

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV ELEKTROENERGETIKY

DEPARTMENT OF ELECTRICAL POWER ENGINEERING

PŘÍMÉ MĚŘENÍ ZÁTĚŽNÉHO ÚHLU LABORATORNÍHO GENERÁTOROVÉHO SOUSTROJÍ

DIRECT LOAD ANGLE MEASUREMENT ON THE LABORATORY GENERATOR UNIT

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR Jiří Dvořáček

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. Jaroslava Orságová, Ph.D.

BRNO 2019

Bakalářská práce

bakalářský studijní obor Silnoproudá elektrotechnika a elektroenergetika

Ústav elektroenergetiky

Student: Jiří Dvořáček Ročník: 3

ID: 195484 *Akademický rok:* 2018/19

NÁZEV TÉMATU:

Přímé měření zátěžného úhlu laboratorního generátorového soustrojí

POKYNY PRO VYPRACOVÁNÍ:

Cílem práce je navrhnout způsob přímého měření zátěžného úhlu laboratorního synchronního generátoru s využitím inkrementálního čidla a dostupných laboratorních osciloskopů. Měřicí systém by měl sloužit jako pomůcka při měření provozních vlastností laboratorního soustrojí.

DOPORUČENÁ LITERATURA:

podle pokynů vedoucího práce

Termín zadání: 4.2.2019

Vedoucí práce: doc. lng. Jaroslava Orságová, Ph.D. Konzultant:

doc. Ing. Petr Toman, Ph.D. předseda oborové rady

Termín odevzdání: 27.5.2019

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Bibliografická citace práce:

DVOŘÁČEK, Jiří. Přímé měření zátěžného úhlu laboratorního generátorového soustrojí. Brno, 2019. Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/ detail/119141. Bakalářská práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav elektroenergetiky. Vedoucí práce Jaroslava Orságová.

"Prohlašuji, že svou bakalářskou práci na téma Přímé měření zátěžného úhlu laboratorního generátorového soustrojí jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce. Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této diplomové/bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb."

V Brně dne 27. 5. 2019

Podpis:

ABSTRAKT

Synchronní generátory jsou nejpoužívanější zařízení pro přeměnu mechanické energie na elektrickou. Je proto nutné využívat různé metody pro kontrolu provozních parametrů. Jednou z nejvážnějších poruch je vypadnutí generátoru ze synchronismu, které může vést až k poškození stroje. Cílem práce je návrh a realizace možnosti měřit přímou metodou zátěžný úhel a s jeho pomocí zjistit hodnotu nasycené synchronní reaktance. Zátěžný úhel je měřen pomocí inkrementálního snímače a průběhu výstupního napětí generátoru.

KLÍČOVÁ SLOVA

synchronní generátor, zátěžný úhel, synchronní reaktance, nasycený, nenasycený

ABSTRACT

Synchronous generators are the most used machines for production of electricity. Therefore it is crucial to use various methods for checking operating parameters. One of the worst faults is falling out of synchronism which can even lead to machine damage. Main objectiv of bachelor thesis is to design a method for load angle measurement using available laboratory equipment and to calculate saturated synchronous reactances using load angle. Load angle is measured using incremental sensor and output voltage waveform.

KEYWORDS

synchronous generator, load angle, synchronous reactance, saturated, unsaturated

PODĚKOVÁNÍ

Rád bych poděkoval vedoucí mé bakalářské práce, paní doc. Ing. Jaroslavě Orságové, Ph.D., za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci. Dále bych rád poděkoval Bc. Viktoru Jurákovi za podnětné rady a asistenci při realizaci práce.

Brno

podpis autora

Obsah

Se	znar	n symbolů, veličin a zkratek	10
Ú	vod		12
1	Mě	řená sestava	13
	1.1	Popis zařízení	13
	1.2	Synchronní generátor Leroy Somer LSA 37 M5	14
	1.3	Inkrementální snímač CNS50	16
2	\mathbf{Syn}	chronní stroj	17
	2.1	Fázorový diagram synchronního generátoru s rotorem s vyniklými póly	18
	2.2	Zátěžný úhel stroje s rotorem s vyniklými póly	18
3	Zjiš	tění provozních parametrů synchronního stroje	20
	3.1	Přímé měření zátěžného úhlu synchronního generátoru	20
	3.2	Stanovení hodnoty provozní příčné synchronní reaktance $\ . \ . \ . \ .$	21
	3.3	Stanovení hodnoty provozní podélné synchronní reaktance $\ . \ . \ .$	22
	3.4	Sestava měřicího systému	24
		3.4.1 Signál inkrementálního snímače	25
		3.4.2 Výkonový analyzátor	25
		3.4.3 Osciloskop	28
4	Exp	perimentální ověření	30
	4.1	Odpor vinutí statoru	34
	4.2	Zkouška naprázdno	34
		4.2.1 Výsledek	35
	4.3	Měření nakrátko	37
	4.4	Zjištění nenasycené hodnoty podélné synchronní reaktance	39
	4.5	Zjištění provozních hodnot synchronních reaktancí	40
5	Záv	ěr	48

Literatura

49

Seznam obrázků

1.1	Frekvenční měnič Unidrive SP2404 [1]	14
1.2	Synchronní generátor LSA 37 M5 [7] \ldots	14
1.3	Obecné schéma generátoru LSA 37 M5 [7]	14
1.4	Spojení vinutí statoru "D" generátoru dle [7]	14
1.5	Princip inkrementálního snímače [10]	16
1.6	Výstupní signály snímače CNS50 [8]	16
2.1	Fázorový diagram synchronního generátoru s vyniklými póly s přím-	
	kovou magnetizační charakteristikou	18
2.2	Stabilita generátoru v závislosti na zátěžném úhlu. Převzato z $[4]$	19
3.1	Signály analyzované při přímém měření zátěžného úhlu [6] $\ldots \ldots$	20
3.2	Fázorový diagram pro měření zátěžného úhlu	21
3.3	Fázorový diagram pro určení podélné synchronní reaktance	23
3.4	Blokové schéma návrhu měřicího zařízení	24
3.5	Kabelový mezikus	25
3.6	Výkonový analyzátor HIOKI 3390 [13]	26
3.7	Konektorová výbava HIOKI 3390 [13]	26
3.8	Připojení měřících vodičů	26
3.9	Nastavení měření napětí a proudu	27
3.10	Nastavení měření otáček	27
3.11	Multifunkční analyzátor Yokogawa DL850 [12]	28
3.12	Připojení měřicích kabelů na Yokogawa DL850	28
3.13	Ilustrační snímek z osciloskopu zachycující signál Z a průběh svorko-	
	vého napětí	29
4.1	Schéma zapojení měření zátěžného úhlu (modře jsou vyznačeny vo-	
	diče zapojované v rámci měření)	31
4.2	Připojení měřicích vodičů na svorky MX a NX	32
4.3	Připojení proudových snímačů IAC	32
4.4	Připojení proudového snímače IDC	33
4.5	Připojení mezikusu k měniči	33
4.6	Změřená charakteristika naprázdno	37
4.7	Změřená charakteristika nakratko	39
4.8	Charakteristika nakrátko a vzduchové mezery a odečtení hodnot pro	
	určení nenasycené X_d	40
4.9	Závislost nasycené hodnoty x_d na výkonu generátoru	46
4.10	Závislost nasycené hodnoty x_q na výkonu generátoru $\ldots \ldots \ldots \ldots$	46
4.11	Závislost velikosti zátěžného úhlu na výkonu generátoru	47

Seznam tabulek

1.1	Vybrané parametry generátoru LSA 37 M5 [3]	15
1.2	Vybrané parametry snímače CNS50 [8] $\ldots \ldots \ldots \ldots \ldots \ldots$	16
3.1	Barvy vodičů s vyvedenémi signály mezikusu	25
4.1	Použité měřicí přístroje a jejich výrobní čísla	30
4.2	Změřené hodnoty při měření odporu vinutí	34
4.3	Změřené hodnoty při zkoušce naprázdno	35
4.4	Interpolované hodnoty z měření naprázdno a hodnoty s korekcí	36
4.5	Hodnoty zjištěné při zkoušce nakrátko	38
4.6	Měření generátoru při zatížení s účiníkem blízkým 1 – 1. část	41
4.7	Měření generátoru při zatížení s účiníkem blízkým 1 – 2. část	42
4.8	Měření přebuzeného generátoru s $Q=konst.$ – 1. část	42
4.9	Měření přebuzeného generátoru s $Q=konst.$ – 2. část	43
4.10	Měření podbuzeného generátoru s $Q=konst.$ – 1. část \ldots	43
4.11	Měření podbuzeného generátoru s $Q=konst.$ – 2. část \ldots	44

Seznam symbolů, veličin a zkratek

- A inkrementální signál enkodéru
- $\overline{\mathbf{A}}$ negovaný inkrementální signál enkodéru
- B inkrementální signál enkodéru
- $\overline{\mathrm{B}}$ negovaný inkrementální signál enkodéru
- ${\cal E}_{10}\,$ napětí indukované ve statoru budícím proudem

 E_{10} napětí indukované ve statoru budícím proudem

- f frevence
- $f_s\;$ frekvence napětí na výstupu generátoru
- I_1 proud kotvou
- I_2 budící proud
- I_b budící proud
- I_f fázový proud
- I_n jmenovitý proud

L1(U), L2(V), L3(W) označení fází

- n otáčky
- n_n jmenovité otáčky
- p počet pólových dvojic

p.u. per unit – poměrná jednotka

- P_1 činný výkon
- ${\cal P}_{max}\,$ výkon odpovídající momentu zvratu
- Q jalový výkon
- R_1 průměrný odpor vinutí statoru
- R_f odpor fáze
- $R_{f,avg}$ průměrný odpor jedné fáze
- ${\cal S}_n \,$ jmenovitý zdánlivý výkon

 $\mathbf{T1}{\div}\mathbf{T12}$ označení svorek vinutí statoru alternátoru

- tčas mezi nulovým signálem a kladnou půlvlnou napětí
- t_{kal} kalibrační čas
- $T_U\,$ perioda výstupního napětí generátoru
- t_{δ} čas pro dopočítání zátěžného úhlu
- U napětí
- u_0 poměrné napětí naprázdno
- U_1 fázor svorkového napětí
- $u_1(t)$ okamžitá hodnota svorkového napětí
- $U_1\,$ efektivní hodnota svorkového napětí
- $U_n \,$ jmenovité napětí
- X_d podélná synchronní reaktance

- x_d podélná synchronní reaktance p.u.
- $X_q\,$ příčná synchronní reaktance
- $x_q\,\,$ příčná synchronní reaktance p.u.
- Z nulová pozice enkodéru nulový pulz
- $\overline{\mathbf{Z}}$ negovaný nulový pulz
- δ zátěžný úhel v elektrických stupních
- $\delta_{mech}\,$ mechanický zátěžný úhel fyzické natočení rotoru stroje oproti poloze při chodu naprázdno
- $\varphi~$ fázový posun mezi svorkovým napětím a proudem kotvou

 $\cos \varphi$ účiník

 φ_{el} elektrický úhel

 $\varphi_{mech}\,$ mechanický úhel

 η účinnost

Úvod

Synchronní generátory (alternátory) jsou bezesporu nejpoužívanějšími zařízeními pro přeměnu mechanické energie na elektrickou. Proto je nutné kontrolovat jejich provozní stavy a předcházet poruchovým situacím. Jednou z možných poruch je vypadnutí alternátoru ze synchronismu, které je obvykle provázeno mechanickým poškozením stroje a je nutné tomuto stavu předejít. Pro kontrolu stability generátoru lze využit kontroly relativního náklonu rotoru při zatížení vzhledem k poloze naprázdno, neboli zátěžného úhlu.

Práce se v prvních částech zabývá rozborem pracoviště a popisem jednotlivých částí s důslednějším zaměřením na části využité v následujícím návrhu měřicího systému.

Cílem bakalářské práce je provést rozbor možností měření zátěžného úhlu přímou metodou na laboratorním soustrojí složeného z asynchronního motoru TAMEL SIg 132 M4 a synchronního generátoru Leroy Somer LSA 37M5 1/4 a návrh měřicího systému včetně jeho experimentálního ověření. Dalším cílem je zjištění vhodnosti nepřímého měření provozních nasycených reaktancí.

1 Měřená sestava

Měřené zařízení je umístěno na ocelovém rámu obsahujícím soustrojí asynchronního motoru TAMEL SIg 132 M4 s výkonem 7,5 kW pracujícího jako pohon mechanicky spojeným pružnou spojkou se čtyřpólovým synchronním generátorem Leroy Somer LSA 37 M5 o výkonu 7,5 kVA.

Asynchronní motor obsahuje inkrementální snímač otáček Sick Stegmann CNS50 připojený do otáčkového vstupu měniče.

Pro ovládání parametrů soustrojí je vedle něj umístěn rozvaděč s analyzátorem sítě a frekvenčním měničem Control Techniques Unidrive SP2404 napájející zmiňovaný asynchronní motor.

1.1 Popis zařízení

Dle [3] dokáže zařízení pracovat ve dvou režimech:

- Autonomní provoz provoz do oddělené zátěže nezávislé na okolní síti. Zařízení pracuje jako zdroj konstantního napětí a frekvence. Buzení zajišťuje regulátor napětí R250 nebo laboratorní zdroj STATRON. Při této volbě lze nastavit frekvenci výstupního napětí změnou otáček pohonu. Změnou buzení lze regulovat výstupní napětí soustrojí.
- Paralelní spolupráce určen pro provoz zdroje paralelně s napájecí sítí (případně jakoukoliv tvrdou sítí). Pro buzení nelze využít regulátor napětí R250, pouze laboratorní zdroj STATRON. Tento režim umožňuje nastavit činný výkon regulací momentu na hřídeli asynchronního motoru činný výkon dodávaný do sítě. Před připojením generátoru na napájecí síť se pro potřeby fázování chová stejně jako v případě autonomního provozu.

Při využití režimu autonomního provozu lze nastavovat rychlost otáčení soustrojí a tím požadovanu frekvenci výstupního napětí pomocí potenciometru "RYCHLOST". Výstupní napětí reguluje potenciometr s označením "NAPĚTÍ" ovládající regulátor R250, který je napájen přímo ze statorového vinutí generátoru. Ovládání při režimu paralelní spolupráce se sítí je zajištěno voličem "MOMENT" pro nastavení činného výkonu dodávaného asynchronním motorem. Napětí generátoru a napájení budiče se nastavuje pomocí laboratorního zdroje umístěného na skříni rozvaděče. Podrobný popis ovládání zařízení je uveden v [3].

Měnič Control Techniques Unidrive SP2404 je frekvenční měnič o výkonu 7,5 kW s trvalým výstupním proudem 16 A. Umožňuje ovládat pohon ve dvou režimech odpovídající provozu do ostrovní sítě nebo paralelně s napájecí sítí:

 Konstantní otáčky – Měnič udržuje otáčky asynchronního motoru na stálé hodnotě a dle toho přizpůsobuje proud dodávaný asynchronnímu motoru. Využito pro "Autonomní provoz" a fázování pro "Paralelní spolupráci".

 Konstantní moment – Při paralelní spolupráci udržuje otáčky motoru vnější napájecí síť většího výkonu, než pohon zařízení, asynchronní motor tedy může dodávat pouze další činný výkon synchronnímu generátoru. Tato funkce je zajištěna hodnotou momentu dodávaného motorem synchronními generátoru.

Obr. 1.1: Frekvenční měnič Unidrive SP2404 [1]

Obr. 1.2: Synchronní generátor LSA 37 M5 [7]

1.2 Synchronní generátor Leroy Somer LSA 37 M5

Bezkartáčový budič alternátoru se skládá z budícího vinutí umístěného jako stator kolem kotvy budiče umístěné na hřídeli stroje. Napětí se dále usměrňuje pomocí šestipulzního usměrňovače umístěného na stejné hřídeli a přivádí se na hlavní budící vinutí alternátoru. Jako přepěťová ochrana je použit varistor (napěťově závislý rezistor). Obecné schéma budiče a generátoru je na obrázku 1.3.

Obr. 1.3: Obecné schéma generátoru LSA 37 M5 [7]

Obr. 1.4: Spojení vinutí statoru "D" generátoru dle [7]

$T1 \div T12\,$ označení svorek vinutí statoru alternátoru
 $L1(U),\,L2(V),\,L3(W)\,$ označení fází

Stator generátoru je proveden jako dělený trojfázový (každá fáze je složena z dvou oddělených vinutí) s různými možnostmi spojení. Aktuálně je generátor dle [3] spojený do hvězdy a statorová dělená vinutí jsou spojena do série jako na obrázku 1.4.

Dle poměru hodnot x_d a x_q z tabulky 1.1 můžeme soudit že jde o stroj s vyniklými póly. [4] uvádí, že pro synchronní stroje s hladkým rotorem mají hodnoty příčné i podélné reaktance velmi podobnou hodnotu, zatímco stroje s vyniklými póly se vyznačují rozdílnými hodnotami sycnhronní reaktance v podélné (x_d) a příčné (x_q) ose.

Název	Označení	Hodnota
Typové označení	-	LSA 37 M5 1/4
Jmenovitý zdánlivý výkon	S_n	7,5 kVA
Jmenovitá účinnosti při $\cos\varphi=0,8$	η	75,5~%
Jmenovité napětí	U_1	$3 \times 400 \text{ V}$
Jmenovitý proud	I_1	10,83 A
Jmenovité otáčky	n_n	$1500 \mathrm{~min^{-1}}$
Počet pólových dvojic	p	2p=4
Poměrná podélná synchronní reaktance	x_d	140~%
Poměrná příčná synchronní reaktance	x_q	70~%

Tab. 1.1: Vybrané parametry generátoru LSA 37 M5 [3]

1.3 Inkrementální snímač CNS50

Inkrementální snímač otáček pracuje na principu clonění světelného toku mezi zdrojem světla a fotodetektorem. [9] Princip inkrementálního snímače je zobrazen na obrázku 1.5. CNS50 obsahuje 2 inkrementální signály použitelné pro detekci rychlosti otáčení i pro detekci pozice rotoru A a B (pouze za běhu, nejedná se o absolutní snímač polohy). Dále obsahuje referenční signál Z pro detekci celé otáčky. [8] Enkodér vysílá do komunikačního vodiče i negované signály \overline{A} , \overline{B} , \overline{Z} z důvodu eliminace rušení signálu.

Obr. 1.5: Princip inkrementálního snímače [10]

Obr. 1.6: Výstupní signály snímače CNS50 [8]

Hodnota
4096 pulzů na otáčku
$6000 \ {\rm min}^{-1}$
$5~\mathrm{V}$ \pm 10 $\%$
50 mA

Tab. 1.2: Vybrané parametry snímače CNS50 [8]

2 Synchronní stroj

Synchronní stroje (typ střídavého točivého stroje) se vyznačují otáčkami rotoru přímo úměrnými frekvenci statorovému napětí, neboli se otáčejí za normálního provozu synchronními otáčkami.[2]

Převážně se používají k výrobě elektrické energie, protože je možná jejich hospodárná výroba pro velké výkony. Synchronní generátory se běžně označují jako alternátory a lze dělit dle typu zdroje mechanické energie (a tím pádem obvykle i dle poháněcí rychlosti) [2] na:

- 1. Turboalternátory poháněné parní nebo plynovou turbínou s rychlostí 1500 min⁻¹ nebo 3000 min⁻¹ v síti o frekvenci 50 Hz.
- Hydroalternátory poháněné vodní turbínou. Rychlost otáčení těchto alternátorů je nižší, než u turboalternátorů, tudíž obsahují více pólů pro dosažení stejné frekvence výstupního napětí.

Jako kotva slouží ve většině případů stator¹, který je složen z tenkých vzájemně izolovaných plechů pro snížení ztrát vířivými proudy a pro zvýšení vzájemné indukce mezi rotorovým a statorovým magnetickým obvodem. Na kotvě je umístěno trojfázové vinutí s cívkami posunutými vzájemně o 120° elektrických. U dvoupólového stroje je elektrický úhel φ_{el} shodný s úhlem mechanickým φ_{mech} . U vícepólových strojů je se φ_{el} řídí dle počtu pólových dvojic p:

$$\varphi_{mech} = \frac{\varphi_{el}}{p} \, [^{\circ}; ^{\circ}, -] \tag{2.1}$$

Na rotoru je umístěno budící vinutí. Na rozdíl od statoru není nutné tvořit jej z jednotlivých izolovaných plechů, protože se otáčí shodnou rychlostí s fázorem magnetického toku ve vzduchové mezeře, tudíž ztráty vířivými proudy za ustáleného chodu nevznikají. Dle konstrukčního uspořádání rotoru lze generátory dělit na synchronní stroje s:

- hladkým rotorem rotor je pevný válec s drážkami na povrchu, v nichž je vsypáno rotorové vinutí buzené stejnosměrným proudem (obvyklé uspořádaní turboalternátorů). Z důvodu vyšší rychlosti otáčení a vyššímu mechanickému namáhání jsou navrhovány s menším průměrem a delší osovou délkou, než hydroalternátory. Pracují na hranici mechanické pevnosti. [2]
- vyniklými póly na rotoru složeného z rotorového kola je umístěno několik pólů s vlastní budící cívkou (uspořádání používané při konstrukci hydroalternátorů). Charakteristikou je i větší průměr úměrný počtu pólů a kratší osová délka. [2]

 $^{^1[2, 4]}$ uvádí ojedinělé používání rotoru jako kotvy pro nízká napětí a malé výkony. Této konstrukce je např. budič generátoru LSA 37 M5.

Pólové nástavce rotoru s vyniklými póly můžou být vytvořeny z plechů, v kterých je umístěno další (pomocné, tlumící) vinutí – amortizér a slouží jako opatření proti kývání rotoru. [4]

2.1 Fázorový diagram synchronního generátoru s rotorem s vyniklými póly

Dle [4] lze sestrojit fázorový diagram sychronního generátoru s rotorem s vyniklými póly dle obrázku 2.1.

Obr. 2.1: Fázorový diagram synchronního generátoru s vyniklými póly s přímkovou magnetizační charakteristikou

2.2 Zátěžný úhel stroje s rotorem s vyniklými póly

Zátěžným úhlem δ (viz Obr. 2.1) se rozumí elektrický úhel mezi indukovaným napětím E_{10} a svorkovým napětím U_1 neboli fázový posun mezi jim odpovídajícími průběhy okamžitých hodnot E_{10} a $u_1(t)$. [2] Zátěžný úhel roste se snižujícím se buzení i při zvyšování poháněcího momentu generátoru. Dodá-li pohon generátoru moment vyšší než hodnotu odpovídající výkonu P_{max} , bude elektromagnetický moment alternátoru nižší (klesá při δ vyšším, než δ_{max}), než moment turbíny, rotor alternátoru se začne rozdílem momentů zrychlovat a alternátor vypadne ze synchronismu. Hodnota P_s se nazývá činitel stabilizačního výkonu a udává schopnost stroje udržovat se v synchronismu. [4]

Mechanicky je zátěžný úhel možné definovat jako skutečný úhel, o který je rotorové kolo při určitém zatížení a buzení natočeno z polohy, v které by bylo při běhu stroje naprázdno². Toto odpovídá i úhlu, který svírá osa pólů stroje s osou výsledného magnetického pole ve vzduchové mezeře. [2, 4]

Obr. 2.2: Stabilita generátoru v závislosti na zátěžném úhlu. Převzato z [4]

 $^{^2}$ Toto platí pouze pro dvoupólový stroj, pro vícepólový stroj je mechanický úhel *p*-krát menší dle vztahu 2.1.

3 Zjištění provozních parametrů synchronního stroje

3.1 Přímé měření zátěžného úhlu synchronního generátoru

Námět na přímé měření zátěžného úhlu pomocí dostupných signálů převzat z [6]. Metoda spočívá v přímém odečtení hodnoty δ . Tuto hodnotu je možné odečíst porovnáním polohy rotoru k průběhu signálu výstupního svorkového napětí $u_1(t)$.

Metoda využívá odečítání času mezi nulovým pulsem Z enkodéru a nejbližším průchodem nulou průběhu výstupního napětí U_1 generátoru. Tímto získáme čas t. Princip je zobrazen na obrázku 3.1. Nezáleží na tom, jestli je využita první, druhá nebo třetí fáze generátoru, každá z nich má stejný průběh, který je jen fázově posunutý o 120° elektrických. Ani nulový pulz enkodéru není mechanicky natočený na určitou fázi. Tyto problémy lze vyřešit kalibrací. Dalším problémem je průběh dvou period napětí v jedné otáčce stroje, který ale stačí vyřešit pouhým vynásobením mechanického zátěžného úhlu počtem pólových dvojic stroje.

Obr. 3.1: Signály analyzované při přímém měření zátěžného úhlu [6]

Kalibrace se provede při provozu generátoru naprázdno. Při tomto provozu lze z 2.1 vyčíst, že při $I_1 = 0$ A jsou nulové i úbytky na synchronních reaktancích i odporu statorového vinutí. Z toho vyplývá i rovnost napětí $E_{10} = U_1$ a $\delta = 0^\circ$. Při provozu naprázdno lze získat kalibrační čas t_{kal} . Lze uvažovat:

$$t_{\delta} = t - t_{kal} [s; s, s)] \tag{3.1}$$

$$\delta = p \cdot \frac{t_{\delta}}{T_U} \cdot 360^\circ [^\circ; -, s, s)]$$
(3.2)

Kde t_{δ} je čas pro určení zátěžného úhlu, T_U je doba periody výstupního napětí generátoru, p počet pólových dvojic¹.

3.2 Stanovení hodnoty provozní příčné synchronní reaktance

Metoda vychází z fázorového diagramu. Pro měření je možné použít zjednodušující podmínku, kdy předpokládáme, že odpor vinutí statoru R_1 je nulový².

Obr. 3.2: Fázorový diagram pro měření zátěžného úhlu

Jak již napovídá obrázek 3.2, je nutné pro zjištění zátěžného úhlu znát:

[•] svorkové napětí U_1 ,

¹Kompenzace násobku času nutných pro jednu otáčku vícepólového alternátoru pro určitou výstupní frekvenci.

 $^{^{2}}$ [4] uvádí, že u synchronních generátorů je odpor vinutí mnohem nižší, než synchronní reaktance. Tento předpoklad tedy nezanáší příliš hrubou chybu. Platí ale pouze u velkých výkonů.

- proud kotvou (statorovým vinutím) I_1 ,
- zátěžný úhel měřený přímou metodou δ ,
- Fázový posun φ mezi U_1 a I_1 nebo činný výkon P_1 ,
- Hodnotu odporu vinutí statoru R_1 pokud je hodnota k dispozici.

Dle shodnosti úhlů na fázorových diagramech 3.2 a dle [5] je možné na základě takto změřených hodnot určit zátěžný úhel pomocí goniometrické funkce a využití znalostí o pravoúhlém trojúhelníku. Při zanedbání R_1 jsou vztahy pro určení δ :

$$\operatorname{tg} \delta = \frac{X_q I_1 \cos \varphi}{U_1 + X_q I_1 \sin \varphi} \left[-; \Omega, A, -; V, \Omega, A, -) \right]$$
(3.3)

$$\delta = \operatorname{arctg} \frac{X_q I_1 \cos \varphi}{U_1 + X_q I_1 \sin \varphi} [^\circ; \Omega, A, -; V, \Omega, A, -)]$$
(3.4)

V případě známé hodnoty R_1 lze použít následující vztahy:

$$\operatorname{tg} \delta = \frac{X_q I_1 \cos \varphi - R_1 I_1 \sin \varphi}{U_1 + R_1 I_1 \cos \varphi + X_q I_1 \sin \varphi} [^{\circ}; \Omega, A, ^{\circ}, \Omega, A, ^{\circ}; V, \Omega, A, ^{\circ}, \Omega, A, ^{\circ})]$$
(3.5)

$$\delta = \operatorname{arctg} \frac{X_q I_1 \cos \varphi - R_1 I_1 \sin \varphi}{U_1 + R_1 I_1 \cos \varphi + X_q I_1 \sin \varphi} [\circ; \Omega, A, \circ, \Omega, A, \circ; V, \Omega, A, \circ, \Omega, A, \circ)]$$
(3.6)

Vztah 3.5 lze upravit pro zjištění hodnoty příčné synchronní reaktance X_q :

$$X_q = \frac{U_1 \operatorname{tg} \delta + R_1 I_1(\operatorname{tg} \delta \cos \varphi + \sin \varphi))}{I_1(\cos \varphi - \operatorname{tg} \delta \sin \varphi))} \left[\Omega; \operatorname{V}, \, ^\circ, \, \Omega, \, \operatorname{A}, \, ^\circ, \, ^\circ, \, ^\circ; \, \operatorname{A}, \, ^\circ, \, ^\circ, \, ^\circ\right] \quad (3.7)$$

V poměrných jednotkách:

$$x_q = X_q \cdot \frac{I_n}{U_n} \cdot 100 \ [\%; \Omega, A, V]$$
 (3.8)

Kde ${\cal I}_n$ je jmenovitý proud a U_n jmenovité napětí.

3.3 Stanovení hodnoty provozní podélné synchronní reaktance

Pro zjištění hodnoty podélné synchronní reaktance X_d je nutné provést zkoušku naprázdno z důvodu nutnosti znát pro výpočet vnitřní indukované napětí E_{10} . Dále

je nutné při samotném měření při zatížení měřit stejné hodnoty jako v předchozí kapitole 3.2.

Z fázorového diagramu na obrázku 3.10 lze vyjádřit vztah pro výpočet X_d :

$$X_d = \frac{E_{10} - R_1 I_1 \cos(\varphi + \delta) - U_1 \cdot \cos \delta}{I_1 \sin(\varphi + \delta)} [\Omega; V, \Omega, A, \circ, \circ, V, \circ, A, \circ, \circ]$$
(3.9)

A pro poměrnou hodnotu:

$$x_d = X_d \cdot \frac{I_n}{U_n} \cdot 100 \ [\%; \Omega, A, V]$$
 (3.10)

Obr. 3.3: Fázorový diagram pro určení podélné synchronní reaktance

3.4 Sestava měřicího systému

Pro vytvoření měřicího sytému je užito zařízení dostupných v laboratoři. Pro měření času t_{δ} (viz 3.1) pro počítání zátěžného úhlu je užit Yokogawa DL850, k němuž je připojeno jedno fázové napětí (v tomto případě fáze 1) a nulý pulz enkodéru z rozdělovače. Výkonový analyzátor HIOKI 3390 je využit pro měření ostatních veličin. Pro samotné zjišťování provozních reaktancí jsou důležité zejména hodnoty:

- fázového svorkového napětí U_1 ve všech fázích,
- proudu I_1 všemi fázemi,
- činného výkonu generátoru P_1 .

Obr. 3.4: Blokové schéma návrhu měřicího zařízení

3.4.1 Signál inkrementálního snímače

Signál je dle [3] veden ze snímače kabele do konektoru ve stěně rozvaděčové skříně a dále dalším kabelem (PAAR-TRONIC-CY $8 \times 2 \times 0.25 \text{ mm}^2$) zakončeným třířadým 15-pinovým konektorem CANON do enkodérového vstupu měniče. Byl vyroben kabelový mezikus s vyvedenými signály A, \overline{A} , Z, \overline{Z} (viz 1.3). Zapojení jednotlivých pinů v konektorech CANON je popsáno v [3].

Obr. 3.5: Kabelový mezikus

signál	barva
А	modro-bílá
$\overline{\mathbf{A}}$	zeleno-černá
Ζ	žluto-černá
$\overline{\mathrm{Z}}$	oranžovo-černá

Tab. 3.1: Barvy vodičů s vyvedenémi signály mezikusu

3.4.2 Výkonový analyzátor

Pro měření elektrických veličin byl zvolen dostupný výkonový analyzátor HIOKI 3390. Výhodou tohoto přístroje je možnost ukládání měřených dat do přístroje ve formátu *.csv a možnost přenesení do počítače pomocí USB. [13]

Analyzátor obsahuje 4 kanály pro měření napětí i proudů, a 3 konfigurovatelné vstupy (předně určené pro tenzometr a čidlo otáček). [13]

Obr. 3.6: Výkonový analyzátor HI-OKI 3390 [13]

Obr. 3.7: Konektorová výbava HIOKI 3390 [13]

Obr. 3.8: Připojení měřících vodičů

/M] Wir	EAS SYSTEM FIL ing Input Ca	E lc Time Inter	face System Moto	r	2019-05-24 06:55:29
	CH1	CH2	CH3	CH4	CE cord Second
	1P2W	1P2W	1P2W	1P2W	USB memory
	Source Load	Source Load	Source Load	Source Load	Select
	U1 0.00 V I1 0.000 A P1 0.000k W	U2 0.00 V I2 0.000 A P2 0.000k W	U3 0.00 V I3 0.000 A P3 0.000k W	U4 0.000 V I4 0.0000 A P4 0.000 W	
					Easy Set

Obr. 3.9: Nastavení měření napětí a proudu

MEAS SYSTEM F	TLE		-			2019-05-3	24 06:55:10
Wiring Input	Calc	Time Inter	face Syst	em Motor			(PAGE)
Motor sync	DC 50ms	LPF	OFF	Freq source	<u>f1</u>	● <mark>」CF d</mark>	<mark>ard m</mark> emory 8 memory
CHA						U	
CHA input	AnalogDC	CHA range	57	CHA scaling	0001.00		
CHA unit	N · m	Rated torque	1			U2	2
Freq range fc	60kHz	Freq range fd	<u>30</u> kHz				2
СНВ							,
<u>CHB input</u>	Pulses	CHB range	<u>5</u> V	CHB scaling	0001.00	Uz	1
<u>CHB unit</u>	r/min	Max frequency	100Hz	No. of pulses	4096		
Motor poles	4	CHZ	ON				
						Ne	+
From U1 to U4, This is common	from I1 to to the mot	o I <mark>4</mark> , DC50ms, DC tor sync source	2100ms (or of input	Ext) is select setting page.	able.		ext.

Obr. 3.10: Nastavení měření otáček

3.4.3 Osciloskop

Pro měření času t mezi nulovým pulzem a průchodem nulou lze užít jakýkoliv osciloskop s dostatečnou frekvencí vzorkování (ideálně alespoň 1MS/s). Vzhledem k velmi krátkému času nulového pulzu – 2 µs. K dispozici byl multifunkční analyzátor Yokogawa DL850.

Princip měření času t je na obrázku 3.13.

Obr. 3.11: Multifunkční analyzátor Yokogawa DL850 [12]

Obr. 3.12: Připojení měřicích kabelů na Yokogawa DL850

Jednotlivé použité kanály nevyžadují žádné dodatečné nastavení. Oba použité kanály (pro měření napětí a nulového pulzu) byly nastaveny pouze na měření napětí.

Jak lze vidět na následujícím obrázku, nulový pul
zZse opakuje každé 2 periody svorkového napětí. Čas mezi ním a nejbližším průchodem nulou je žádaný čas t.

Obr. 3.13: Ilustrační snímek z osciloskopu zachycující signál Z a průběh svorkového napětí

4 Experimentální ověření

Měření bylo pro účely zjištění zátěžného úhlu zapojeno dle obrázku 4.1. Na následujících obrázcích jsou vyobrazeny místa připojení měřicích přístrojů s názvy korespondujícími se schématem.

Označení	Тур	Výrobce	Model	výrobní číslo
VAN	výkonový analyzátor	Hioki	3390	120804663
IAC1	proudový sensor AC	HIOKI	2012	120731522
IAC2	proudový sensor AC	HIOKI	2012	120731523
IAC3	proudový sensor AC	HIOKI	2012	120731524
IDC	proudový sensor AC/DC	HIOKI	2010	101120675
OSC	osciloskop	Yokogawa	DL850	91KCO6238

Tab. 4.1: Použité měřicí přístroje a jejich výrobní čísla

Obr. 4.1: Schéma zapojení měření zátěžného úhlu (modře jsou vyznačeny vodiče zapojované v rámci měření)

Obr. 4.2: Připojení měřicích vodičů na svorky MX a NX

Obr. 4.3: Připojení proudových snímačů IAC

Obr. 4.4: Připojení proudového snímače IDC

Obr. 4.5: Připojení mezikusu k měniči

4.1 Odpor vinutí statoru

Odpor vinutí byl měřen voltampérovou metodou dle [11]. Stejnosměrný zdroj Statron byl připojen na každou ze 3 fází a byly změřeny hodnoty úbytku napětí při 3 různých procházejících proudech. Z nich byly vypočteny odpory a pro další výpočet bude uvažována průměrná hodnota vinutí.

fáno	U	Ι	R_f	$R_{f,avg}$	R_{vin}
laze	V	А	Ω	Ω	Ω
	0,307	0,441	0,696		
1	0,698	1,014	$0,\!689$	$0,\!691$	
	1,030	$1,\!494$	$0,\!689$		
	0,331	$0,\!474$	0,698		
2	0,710	$1,\!029$	0,690	$0,\!693$	0,693
	$1,\!036$	$1,\!501$	0,690		
	0,340	$0,\!488$	$0,\!697$		
3	0,709	$1,\!023$	0,693	0,694	
	$1,\!083$	$1,\!564$	$0,\!692$		

Tab. 4.2: Změřené hodnoty při měření odporu vinutí

Příklad výpočtu pro fázi 1

$$R_f = \frac{U}{I} = \frac{0,307}{0,441} = 0,696\,\Omega\tag{4.1}$$

$$R_{f,avg} = \frac{R_{f1,1} + R_{f1,2} + R_{f1,3}}{3} = \frac{0,696 + 0,689 + 0,689}{3} = 0,691\,\Omega \tag{4.2}$$

$$R_{vin} = \frac{R_{f1} + R_{f2} + R_{f3}}{3} = \frac{0,691 + 0,693 + 0,694}{3} = 0,693\,\Omega \tag{4.3}$$

4.2 Zkouška naprázdno

[4] označuje charakteristiku naprázdno $U_1 = f(I_b)$, při $I_1 = 0$ a n = konst. jako charakteristiku vyjadřující magnetické vlastnosti stroje.

Postup je v [4] uveden následovný:

- 1. Pohonným rotorem roztočit generátor na synchronní otáčky.
- 2. Měnit budící proud I_b od 0 do maxima, kdy $U_1 = 1, 3U_n$. Poté opět snižovat I_b do 0.

 Vynést chararakteristiku při zvyšování i snižování budícího proudu. Uvažovanou charakteristikou naprázdno bude pak střední hodnota z těchto dvou charakteristik.

Důsledek vlivu remanentní indukce a hystereze je nestejná charakteristika při zvyšování a snižování budícího proudu. V případě, že neprotíná charakteristika naprázdno, je nutné provést korekci a ve směru osy x ji posunout tak, aby protínala počátek.

zvyšo	zvyšování I_b				snižování I _b				
I_b	U_{0L1}	U_{0L2}	U_{0L3}	U_0	I_b	U_{0L1}	U_{0L2}	U_{0L3}	U_0
А	V	V	V	V	А	V	V	V	V
0,000	22,18	22,15	22,30	22,21	0,000	31,64	$31,\!57$	31,58	31,60
0,234	90,44	90, 19	$90,\!30$	90,31	0,043	40,75	$40,\!65$	$40,\!67$	40,69
0,366	$132,\!53$	$132,\!11$	132,31	$132,\!32$	$0,\!141$	$76,\!68$	$76,\!48$	$76,\!56$	$76,\!57$
0,506	$171,\!45$	$170,\!93$	$171,\!20$	$171,\!19$	0,263	$118,\!27$	$117,\!90$	118,08	118,08
$0,\!574$	$185,\!87$	$185,\!37$	$185,\!62$	$185,\!62$	$0,\!341$	$143,\!28$	142,81	$143,\!04$	143,04
0,641	$198,\!36$	$197,\!92$	$198,\!13$	$198,\!14$	$0,\!426$	$168,\!06$	$167,\!54$	$167,\!81$	$167,\!80$
0,758	215,75	$215,\!40$	$215,\!57$	$215,\!57$	$0,\!599$	$203,\!00$	$202,\!57$	202,78	202,78
0,826	$223,\!82$	$223,\!52$	$223,\!67$	$223,\!67$	$0,\!856$	$232,\!11$	$231,\!84$	$231,\!99$	$231,\!98$
0,934	$234,\!82$	$234,\!56$	$234,\!72$	234,70	$1,\!104$	$246,\!34$	$246,\!09$	$246,\!31$	$246,\!25$
$1,\!104$	$246,\!34$	$246,\!09$	$246,\!31$	$246,\!25$					

4.2.1 Výsledek

Tab. 4.3: Změřené hodnoty při zkoušce naprázdno

Příklad výpočtu pro 1. řádek tabulky při zvyšování I_b

$$U_0 = \frac{U_{0L1} + U_{0L2} + U_{0L3}}{3} = \frac{22,18 + 22,15 + 22,30}{3} = 22,21 \,\mathrm{V}$$
(4.4)

Interpolace měřených dat

Pro určení spávné charakteristiky naprázdno je nutné vypočítat střední hodnotu z měření při zvyšování a snižování I_b . Toto lze provést interpolací výsledků pro stejné hodnoty budícího proudu z polynomů, kterými byly charakteristiky proloženy a proložení těchto hodnot novým polynomem. Viz tabulku 4.4 a graf 4.6. Linearizovaná hodnota poměrného napětí s korekcí, odpovídající charakteristice vzduchové mezery

inter	rpolace		Průměr			
I_b	$U_{0,nahoru}$	$U_{0,dolu}$	$U_{0,prum}$	u_0	$u_{0,lin+kor}$	
А	V	V	V	%	%	
0,0	18,45	27,00	22,69	9,86	0,00	
0,1	$54,\!20$	$65,\!27$	59,74	$25,\!97$	$15,\!38$	
$0,\!2$	87,02	$99,\!85$	$93,\!44$	40,62	30,76	
$0,\!3$	$116,\!82$	130,75	123,79	$53,\!82$	46,14	
$0,\!4$	$143,\!62$	$157,\!96$	150,79	$65,\!56$	61,52	
$0,\!5$	$167,\!40$	$181,\!48$	$174,\!44$	$75,\!84$	$76,\!90$	
$0,\!6$	188, 16	$201,\!31$	$194,\!74$	84,67	92,28	
0,7	$205,\!92$	$217,\!46$	$211,\!69$	92,04	$107,\!66$	
$0,\!8$	$220,\!67$	$229,\!92$	$225,\!29$	$97,\!95$	$123,\!04$	
$0,\!9$	$232,\!40$	238,70	$235,\!55$	$102,\!41$	$138,\!42$	
$1,\!0$	$241,\!12$	$243,\!78$	$242,\!45$	$105,\!41$	$153,\!80$	
$1,\!1$	246,83	$245,\!18$	246,01	106,96	169, 18	

[11] (pro průchod počátkem) $u_{0,lin+kor}$ (viz rovnici 4.9) se určí z směrnice lineární části poměrné hodnoty napětí u_0 při uvažování pouze směrnice, ne posunutí.

Tab. 4.4: Interpolované hodnoty z měření naprázdno a hodnoty s korekcí

Příklad výpočtu pro 1. řádek

 $U_{0,nahoru} = -150, 33I_b^2 + 373, 04I_b + 18, 45 = -150, 33\cdot^2 + 373, 04I_b + 18, 45 = 18, 45$ V (4.5)

$$U_{0,prum} = \frac{U_{0,nahoru} + U_{0,dolu}}{2} = \frac{18,45 + 27,00}{2} = 22,69 \text{ V}$$
(4.6)

$$u_0 = \frac{U_{0,prum}}{U_n} \cdot 100 = \frac{22,69}{230} \cdot 100 = 9,89\%$$
(4.7)

Linearizace byla provedena s využitím programu Microsoft Excel z řádku 1 – 3 sloupce u_0 :

$$u_0 = 153, 80 \cdot I_b + 10, 11 \tag{4.8}$$

$$u_{0,lin+kor} = 153, 80 \cdot I_b = 153, 80 \cdot 0 = 0\%$$
(4.9)

Obr. 4.6: Změřená charakteristika naprázdno

4.3 Měření nakrátko

[11] určuje průběh trojfázové zkoušky nakrátko synchronního generátoru:

- 1. Roztočení generátoru na jmenovité otáčky s $I_b=0. \label{eq:Ib}$
- 2. Zkratování všech fází.
- 3. Měření zkratového proudu, napětí kotvy a budícího proudu od 125 % I_n (kvůli bezpečnosti bylo měřeno od cca 110 % I_n) do $I_b = 0$ A. Sestupné měření je prováděno z důvodu rovnoměrnější teploty vinutí statoru.

Z důvodu remanentní indukce byla opět provedena korekce poměrného proudu nakrátko i_k podobně jako v případě poměrného napětí naprázdno u_0 zkoušky naprázdno.

I_b A	$\begin{array}{c} I_{k,L1} \\ \mathbf{A} \end{array}$	$\begin{array}{c}I_{k,L2}\\\text{A}\end{array}$	$\begin{array}{c}I_{k,L3}\\\text{A}\end{array}$	$I_{k,prum}$ A	i_k %	$i_{k,lin+kor}$ %
0,000	0,881	0,874	0,874	0,876	8,1	0,0
0,047	1,230	1,215	$1,\!171$	1,205	$11,\!1$	5,0
0,186	2,538	$2,\!637$	2,592	$2,\!589$	$23,\!8$	19,7
0,297	3,960	$3,\!600$	3,740	3,767	34,7	31,5
0,404	$5,\!057$	4,946	4,813	4,939	$45,\!4$	42,8
0,602	7,335	$7,\!083$	7,421	7,280	67,0	63,8

I_b A	$\begin{array}{c} I_{k,L1} \\ \mathbf{A} \end{array}$	$\begin{array}{c} I_{k,L2} \\ \mathbf{A} \end{array}$	$\begin{array}{c} I_{k,L3} \\ \mathbf{A} \end{array}$	$\begin{array}{c} I_{k,prum} \\ \mathbf{A} \end{array}$	i_k %	$i_{k,lin+kor}$ %
0,701	8,556	8,364	8,140	8,353	$76,\!9$	74,3
0,836	9,778	$10,\!154$	$9,\!993$	$9,\!975$	$91,\!8$	$88,\!6$
0,926	$11,\!297$	$10,\!903$	$11,\!430$	11,210	$103,\!1$	98,1
0,977	$12,\!435$	$11,\!998$	$12,\!580$	$12,\!338$	$113,\!5$	$103,\!5$

Tab. 4.5: Hodnoty zjištěné při zkoušce nakrátko

Příklad výpočtu pro 1. řádek tabulky

$$I_{k,prum} = \frac{I_{L1} + I_{L2} + I_{L3}}{3} = \frac{0,881 + 0,874 + 0,874}{3} = 0,876 \text{ A}$$
(4.10)

$$I_n = \frac{S_n}{3U_n} = \frac{7500}{3 \cdot 230} = 10,87 \,\mathrm{A} \tag{4.11}$$

$$i_k = \frac{I_{k,prum}}{I_n} \cdot 100 = \frac{0,876}{10,87} \cdot 100 = 8,1\%$$
(4.12)

Linearizace i_k provedena pomocí programu Microsoft Excel:

$$i_k = 105,94I_b + 4,82 \tag{4.13}$$

$$i_{k,lin+kor} = 105, 94I_b = 105, 94 \cdot 0 = 0 \text{ A}$$
 (4.14)

Obr. 4.7: Změřená charakteristika nakratko

4.4 Zjištění nenasycené hodnoty podélné synchronní reaktance

Dle [11] lze získat nenasycenou hodnotu podélné synchronní reaktance z hodnot zkoušky naprázdno a nakrátko pomocí:

- 1. odečtení budícího proudu I_{b,X_d} v
 bodě, kdy charakteristika vzduchové mezery $(u_{0,lin+kor})$ dosáhne 100 %
 U_n ,
- 2. odečtení proudu nakrátko $i_{\boldsymbol{k},\boldsymbol{X}_d}$ pro budící proud $I_{\boldsymbol{b},\boldsymbol{X}_d},$
- 3. dosazením a vypočtením vztahu 4.17.

Grafické vyjádření odečtu vyjadřuje obrázek 4.8

Výpočet

 I_{b,X_d} pro $u_n = 100\%$; směrnice $u_{0,lin+kor}$ z rovnice 4.9:

$$I_{b,X_d} = \frac{u_n}{153,80} = \frac{100}{153,80} = 0,65 \,\mathrm{A} \tag{4.15}$$

Směrnice i_k z rovnice 4.14:

$$i_{k,X_d} = 105,94 \cdot I_{b,X_d} = 105,94 \cdot 0,65 = 68,88\%$$
(4.16)

$$x_d = \frac{u_0}{i_{k,X_d}} \cdot 100 = \frac{100}{68,88} \cdot 100 = 145,18\%$$
(4.17)

$$\Delta x_d = \frac{x_d - x_{d,katalog}}{x_{d,katalog}} \cdot 100 = \frac{145, 18 - 140}{140} \cdot 100 = 3,7\%$$
(4.18)

Katalogová hodnota dle [3] je 140 %. Odchylka od katalogové hodnoty je dle rovnice 4.18 3,7 %. Tato chyba může být způsobena jak zaokrouhlením při výpočtu, chybami při měření tak nepřesností hodnoty udané výrobcem.

Obr. 4.8: Charakteristika nakrátko a vzduchové mezery a odečtení hodnot pro určení nenasycené X_d

4.5 Zjištění provozních hodnot synchronních reaktancí

Podmínky měření zátěžného úhlu δ jsou udány v [11]:

"Zkouška se provádí se strojem, který pracuje paralelně se sítí. Zatížení stroje nesmí být menší než 0,5násobek jmenovitého činného zatížení při jmenovitém účiníku.

Zaznamená se: proud kotvy a napětí, činný výkon nebo přímo měřený $\cos \varphi$, budící proud a zátěžný úhel."

Protože synchronní reaktance se mění při změně frekvence, svorková napětí (U_{f1}, U_{f2}, U_{f3}) i proudy kotvou (I_{f1}, I_{f2}, I_{f3}) budou uvažovány pouze v 1. harmonické – 50 Hz.

U_{f1}	U_{f2}	U_{f3}	U_1	I_{f1}	I_{f2}	I_{f3}	I_1	I_b
V	V	V	V	А	А	А	А	А
237,26	237,81	238,48	237,85	$1,\!657$	1,533	1,759	1,650	1,017
237,24	237,86	$238,\!52$	237,87	2,273	2,111	$2,\!354$	2,246	$1,\!037$
$237,\!54$	$238,\!16$	$238,\!94$	$238,\!21$	$2,\!957$	2,705	2,947	2,870	$1,\!077$
237,33	$237,\!90$	$238,\!48$	$237,\!90$	3,620	3,448	3,660	$3,\!576$	1,119
$237,\!54$	$238,\!09$	$238,\!65$	$238,\!09$	4,343	4,168	4,364	4,292	$1,\!147$
$237,\!37$	$238,\!01$	$238,\!34$	$237,\!91$	$5,\!042$	4,891	$5,\!134$	$5,\!022$	$1,\!186$
$237,\!03$	$237,\!69$	$238,\!12$	$237,\!61$	$5,\!831$	$5,\!633$	$5,\!840$	5,768	1,200
$237,\!04$	$237,\!95$	$238,\!19$	$237,\!73$	$6,\!526$	6,269	6,614	$6,\!470$	$1,\!253$
$236,\!64$	$237,\!49$	237,70	$237,\!28$	$7,\!208$	$6,\!976$	7,281	$7,\!155$	$1,\!317$
236,33	$237,\!25$	$237,\!48$	$237,\!02$	8,006	7,723	8,039	7,923	$1,\!376$
237,13	$238,\!03$	$238,\!21$	237,79	8,628	8,363	8,683	$8,\!558$	$1,\!435$

Tab. 4.6: Měření generátoru při zatížení s účiníkem blízkým 1 – 1. část

$\overline{P_2}$	S_2	Q_2	t	δ	$\cos \varphi$	x_d	x_q
W	VA	VAr	\mathbf{ms}	0	_	%	%
1031	1177	568	2,42	3,60	0,906	725,59	$50,\!55$
1492	1603	586	$2,\!50$	6,48	0,950	649,22	63,68
1951	2050	629	$2,\!57$	9,00	0,963	568,77	69,02
2453	2552	704	$2,\!61$	10,44	0,969	$502,\!34$	64,30
2972	3066	753	$2,\!65$	11,88	$0,\!975$	447,25	$60,\!95$
3484	3585	845	$2,\!69$	13,32	$0,\!977$	400,82	$58,\!83$
4007	4112	923	2,78	$16,\!56$	$0,\!978$	$329,\!55$	$65,\!07$
4501	4614	1015	2,82	18,00	$0,\!979$	312,83	63,75
4980	5094	1072	$2,\!85$	19,08	$0,\!979$	$305,\!35$	61,64
5512	5633	1161	$2,\!90$	20,88	0,980	289,13	61,86
5992	6105	1169	2,96	$23,\!04$	$0,\!982$	281,91	64,04

Tab. 4.7: Měření generátoru při zatížení s účiníkem blízkým 1 – 2. část

U_{f1}	U_{f2}	U_{f3}	U_1	I_{f1}	I_{f2}	I_{f3}	I_1	I_b
V	V	V	V	А	А	А	А	А
237,38	238,24	238,61	238,08	5,828	$5,\!366$	$5,\!47$	$5,\!555$	1,532
$237,\!26$	$238,\!01$	$238,\!38$	$237,\!88$	6,2	5,783	$5,\!933$	$5,\!972$	$1,\!558$
$237,\!66$	$238,\!39$	$238,\!82$	$238,\!29$	$6,\!688$	6,298	6,41	$6,\!465$	$1,\!607$
$237,\!52$	$238,\!34$	$238,\!63$	$238,\!16$	$7,\!214$	6,804	$6,\!991$	$7,\!003$	$1,\!65$
$237,\!8$	$238,\!63$	$238,\!97$	$238,\!47$	7,718	7,294	$7,\!476$	$7,\!496$	$1,\!695$
$237,\!82$	$238,\!61$	$238,\!93$	$238,\!45$	8,323	7,931	8,113	8,122	1,742
$237,\!31$	238,1	$238,\!32$	$237,\!91$	9,094	8,731	8,957	8,927	1,813
$238,\!04$	$238,\!21$	$238,\!67$	$238,\!31$	$9,\!526$	9,232	9,333	9,364	1,860

Tab. 4.8: Měření přebuzeného generátoru sQ=konst.– 1. část

P_2 W	S_2 VA	Q_2 VAr	tms	${\delta \over \circ}$	$\cos arphi$	x_d %	x_q %
2436	2443	3130	2,48	5,76	0,614	304,31	43,43
2935	2943	3088	$2,\!53$	$7,\!56$	$0,\!689$	$305,\!96$	$46,\!67$
3456	3464	3068	$2,\!56$	8,64	0,748	$313,\!77$	44,84
3943	3952	3078	$2,\!61$	10,44	0,788	$312,\!22$	47,60
4395	4404	3070	$2,\!65$	11,88	0,820	$313,\!35$	48,74
4916	4926	3095	$2,\!69$	$13,\!32$	$0,\!846$	309,96	48,96
5498	5509	3217	2,74	$15,\!12$	0,863	$302,\!51$	50, 19
5917	5928	3130	2,79	$16,\!92$	$0,\!884$	$304,\!60$	$52,\!58$

Tab. 4.9: Měření přebuzeného generátoru sQ=konst.– 2. část

U_{f1}	U_{f2}	U_{f3}	U_1	I_{f1}	I_{f2}	I_{f3}	I_1	I_b
V	V	V	V	А	A	А	А	А
234,28	234,75	235,24	234,76	4,155	4,426	4,618	4,400	0,551
$234,\!15$	$234,\!52$	$234,\!99$	$234,\!55$	4,442	$4,\!659$	4,847	4,649	$0,\!581$
$234,\!05$	$234{,}53$	$234,\!96$	$234,\!51$	4,861	$5,\!052$	$5,\!251$	$5,\!055$	$0,\!619$
237,74	$238,\!17$	$238,\!63$	$238,\!18$	5,771	$5,\!957$	6,124	$5,\!951$	$0,\!656$
$238,\!24$	237,82	$238,\!5$	$238,\!19$	$5,\!945$	6,036	$6,\!198$	6,060	0,779
$237,\!55$	$238,\!14$	$238,\!53$	$238,\!07$	6,507	$6,\!593$	6,823	6,641	0,809
$237,\!62$	$238,\!37$	$238,\!64$	$238,\!21$	6,898	6,937	7,232	7,022	0,864
$237,\!61$	$238,\!26$	$238,\!45$	$238,\!11$	$7,\!584$	7,574	7,843	7,667	0,911
$237,\!16$	237,81	$237,\!96$	$237,\!64$	8,075	8,128	8,403	8,202	0,969
$237,\!92$	$238,\!66$	$238,\!85$	$238,\!48$	8,849	8,819	9,133	8,934	1,021
$238,\!05$	238,73	238,9	$238,\!56$	9,436	9,440	9,712	9,529	1,084

Tab. 4.10: Měření podbuzeného generátoru sQ=konst.– 1. část

P_2	S_2	Q_2	t	δ	$\cos \varphi$	x_d	x_q
W	VA	VAr	ms	0	_	%	%
1011	3098	-2929	2,66	12,24	0,326	-37,57	478,50
1472	3272	-2922	$2,\!67$	$12,\!60$	$0,\!450$	$-25,\!33$	$225,\!96$
1990	3557	-2947	2,74	$15,\!12$	$0,\!559$	-8,35	186,14
2480	4252	-3453	2,79	$16,\!92$	$0,\!583$	$2,\!49$	180,82
3103	4330	-3017	$2,\!91$	21,24	0,717	44,30	169,22
3591	4744	-3097	$2,\!97$	$23,\!40$	0,757	51,78	$161,\!39$
3992	5019	-3039	$2,\!99$	$24,\!12$	0,795	$65,\!90$	142,99
4495	5476	-3127	$3,\!01$	24,84	0,821	$73,\!94$	$127,\!69$
4977	5848	-3068	$3,\!07$	27,00	0,851	$86,\!35$	124,94
5483	6391	-3281	$3,\!11$	28,44	0,858	$91,\!22$	$123,\!40$
5982	6820	-3273	$3,\!15$	29,88	$0,\!877$	$100,\!59$	$118,\!43$

Tab. 4.11: Měření podbuzeného generátoru sQ=konst.– 2. část

Příklad výpočtu pro 1. řádek k tabulce 4.10 a 4.11

$$U_1 = \frac{U_{f1} + U_{f2} + U_{f3}}{3} = \frac{234, 28 + 234, 75 + 235, 24}{3} = 234, 76 \,\mathrm{V}$$
(4.19)

$$I_{f3} = \frac{I_{f1} + I_{f2} + I_{f3}}{3} = \frac{4,155 + 4,426 + 4,618}{3} = 4,4 \,\mathrm{A}$$
(4.20)

Způsob měření času t je zobrazen na obrázku 3.13. Kalibrační čas získaný při měření naprázdno:

$$t_{kal} = 2,32 \,\mathrm{ms}$$
 (4.21)

$$t_{\delta} = t - t_{kal} = 2,66 - 2,32 = 0,34 \,\mathrm{ms} \tag{4.22}$$

$$\delta = p \cdot \frac{t_{\delta}}{T_U} \cdot 360^\circ = 2 \cdot \frac{0,34}{20} \cdot 360^\circ = 12,24^\circ \tag{4.23}$$

$$\cos\varphi = \frac{P_2}{S_2} = \frac{1011}{3098} = 0,326 \tag{4.24}$$

Směrnice v rovnici 4.9:

$$E_{10} = \frac{153, 8 \cdot I_b}{100} \cdot U_n = \frac{153, 8 \cdot 0, 551}{100} \cdot 230 = 194, 91 \,\mathrm{V} \tag{4.25}$$

$$\begin{aligned} x_d &= \frac{E_{10} - R_1 I_1 \cos(\varphi + \delta) - U_1 \cos \delta}{I_1 \sin(\varphi + \delta)} \cdot \frac{I_n}{U_n} = \\ &= \frac{194,91 - 0,693 \cdot 4,4 \cdot \cos[\arccos(0,326) + 12,24] - 234,76 \cdot \cos(12,24)}{4,4 \cdot \sin(\arccos(0,326) + 12,24)} \cdot \frac{10,87}{230} = \\ &= -37,57 \% \quad (4.26) \end{aligned}$$

$$x_{q} = \frac{U_{1} \operatorname{tg} \delta + R_{1} I_{1}(\operatorname{tg} \delta \cos \varphi + \sin \varphi)}{I_{1} \cdot (\cos \varphi - \operatorname{tg} \delta \sin \varphi)} \cdot \frac{I_{n}}{U_{n}} =$$

$$= \frac{234,76 \cdot \operatorname{tg}(12,24) + 0,693 \cdot 4,4[\operatorname{tg}(12,24) + \sin(\operatorname{arccos}(0,326))]}{4,4 \cdot (0,326 - \operatorname{tg}(12,24) \cdot \sin(\operatorname{arccos}(0,326)))} \cdot \frac{10,87}{230} =$$

$$= 478,50 \% \quad (4.27)$$

Obr. 4.9: Závislost nasycené hodnoty \boldsymbol{x}_d na výkonu generátoru

Obr. 4.10: Závislost nasycené hodnoty \boldsymbol{x}_q na výkonu generátoru

Obr. 4.11: Závislost velikosti zátěžného úhlu na výkonu generátoru

5 Závěr

Práce se v první části zabývá popisem typu zkoušeného stroje - synchronní stroj a popisuje jeho základní typy a charakteristické vlastnosti. Dále se zabývá celkovým popisem měřeného zařízení.

Následuje teoretický rozbor částí fázorového diagramu s důrazem na možnost výpočtu synchronních reaktancí z hodnoty zátěžného úhlu. Případně na možnost nepřímého měření zátěžného úhlu z dostupných hodnot.

V experimentální části byly provedeny zkoušky naprázdno a nakrátko pro ověření nenasycené hodnoty X_q . Z těchto zkoušek není možné získat nenasycenou hodnotu podélné synchronní reaktance X_d , která je dle katalogu 70 %. Hodnota vypočtené příčné synchronní reaktance se lišila od katalogové hodnoty o 3,7 %.

Hlavní část experimentu a cílem bakalářské práce je návrh a ověření možnosti měřit zátěžný úhel generátoru přímou metodou pomocí dostupných přístrojů v laboratoři a zjišťování provozních parametrů - synchronních reaktancí.

Dle charakteristiky na grafu 4.11 je vidět, že zátěžný úhel roste s činným zatížením generátoru. Se zvyšujícím se buzením při stejném činném výkonu se zátěžný úhel snižuje stejně, jako se zvyšuje elektromotorické napětí rotoru.

Charakteristiky nasycených synchronních reaktancí 4.9 a 4.10 vypadají velmi nahodile při změně buzení (měřeno bylo při konstantním jalovém výkonu) a lze předpokládat chybu měření, ačkoliv bylo měření opakováno. Bylo by vhodné tyto charakteristiky ověřit i na jiném generátoru stejného typu nebo jiném synchronním generátoru s vyniklými póly, toto není součástí bakalářské práce.

Literatura

- [1] NIDEC CONTROL TECHNIQUES LTD. Unidrive SP Size 0 6 User Guide [online]. Newtown (UK): Nidec, ©2017, 310 s. [cit. 2018-11-11]. Dostupné z: http://www.controltechniques.com/CTDownloads/SharePoint/ Download.aspx?SiteID=1&ProductID=43&DownloadID=236&VersionID=7501
- [2] MRAVEC, Rudolf. Elektrické stroje a přístroje I. Praha: SNTL, 1979.
- [3] CONTROL TECHNIQUES. Rotační zdroj 3x208/120V-400/230V, 50/60 Hz: Projektová dokumentace. Brno, 2009. Zakázka č. 310090206.
- [4] PETROV, G.N. Elektrické stroje 2: Asynchronní stroje-synchronní stroje.
 Praha: Academia, 1982, 728 s.
- [5] IDZOTIC, T.;erceg. Load angle estimation of a synchronous generator. In: *Electrotechnical Conference*, 2004. MELECON 2004. Proceedings of the 12th *IEEE Mediterranean* [online]. USA: IEEE, 2004, 3, s. 893-896 [cit. 2019-01-18]. DOI: 10.1109/MELCON.2004.1348098. ISBN 0780382714.
- [6] SUMINA, D;sala. Determination of Load Angle for Salient-pole Synchronous Machine. Measurement Science Review [online]. Bratislava: De Gruyter Open Sp. z o.o, 2010, 10(3), 89-96 [cit. 2019-01-18]. DOI: 10.2478/v10048-010-0018-2. ISSN 1335-8871. Dostupné z: http://search.proquest.com/docview/ 1323838425/
- [7] LEROY SOMER. LSA 37 SHUNT 2 & 4 POLE ALTERNATORS: Installation and maintenance. Angoulême (Fr), ©2007. [cit. 2019-01-11] Dostupné také z: http://www.leroy-somer.com/documentation_pdf/3548_en.pdf
- [8] SICK STEGMANN. DiCoder ® CNS50: Motor Feedback System for installation in electric motors. Saint Brice Courcelles (Fr), ©2006. [cit. 2019-01-11] Dostupné také z: http://www.audin.fr/pdf/documentations/sick/codeurs/ codeurs-boucle-fermee/CNS50.pdf
- [9] JEHLÁŘ, Zbyněk. Vliv externích elektromagnetických polí na funkci snímačů otáček. Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009.
- [10] Princip inkrementálního snímače otáček. In: ADVANCED Motion Control [online]. Camarillo, CA 93012 USA [cit. 2019-01-20]. Dostupné
 2: https://www.a-m-c.com/wp-content/uploads/images/experience/ technologies/encoder-feedback/incremental-encoder.jpg

- [11] ČSN EN 60034-4. Točivé elektrické stroje. Část 4, Metody určování veličin synchronních strojů ze zkoušek. Ed. 2. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2009.
- [12] YOKOGAWA. DL850/DL850V ScopeCorder Getting Started Guide. Tokio, 2013. Dostupné také z: http://91.143.108.245/Downloads/Yokogawa/ Handbuecher/DL850/IMDL850-03EN_080%20(DL850-DL850V_Getting% 20Sarted%20Guide).pdf
- [13] HIOKI. Power analyzer 3390. Nagano, 2013. Dostupné také z: http://www.globaltestsupply.com/pdfs/cache/www.globaltestsupply. com/hioki/power_quality_analyzer/3390/datasheet/hioki_3390_power_ quality_analyzer_datasheet.pdf