kinds are presented,
and it would be interesting to study modalities � and ♦ defined by these norms,
but this is beyond the scope of this paper.

A Heyting algebra (L,∨,∧,→, 0, 1) can be defined as a residuated lattice
(L,∨,∧,�,→, 0, 1) such that � coincides with ∧. Heyting algebras are always
distributive lattices. Note also that a Heyting algebra is a Boolean algebra if and
only if ¬¬x = x for all x. For further properties of Heyting algebras, see [16], for
example, where they are studied under the name pseudo-Boolean algebras.

Since � and ∧ are equal in Heyting algebras and the meet operation is idem-
potent, we have for all x ∈ L,

�x = ¬¬x.
We end this paper by the following proposition stating that, in Heyting algebras,
the behaviour of � and ♦ is similar to that in Boolean algebras: there is no
difference between modalities ♦ and �, since they are both equal to the double
negation.

Proposition 4.6. Let (L,∨,∧,→, 0, 1) be a Heyting algebra. Then, for all
x ∈ L,

♦x = �x = ¬¬x.

Proof. It is enough to prove that (i) ¬¬x→ (¬x→ x) = 1 and (ii) (¬x→ x)→
¬¬x = 1.

(i) ¬¬x→ (¬x→ x) = (¬¬x ∧ ¬x)→ x = 0→ x = 1.
(ii) (¬x → x) → ¬¬x = (¬x → x) → (¬x → 0) = ((¬x → x) ∧ ¬x) → 0 =

(¬x ∧ x)→ 0 = 1. �

By the previous proposition,

x ≤ �♦x, �x = ��x, and ♦x = �♦x

for all x ∈ L. This implies that the equations

x→ �♦x = 1, �x→ ��x = 1, and ♦x→ �♦x = 1

corresponding to schemata (B), (S4), and (S5) are valid.
It is well-known that Heyting algebras are models for intuitionistic logic, that

is, a formula of intuitionistic logic is provable if and only if A is valid in all Heyting
algebras, meaning that v(A) = 1 for all valuations on any Heyting algebra. This
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means that, if we define modalities � and ♦ in intuitionistic logic as in (1.2), then
all axioms (K), (T), (B), (D), (S4), (S5) considered above are provable and also
rules (RN) and (RM) are admissible, because ♦, �, and the double negation are
the same.

Note also that the well-known Glivenko Theorem states that if F is a set of
propositional formulas and A is a propositional formula, then F proves A using
classical logic if and only if F proves ¬¬A = ♦A = �A using intuitionistic logic.
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