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Abstract
Image noise is a fundamental problem in digital photography. The goal of this thesis is to
study the use of deep neural networks in denoising of digital photographs. Two different
denoising methods based on deep neural networks, DnCNN and BRDNet, were implemented
and their performance was measured in several experiments. Additionally, a user testing
experiment was designed and carried out to evaluate the perceived image quality of the
studied methods by the general public. The experiments have shown that while both
methods achieve state-of-the-art denoising results in metrics such as PSNR and SSIM, the
perceived visual quality does not always correlate with the numerical metrics. The results
presented in this thesis highlight the importance of proper training datasets and image
quality metrics in digital photography denoising.

Abstrakt
Obrazový šum je fundamentálním problémem v digitální fotografii. Cílem této práce je
studium redukce šumu ve fotografiích pomocí hlubokých neuronových sítí. Dvě vybrané
metody založené na hlubokých neuronových sítích, DnCNN a BRDNet, byly implemen-
továny a jejich výkon byl změřen v několika experimentech. Kromě toho byl navržen
a proveden experiment na uživatelích s cílem vyhodnotit vnímanou kvalitu obrazu širokou
veřejností. Experimenty ukázaly, že zatímco obě metody dosahují výborných výsledků
v metrikách, jako je PSNR a SSIM, vnímaná vizuální kvalita ne vždy koreluje s num-
erickými metrikami. Výsledky prezentované v této práci zdůrazňují důležitost vhodných
trénovacích dat a metrik kvality obrazu v odšumování digitálních fotografií.
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Rozšířený abstrakt
Šum v digitální fotografii je jedním z hlavních prvků, které snižují kvalitu výsledného
obrazu. S rostoucí popularitou digitální fotografie je čím dál tím větší zájem o digitální
odstraňování tohoto nežádoucího prvku. V minulosti bylo pro tento účel hojně využíváno
algoritmických metod založených na filtrech. Tyto přístupy mají však mnoho nedostatků,
jako je například potřeba manuálního nastavování parametrů, které je činí nedostatečnými
pro potřeby digitální fotografie. V posledním desetiletí se v problematice odstraňování šumu
začalo hojně využívat metod založených na hlubokých neuronových sítích, které vykazují
slibné výsledky.

Cílem této bakalářské práce je seznámit se s využitím metod založených na hlubokých
neuronových sítích v oblasti odstraňování šumu a zhodnotit vhodnost jejich využití v dig-
itální fotografii. Pro tyto účely byly vybrány dvě metody, DnCNN a BRDNet, které slibují
úctyhodné výsledky na prezentovaných datech. Pro účely srovnání pokroků v tomto odvětví
byly tyto metody testovány v několika experimentech za použití vhodných veřejně dostup-
ných dat. Během těchto experimentů byla dokázána důležitost správných trénovacích dat
pro využití v odstraňování šumu z fotografií. Metody trénované na fotografiích vykazo-
valy zlepšení o zhruba 3,1 dB PSNR a 0,11 SSIM nad metodami trénovanými na datech
se syntetickým obrazovým šumem. Následně byly také výsledky obou metod porovnány
mezi sebou pro ustanovení vlivu rozdílů v architektuře a věku metody na výsledný výkon
v odstraňování šumu. Metoda BRDNet podávala konzistentně lepší výsledky než starší
metoda DnCNN hlavně díky její širší architektuře a díky tomu lepší schopnosti zachovat
jemné detaily ve fotografii. Díky výsledkům z testování bylo také poukázáno na určité
nesrovnalosti v původních publikacích těchto metod.

Další zkoumanou oblastí byla vhodnost současně používaných metrik, jako je PSNR
nebo SSIM, pro využití k hodnocení kvality obrazu v této problematice. Pro účely srovnání
těchto metrik s vnímanou vizuální kvalitou u lidí byl navrhnut a proveden uživatelský ex-
periment. Uživatelé měli v tomto experimentu za úkol srovnávat relativní vizuální kvalitu
výstupů obou studovaných metod a původní zašuměné fotografie. Výsledky z tohoto testu
ukázaly, že na vnímanou vizuální kvalitu výstupů obou metod má velký vliv míra obra-
zového šumu. U některých případů s nízkou úrovní obrazového šumu korespondenti označili
výstup obou metod jako horší než původní fotografie. Díky těmto shledáním byla vytvořena
hypotéza týkající se vlivu úrovně obrazového šumu na výkon odšumovacích metod, která
byla následně statisticky potvrzena na požadované hladině významnosti. Výsledky z to-
hoto testu také odhalily, že ačkoliv metoda BRDNet vykazovala v metrikách PSNR a SSIM
jasnou převahu nad metodou DnCNN, uživatelé mezi nimi neshledali žádné statisticky sig-
nifikantní rozdíly ve vnímané vizuální kvalitě.

Výsledky z této práce demonstrovaly schopnosti a pokroky současných metod založených
na hlubokých neuronových sítích v problematice odstraňování šumu v digitálních fotografiích.
Díky extenzivním experimentům bylo také možno poukázat na slabou korelaci tradičních
metrik pro určení kvality obrazu se skutečnou vnímanou kvalitou obrazu. Tyto metriky
jsou avšak stále hojně používané v nových publikacích a tento problém zůstává většinově
bez povšimnutí. Bylo také poukázáno na problémy současných metod v odstraňování šumu
z fotografií s nižšími úrovněmi šumu. Z nasbíraných poznatků byly vyvozeny vhodné závěry
a byly navrženy různé možnosti navazující práce v této problematice.
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Chapter 1

Introduction

With the continuously growing popularity of social media and messaging applications, the
number of digital photos taken every day is rapidly increasing. While the hardware and with
it the quality of the taken photographs are improving constantly, the demand for small-scale
imaging devices, such as smartphones makes it challenging to capture high-quality images
in low-light conditions. In turn, there is an urgent need to digitally remove the image noise
from such images while preserving the main characteristics of a realistic photograph.

The problem of image noise reduction is hardly new and has been extensively studied
for decades. The problem on hand is not concerning only digital photography but ex-
tends to fields such as medical or astronomical imagery which further increases the demand
for new and improving denoising methods. Early algorithmic approaches for solving the
noise reduction task showed moderate success but suffered from several drawbacks that
made their usefulness limited. In the past decade with the advancements both in hard-
ware and software, deep neural networks have seen a surge in popularity for various image
restoration tasks including image denoising, which show excellent and promising results.

This thesis aims to explore the advancements made in the field of noise reduction in real
photographs by deep neural networks. Several experiments are carried out on the imple-
mented studied methods to compare their performance and evaluate their fitness for use
in digital photography. Additionally, to address the shortcomings of purely numerical eval-
uation, a user testing experiment is presented which aims to evaluate the perceived visual
quality of the studied methods on the general public. Data from this experiment are pre-
sented and used to evaluate the correlation between numerical and human testing results.

Firstly, this thesis introduces the basic principles of image noise in digital photography
in Chapter 2 along with an overview of traditionally used noise reduction techniques and
commonly used evaluation metrics used to numerically judge the image quality. Chapter 3
then presents currently used methods for image noise reduction based on deep neural net-
works. Commonly used datasets for various denoising tasks are also presented later in the
chapter. The proposed solution for noise reduction is presented in Chapter 4, with the
design of proposed testing on real users presented in Chapter 5. Implementation details
along with used tools and technologies are described in detail in Chapter 6. Lastly, Chap-
ter 7 presents the results of all experiments that were carried out along with extensive data
interpretation.
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Chapter 2

Noise reduction in digital images

This chapter provides insight into the conception and structure of different types of image
noise present in digital photography. The history of traditional denoising approaches is
then introduced along with their advantages and shortcomings. Finally, metrics that are
commonly used to evaluate image quality are presented and compared.

2.1 Noise sources in digital images
A digital image is generated by converting the light coming from a natural scene to numer-
ical pixel values. During this process, multiple factors can affect the image signal and lead
to what is known as image noise.

When an image sensor is exposed to light in order to capture an image, the average
incident energy of photons that land on the said sensor can be seen as virtually constant
over a longer period of time. However, over shorter periods the amount of photons incident
on the camera sensor can fluctuate. Furthermore, not all photons are perfectly converted
to electric charge due to inaccuracies in the hardware technology. This phenomenon is
collectively known as shot noise. An important feature of this type of noise is the fact
that it is signal-dependent, meaning that the electric charge fluctuations over time are
proportional to the photon flux. This means that different parts of the captured image can
be affected by different amounts of shot noise [3]. This type of noise is modeled by the
family of Poisson distributions.

Another type of noise that commonly corrupts digital images is thermal noise which is
generated by a phenomenon called thermal agitation. This phenomenon causes the semi-
conductors that are used in the camera sensors to randomly emit charges due to heat even
without any external electric potential to stimulate them. This type of noise is proportional
to the working temperature of the sensor – the higher the temperature, the stronger the
effect. In some applications, such as optical astronomy, this effect is minimized by cooling
the imaging sensor. This technique is however not feasible for consumer-grade cameras and
thus this type of noise remains an issue. This type of noise is signal-independent and is
suitably modeled by Gaussian distribution [12].

Furthermore, during the process of capturing a digital image, there is a possibility
of correlation in charges of neighboring sensor elements. In other words, the electric charge
recovered from a sensor element does not have to be influenced only by the incident photons
but also by charges accumulated by the surrounding sensor elements. This is commonly
referred to as cross-talk and it is usually modeled by the adoption of correlated noise.
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Lastly, the electric potential from the image sensor is usually amplified and converted by
the analog-to-digital-converter. This process may introduce further noise and/or strengthen
the existing noise. The image signal processing (ISP) pipeline is then responsible for image
postprocessing. The ISP pipeline can further alter the properties of the captured image
by performing exposure compensation, white balance, color space conversion, gamma cor-
rection, and more depending on the manufacturer and camera settings [16].

(a) (b)

Figure 2.1: Two images demonstrating the effect of low and high levels of image noise.
Both images were captured by Sony 𝛼6000 with identical light conditions: (a) ISO 100,
(b) ISO 25600.

In digital consumer-grade cameras, the noise level is affected by adjusting the ISO
parameter. The term originates from the sensitivity of analog films – the lower the ISO
value, the lower the film’s sensitivity. This term is still used in digital cameras, however,
the value no longer represents the coarseness of the film grain but rather the digital signal
amplification level. Digital cameras usually offer the ISO ranges from 100 to 25600 or
sometimes even higher. By increasing the ISO level the amount of light needed for adequate
exposure is reduced, but the amount of image noise is increased. Figure 2.1 demonstrates
the deteriorating effects of high levels of ISO on a digital image.

It is apparent that digital images are corrupted by various different noise sources that
are hardly deterministic. The increased demand for small portable devices capable of digital
photography, such as smartphones and compact digital cameras, sees a surge in the need
for noise reduction techniques as those devices suffer greatly from these hardware-induced
causes of digital image noise.

2.2 Traditional noise reduction approaches
Image denoising techniques have attracted much attention in the recent 50 years due to the
surging popularity of digital imagery. However, the task of reducing image noise remains a
challenging and open task. The main reason is that from a purely mathematical perspective,
image denoising is an inverse problem with a non-unique solution. The major challenges
of noise reduction in digital images are as follows:
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• Edges in the image should be preserved with minimal blurring

• Flat areas in images should be smooth and uniform

• Textures should be retained, especially high-frequency ones

• New artifacts should not be generated

Classical denoising methods work in the spatial domain, meaning that the aim of these
methods is to remove noise by calculating the values of each pixel based on the correlation
between pixels/patches in the original image. Since the use of filters is prevalent in image
processing, a substantial number of image filters have been used for image denoising [14].
Spatial filters can be further divided into two types: linear filters and non-linear filters. The
originally used linear filters achieved reasonable success in reducing image noise, however,
approaches such as mean filtering or Weiner filtering [4] suffered from image over-smoothing,
edge blurring, and poor image texture preservation. Non-linear filtering approaches, such
as Bilateral filtering [41] show improvement over the linear filters, however, this comes
at a cost of efficiency. Spatial filters utilize low pass filtering, which follows the presumption
that the image noise occupies a higher region of the frequency spectrum. This means that
while the noise reduction of spatial filters is reasonable, the loss of high-frequency details
and image blurring is inevitable.

One of the most influential noise reduction methods is total variation (TV) regulariza-
tion [36]. The main principle of this approach is based on a presumption that noisy images
have high total variation, which means that the integral of the absolute image gradient is
high. According to this principle, reducing the total variation of the image should remove
unwanted noise whilst preserving important details such as edges. It has had tremendous
success in the field of denoising, particularly because of its ability to effectively calculate
the optimal solution while preserving sharp edges. However, even this method suffered
from some major drawbacks, such as over-smoothing and loss of contrast. To improve the
performance of the TV-based regularization model, a tremendous amount of research has
been conducted on image smoothing by using partial differential equations [32].

While local denoising methods, which take into account only a group of pixels surround-
ing a target pixel, have low time complexities, their performance on higher levels of image
noise is limited. The reason for this is that the correlation between neighboring pixels is
severely disturbed in high noise conditions. Pioneering work on non-local means (NLM) [6]
strived to solve this shortcoming by using weighted filtering across all pixels in the target
image. Thanks to this approach the NLM can make full use of the information provided by
the given images, which results in much greater post-filtering image clarity and lower loss
of detail than its local denoising counterparts. Since its conception, many studies on im-
proving this approach have been conducted focused on speed and denoising performance
improvements [28][13].

Apart from methods working in the spatial domain, methods working in the so-called
transform domain have seen a lot of success in recent years. In contrast with spatial domain
filtering, the transform domain methods first transform the image data to another domain
and then apply a denoising procedure on the transformed image data according to the
different characteristics of the image and image noise. One of the most influential meth-
ods utilizing this approach is the block-matching and 3D filtering (BM3D) method [11].
This non-local method uses the strategy of grouping image patches with similar character-
istics into three-dimensional groups (block matching) which are later transformed, filtered
(usually by Weiner filtering), and reconstructed to form the output image. This method

6



(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Image denoised by several different algorithmic methods: (a) Original image,
(b) Noisy image with Gaussian noise of 𝜎 = 50, (c) Bilateral filtering applied, (d) TV
filtering applied, (e) NLM filtering aplied, (f) BM3D applied.

provides excellent results and is often used as a benchmark algorithm for new denoising
methods due to its great performance.

Figure 2.2 demonstrates image denoising results of selected methods discussed above
to highlight their denoising capabilities and shortcomings. It needs to be noted that due
to the need for manual tuning of parameters for each method the shown results may not
be fully optimal and serve for illustrative purposes only.
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2.3 Commonly used evaluation metrics
As stated earlier, digital images are subject to a wide variety of distortions during the
capturing process. In order to quantify the visual image quality, several techniques are
used which will be described in this section.

For applications in which images are ultimately to be viewed only by humans, such is
usually the case in digital photography, the only “proper” way of quantifying the image
quality is through subjective evaluation on human test subjects. Subjective methods oper-
ate without reference, meaning that the ground truth image is not needed for evaluation.
In practice, however, subjective evaluation is inconvenient due to being time-consuming,
expensive, and labor-intensive.

On the contrary, objective evaluation is based on comparisons using explicit numer-
ical criteria. Several references are possible such as the ground truth image or the use
of prior knowledge, which makes it more practical than subjective evaluation. Objective
image quality metrics can be divided by the availability of an original (noise-free) image.
Most widely used approaches are known as full-reference, meaning that the original image
needs to be provided in order to compute the visual quality. However, in many situations,
the reference image is simply not available and in turn, a no-reference quality assessment
approach is needed.

MSE and PSNR

The most widely used full-reference quality metric is the mean squared error (MSE), which
is computed by averaging the squared intensity differences between the reference and noisy
image pixels:

𝑀𝑆𝐸 =
1

𝑚𝑛

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

[𝐼(𝑖, 𝑗)−𝐾(𝑖, 𝑗)]2 (2.1)

where 𝑚 and 𝑛 represent the image dimensions, 𝐼 represents the noise-free image, and
𝐾 its noisy counterpart. Along with MSE, a derived metric called peak signal-to-noise
ratio (PSNR) is widely used in most current publications. This metric represents the ratio
between the maximum possible power of a signal and the power of corrupting noise. It is
calculated in the following way:

𝑃𝑆𝑁𝑅 = 10× log10

(︂
𝑀𝐴𝑋2

𝐼

𝑀𝑆𝐸

)︂
(2.2)

where 𝑀𝐴𝑋 represents the maximum possible pixel value of the image and 𝑀𝑆𝐸 represents
the mean squared error. Both Equations 2.1 and 2.2 account only for monochrome images
for the sake of simplicity. Both metrics are inverse to each other in their representation
of image quality – when image quality decreases, MSE rises and PSNR approaches zero,
and vice versa.

Both metrics are appealing because of the fact that they are simple to calculate, have
clear physical meanings, and are mathematically convenient for optimization methods.
However, it is known that these metrics do not correlate well with perceived visual quality.

SSIM

Human perception of image quality is more closely tied to factors such as structural simi-
larity which metrics such as MSE or PSNR do not take into account. Alternative metrics,
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such as the structured similarity index metric (SSIM) [43], address these issues by taking
into accord the degradation of structural information which should more closely correlate
with the perceived visual quality. The SSIM metric is considered greatly influential due
to being one of the highest cited papers in the image processing and video engineering fields.
However, current publications often use PSNR as the only evaluation metric and neglect
other alternatives that could be more suitable. Figure 2.3 demonstrates the differences be-
tween PSNR and SSIM metrics on various image distortion types – all images share similar
values of PSNR but different values of SSIM.

(a) (b)

(c) (d)

Figure 2.3: Image from the CC dataset with various distortions applied to demonstrate
differing values of PSNR and SSIM. Values are presented in the format [PSNR/SSIM]:
(a) Original image [∞/1], (b) Gaussian noise of 𝜎 = 10 applied [28.48/0.49], (c) JPEG
compression with quality factor of 7 applied [29.07/0.79], (d) Shift by 1 pixel in the x and
y axis applied [30.62/0.96].

No-reference metrics

In contrast, the no-reference metrics make use of prior knowledge about anticipated distor-
tions in the form of training examples and corresponding human opinion sources to be able

9



to determine the image quality. Some of the widely used metrics are NRQM [26], NIQE
[31], and PIQUE [33]. These metrics are especially useful when the ground truth images
are not available.
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Chapter 3

Overview of the current state

This chapter outlines the currently used state-of-the-art denoising methods based on deep
neural networks. Along with their brief introductions, commonly used datasets that are
used for the purposes of training and testing these methods are also presented.

3.1 Deep neural networks for image noise reduction
Deep neural networks have seen a big upsurge in popularity for image restoration tasks
in recent years. This rise in popularity is mainly caused by the easily accessible large-scale
datasets, efficient training implementation on modern powerful GPUs, and various advances
in deep learning methods [45].

The state-of-the-art deep learning denoising methods are typically based on convolu-
tional neural networks (CNN). The use of a CNN for image denoising can be traced back to
[23], where a five-layer network with sigmoid nonlinearity was proposed, which showed im-
provements over the then-state-of-the-art denoising methods. However, CNN-based meth-
ods still faced problems with high memory requirements and computational complexity.
To address these problems, deep network architectures with small filters were preferred
to improve the performance and reduce computational costs. One of the notable networks,
the VGG [37] stacked multiple convolution layers with small kernel sizes to a great effect.
With this success, research has turned to deeper networks in hopes of greater denoising
performance. Although deeper networks are effective for image applications, they suffer
from two major drawbacks: first, if the depth of the network is high, problems with van-
ishing or exploding gradients may occur; second, problems such as overfitting may affect
networks with very wide architectures. To overcome these issues, the ResNet [19] utilized
residual learning operation which helped to alleviate some of the shortcomings. Very in-
fluential work by Zhang et al. [47] introduced techniques of residual learning and batch
normalization [22] incorporated into a feed-forward denoising CNN-based network, called
the DnCNN, for the first time. Specifically, it utilized the fact that residual learning and
batch normalization benefit from each other to boost denoising performance.

Some networks such as BRDNet [39] or DudeNet [40] utilized two sub-networks to en-
able greater feature extraction while utilizing dilated convolutions to decrease performance
penalties of wider networks. Moreover, BRDNet experimented with batch renormalization
[21] which allows for the use of smaller mini-batches unlike BN, which is invalid for smaller
batch sizes. Both methods also presented promising results on real image denoising in their
publications.
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Due to the lack of suitable training data for real image processing, generative adversarial
networks (GAN) were developed in order to address this issue. In general, GAN consists
of a discriminative network and a generative network. The discriminative network is trained
on determining if an image sample is real or generated while the generative network is
trained to produce samples good enough to fool the discriminative network. The resulting
distribution is aimed to be as close as possible to the distribution for real data. While it is
well known that training GAN is tricky and unstable, works by Chen et al. [7] and Guo et
al. [18] showed promising results on synthetic and real image denoising.

Loss functions

One of the most influential factors of deep neural networks is the loss function used in the
training process. Despite this fact, the choice of this function is usually not discussed in
most recent works. Mean squared error (MSE), an L2 -norm measure, is arguably one of
the most dominant error measures. Some of the main reasons for its popularity are the fact
that it is convex, computationally effective, and differentiable, which are very convenient
properties for optimization problems. However, as discussed in Section 2.3, the MSE does
not always correlate well with the perceived visual quality due to working on a per-pixel
basis.

Metrics such as SSIM are perceptually motivated, which should more closely correlate
with the desirable perceived quality. Works such as Couturier et al. [10] employed a
combination of L1 -norm and SSIM as a loss function, which delivered impressive results
mainly in higher levels of noise. Work by Johnson et al. [24] demonstrated the benefits of
using perceptual loss instead of traditional per-pixel loss on several existing methods which
showed improvements both in speed and visual quality.

3.2 Commonly used datasets
It is no secret that datasets are very important factors dictating the performance of image
denoising methods based on deep neural networks. The proper choice of training dataset can
greatly affect the denoising performance and thus this task should not be underestimated.
The datasets used for training and testing can be divided into two categories: datasets
for synthetic noise removal and datasets for real image denoising.

Datasets for synthetic noise removal, such as Additive White Gaussian Noise, are gen-
erally more abundant due to the fact that no ground truth image needs to be generated
– to generate clean/noisy pairs, the clean image is augmented by artificially adding the
image noise. This means that virtually any image dataset can be used for this task which
provides great flexibility. Some of the most used training datasets are the BSD300 [29],
Waterloo Exploration Database [27], and Urban100 [20]. For testing, the datasets used
are generally of smaller size and are never present in the training phase. Some of the
most frequently used testing datasets are the BSD68 [30], Kodak24 [15], McMaster [48],
or Set12 [47]. In some cases, grayscale versions of the datasets are used to train and test
models focused on monochromatic image denoising.

Datasets containing noisy photographs are on the other hand way less common. This
is due to the fact that for the purposes of training a deep neural network, a ground truth
image has to be provided in order to compute the loss function by a full-reference metric.
For real images the process of obtaining a clean/noisy image pair is complicated. Some
earlier approaches tried to solve this problem by capturing images twice, once with a high
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ISO level that caused higher noise and once with a low ISO level to obtain a clean image
with low levels of noise [2][35]. This approach has several problems: the images tend to
have different characteristics due to the fact that the camera needs to compensate for the
ISO levels in either change of aperture or shutter speed which can change the characteris-
tics of the image and the scene can change over time due to movement or changing light
conditions (especially if the light source is artificial and is powered by alternating current).
These problems can be partially solved by capturing large amounts of noisy images and gen-
erating the ground truth image by image averaging and subsequent color correction, dead
pixel correction, and other forms of post-processing [34][44][1]. These techniques produce
great results that are being gradually adopted for the training and testing of real image
denoising methods. However, due to the relatively complicated process that is needed for
the generation of a real image dataset the availability of public datasets is still limited.
This lack of variety results in incomplete training data that is limited to only a selection
of camera types, noise levels, and scene settings which can reflect on the trained method’s
performance under different scenarios.
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Chapter 4

Proposed solution for noise
reduction in photos

This chapter introduces the proposed solution for noise reduction in photos. First, a task
definition is presented that outlines the goals of this part of the thesis. Afterward, se-
lected noise reduction methods that will be used are presented. Finally, the used datasets
for training and testing said methods are presented and demonstrated.

4.1 Task definition
The first objective is to implement two state-of-the-art denoising methods based on deep
convolutional neural networks and evaluate their relative image denoising performance
on several public datasets. Results can show how big of an impact the different method
architectures and method novelty have on denoising performance, run times, and detail
preservation. The results can be also used to independently validate the claims made by
the methods’ authors about their noise reduction performances and provide additional data
on originally unexplored test cases, such as denoising of real photos.

The second objective is to determine the importance of datasets containing realistic
image noise in the task of real image denoising. Existing noise reduction methods mostly
rely on simple noise assumptions, such as Additive White Gaussian Noise (AWGN), and
ignore the task of noise removal from photographs. As described in Chapter 2.1, the
degradation of real images is affected by several different factors and noise types which
poses a question if models trained on AWGN can produce competitive results in real image
denoising. Due to the fact that a substantial amount of current methods provide results
solely on AWGN reduction, it is not easy to find out the answer just from publications alone.
The results from testing can provide insight into the importance of using real noisy image
datasets or simulating realistic image noise in boosting the noise reduction performance in
real photos.

4.2 Selected methods of study
The goal was to select methods that offer state-of-the-art denoising performance and utilize
different architectures and network complexity. Emphasis was also put on selecting methods
that differ in novelty to study the advancements made in the field of noise reduction in
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digital images. For this purpose, two different methods were selected that meet the desired
criteria – the DnCNN [47] and BRDNet [39].

DnCNN

The first studied method is a state-of-the-art denoising convolutional neural network pro-
posed by Zhang et al. [47] called DnCNN. Since its publication in 2017 this paper was cited
over 2690 times and is regarded as a highly influential work in its field. Due to its great
performance in noise reduction, it is still widely used as a benchmark for newly proposed
denoising methods.

This network utilizes the residual learning technique to predict the image noise that is
corrupting a noisy image. In contrast, discriminative denoising methods aim to directly
predict the original image instead.

𝑥 = 𝑦 −ℛ(𝑦) (4.1)

The equation 4.1 shows the process of residual learning where 𝑥 is the underlying deter-
ministic noise-free image, 𝑦 is the noise-corrupted image and ℛ(𝑦) is the residual mapping
of the noise-corrupted image to obtain the underlying image noise.

Figure 4.1: The architecture of the DnCNN network. The image was taken from the
original publication [47].

The architecture of this method can be seen in Figure 4.1. Specifically, the architecture
consists of three types of layers:

1. Conv + ReLU: The first layer utilizes 64 filters of size 3 × 3 × 𝑐 that are used to
generate 64 feature maps, and rectified linear units (ReLU) for nonlinearity. Here 𝑐
represents the number of image channels, i.e. 𝑐 = 3 for color images and 𝑐 = 1 for
grayscale images.

2. Conv + BN + ReLU: Layers 2 ∼ (𝐷− 1) each contain 64 filters of size 3× 3× 64
with batch normalization [22] layer added between Conv and ReLU layers.

3. Conv: For the last layer, 𝑐 filters of size 3×3×64 are used to reconstruct the output.

The number of inner layers is dependent on the use case to provide a trade-off between
complexity and performance – for image denoising on a known noise level inner depth of
𝐷 = 15 is selected while for blind image denoising depth of 𝐷 = 18 is selected. For the
reduction of boundary artifacts, the authors propose using zero padding. In summary, the
DnCNN model has two main features: the residual learning technique is adopted to learn
ℛ(𝑦), and the batch normalization layer is used to increase noise reduction performance and
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training speed. In particular, both residual learning and batch normalization benefit from
each other and in turn provide even faster training speeds and higher denoising performance.

The authors presented test results from denoising of both grayscale and color images in
the task of AWGN denoising. The tests included models trained on both fixed noise levels
and unknown noise levels where DnCNN showed state-of-the-art results and consistently
outperformed traditional algorithmic methods such as BM3D [11] and WNNM [17]. Exper-
iments on real noisy images were briefly mentioned but a thorough evaluation of real image
denoising was missing. The authors also failed to address training on real noisy images, so
this area of interest remained untouched in the original publication.

In the paper, the authors also presented the ability to train a single DnCNN model
for three image restoration tasks – image denoising, super-resolution, and JPEG deblocking.
This single DnCNN model showed impressive and competitive results in all three tasks.
However, since the focus of this thesis is solely on image denoising, only models dedicated
to noise reduction exclusively were experimented with.

BRDNet

For the second method, a batch-renormalization denoising network (BRDNet) from Tian et
al. [39] was chosen. This novel network proposed in 2020 was cited 159 times at the time of
writing this thesis and promises performance improvements in denoising capabilities over
other state-of-the-art image denoising methods.

This network utilizes a unique architecture that concatenates two networks in order
to increase the total width of the network and in turn increase denoising performance.
Figure 4.2 shows the BRDNet’s architecture outline. The top network consists of 17 layers

Figure 4.2: The architecture of the BRDNet network. The image was taken from the
original publication [39].

that include Convolution layers, Batch Renormalization Layers (BRN) [21], and ReLU. The
layers 1− 16 consist of Conv + BRN + ReLU and the last layer is Conv only.

The bottom network includes similarly to the top one 17 layers. The first, ninth, and
sixteenth layers are Conv + BRN + ReLU. Layers 2 − 8 and 10 − 15 contain Dilated
convolution and ReLU. The last layer is Conv to reconstruct the output.

The Batch Renormalization Layer is used to address small-batch and internal covariate-
shift problems. The ability to use smaller mini-batches is especially beneficial for low-
configuration hardware due to this method being computationally demanding. Addition-
ally, it utilizes dilated convolutions that allow for a larger receptive field size while saving
computational costs.

The authors presented results from color and grayscale AWGN denoising on known fixed
image noise. BRDNet was shown as a superior method to DnCNN and other competing
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methods due to its ability to better preserve image details and minimize the introduction
of artifacts. Additionally, the authors decided to include results from BRDNet trained on
real noisy images where it showed great potential and produced results that outperformed
DnCNN by a margin of almost 3 dB of PSNR.

It needs to be noted that an even newer method by the same authors called DudeNet [40]
was considered for use in this thesis. However, upon further inspection some strange nuances
were discovered – the DudeNet publication did not reference its predecessor BRDNet in any
part of the paper nor did it include it in any of the performance comparison tables. What’s
more, the older BRDNet achieved slightly better denoising results than the newly proposed
DudeNet. It appears that perhaps the authors wanted to present their new method in
a favorable light and in turn, did not mention the slightly older and better-performing
BRDNet. Due to these strange circumstances, the more established BRDNet was chosen
instead.

4.3 Used datasets
This section summarises and describes datasets used for training and testing the studied
noise reduction methods. The training and testing datasets were selected to match the
datasets used by the authors to provide an accurate comparison.

Training datasets

For training models on color AWGN denoising, the Berkley Segmentation Dataset (BSD300)
[29] was selected. The BSD300’s training set contains 200 color images with the sizes of
428×381 pixels (or 381×428 for portrait images) in png format. This dataset was originally
created for the purposes of image segmentation tasks, however, it has been widely adopted
for the training of image restoration models. The dataset is composed of a large variety of
images ranging from natural images to object-specific images such as plants, people, and
food. Some of the images can be seen in Figure 4.3.

Figure 4.3: 6 natural images from the BSD300 dataset.
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The training of the real image noise reduction models was performed on the PolyU
[44] dataset. It contains 100 real noisy images captured by different cameras (Canon 5D
Mark II, Canon 80D, Canon 600D, Nikon D800, and Sony A7 II) with various image sensor
sizes, ISO values, and scene settings. The dataset contains image pairs of noisy and ground
truth images that were generated by image averaging. Each image has a resolution of
2784 × 1856 pixels and comes in the jpg format. This dataset was chosen due to being
featured in the BRDNet publication and due to its higher quality than its counterparts,
such as RENOIR [2], which obtain ground truth images by capturing low ISO images.

Testing datasets

For the testing of AWGN reduction in color images the datasets CBSD68 [30] and Ko-
dak24 [15] were used. The CBSD68 dataset contains a selection of 68 color images from
the Berkeley segmentation dataset with sizes of 428 × 381 pixels. The Kodak24 dataset
contains 24 color images with sizes of 768 × 512 pixels. Both selected datasets are widely
used for measuring the denoising performance of deep neural networks.

The real image noise reduction models were tested on the CC [34] dataset, which con-
tains 15 real noisy images captured by three different consumer-grade cameras (Nikon D800,
Nikon D600, and Canon 5D Mark III) with different ISO values (1600, 3200, and 6400).
This dataset contains pairs of noisy and ground truth images that were obtained similarly
to the PolyU dataset by averaging multiple scene instances. All 15 images can be seen in
Figure 4.4.

Figure 4.4: 15 images from the CC dataset.
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Chapter 5

User testing design

This chapter introduces the proposed user testing experiment for image quality evaluation
by humans. Firstly, a task definition is presented along with an introduction to the dataset
constructed specifically for this task. Later, the design of the tool used by the test subjects
to rank the images is presented and discussed.

5.1 Task definition
All noise reduction methods aim to achieve a common goal – improvement in the quality
of the original image corrupted by noise. For the purpose of evaluating the improvement,
metrics such as PSNR and SSIM (described in detail in Section 2.3) are used to provide
numerical values that indicate how much the output image correlates with the original
image. These metrics are widely used in the field and provide a solid basis for comparing
the performance of different noise reduction methods.

However, it is known that the concept of overall image quality is rarely unidimensional
and different attributes such as blur, noise, and artifacts all influence the perceived image
quality [42]. Motivated by this fact an experiment was set up with the aim to rank the
noise reduction performance of different methods in different conditions based on human
visual perception.

5.2 Used dataset
In order to evaluate the perceived visual quality of different noise reduction methods, a
suitable dataset needs to be selected. Publicly available datasets containing real noisy im-
ages such as PolyU [44], CC [34], or SIDD [1] were considered, however, all were ultimately
rejected due to small variability in scene settings or too low variability in used camera
types. For these reasons a custom dataset, further referenced only as the Survey Dataset,
was constructed to meet the needs of this test.

It is known that the main factors that affect the image corruption level by digital noise
are lighting conditions, ISO level, temperature, image sensor size, and sensor manufacturer.
However, the characteristics of image noise can differ in relation to different light conditions
[16]. For this reason, the dataset should provide adequate variability in image light levels
to account for this phenomenon.

Another aspect that was considered while constructing this dataset was the scene set-
ting. Homogenous environments, such as in PolyU where all images are indoor images of
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similar nature, do not have to provide objective grounds for comparison due to the lack
of variability. It is nearly impossible to construct a dataset that covers all possible scene
types of digital photography, but the aim was to provide as much variability in scene types
as possible to facilitate fair and objective comparison.

In total, 12 images were selected for the Survey Dataset (Figure 5.1). The total number
of images needed to be low in order to keep the attention of the test subject at a maximum
– 12 was deemed to be acceptable in this aspect. Half of the images in the dataset are
considered as low-light (i.e. with either artificial light or low intensity of natural light) and
the other half are deemed as high-light for opposite reasons. The ISO levels are in the range
of [200, 3200]. The scene types of selected images contained nature, architecture, animals,
people, sceneries, and man-made objects. The dataset features images from 6 different
consumer-grade cameras. Each camera was represented by 2 images in the dataset. The
camera sensor formats, resolutions, and years of release can be found in Table 5.1. Each
image was cropped to 1500×1500 pixels to normalize the size for easier evaluation. All
images were kept in their original file format jpeg and sRGB color space.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.1: 12 images from the Survey Dataset captured by various cameras: (a)(b)
Nikon D40, (c)(d) Olympus E-M5 Mark III, (e)(f) Sony 𝛼7, (g)(h) Canon EOS 350D,
(i)(j) Pentax Optio S4, (k)(l) Sony 𝛼6000.

A high emphasis was also put on selecting images from various camera manufacturers.
In total, 5 different camera manufacturers were represented in this dataset. The reason for
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this is the fact that camera chips have different image noise characteristics depending on
the manufacturer which may affect the denoising performance of studied methods [16]. The
final results from the Public Survey, which was conducted using this dataset, can be found
in Section 7.4.

Camera name Sensor format Sensor resolution Year of release
Canon EOS 350D APS-C 8 Mpix 2005
Pentax Optio S4 1/2.5 4.23 Mpix 2003

Sony 𝛼6000 APS-C 24.3 Mpix 2014
Nikon D40 Nikon DX 6.1 Mpix 2007

Olympus E-M5 Mark III 4/3 20 Mpix 2019
Sony 𝛼7 Full-frame 24 Mpix 2014

Table 5.1: The digital cameras used in the Survey Dataset and their respective parameters.

5.3 Survey tool
The gathering of data from the general public is a common task and a lot of tools exist
to automate this process via online forms and questionnaires. However, for the task of
comparing and evaluating the noise reduction performance of different methods these solu-
tions were deemed as insufficient due to their poor ability to facilitate image comparisons.
Because of this, a custom surveying tool with proper image comparison capabilities was
designed to help with automating the data gathering process.

The tool’s purpose is to present the user with 12 image samples, gather the user’s re-
sponses and store them for later evaluation. Each image sample consists of three individual
images – the original image, the image produced by DnCNN, and the image produced by
BRDNet. In order to prevent selection bias, each image sample has the order of the three
images randomized. The user is required to rank the three images in each sample from best
to worst in terms of perceived visual quality.

The Survey tool was implemented as a web application. This choice was made due to
the fact that the web is a platform that is available to the vast majority of people which is
desirable when conducting this type of experiment. The user interface was in turn designed
to meet the needs of the web browser. The main goal was to provide as much screen
space to the images as possible to minimize the amount of distracting factors for the user.
Additionally, a “magnifying glass” element was designed that enhances a user-selected area
of interest in all three images simultaneously to help spot subtle differences in the images
by the user. Details about the final implementation of this tool are provided in Section 6.3.
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Chapter 6

Implementation

This chapter describes the technologies that were used throughout this thesis. Implementa-
tion details of both noise reduction methods and the public survey tool are also presented
later in this chapter.

6.1 Used technologies
The Integrated Development Environment (IDE) of choice for implementation of all parts
of this thesis was Visual Studio Code1. This choice was made due to its broad support
of countless programming languages, simplicity, platform independence, and performance.
Due to its popularity, a wide range of extensions can be installed that offer support for more
language features, debugging, and other features that help with the development process.

Two main programming languages were utilized in this thesis: Python for implemen-
tation, training, testing, and evaluation of the two denoising methods and TypeScript for
implementing the Public Survey Tool.

When implementing a new piece of software, the ability to rapidly prototype smaller
pieces of code is very useful and helps with early error prevention. For this reason, the
Jupyter computational environment was used to rapidly prototype Python code directly in
Visual Studio Code thanks to the Jupyter extension2.

Any project of moderate size should utilize some form of versioning system to keep
track of changes, manage version control and have access to the history of the project. For
these reasons, a popular versioning system Git was chosen. This choice was made because
of its clear command line syntax, wide adoption in the field, and previous experience with
using this tool in school and work tasks. GitHub was chosen as a Git hosting service,
which enables users to store their projects versioned under the Git system remotely for
free. This prevents accidental data loss and enables simultaneous work on multiple devices
while keeping up-to-date.

An honorable mention also goes to GitHub Copilot3, a tool developed by OpenAI in
collaboration with GitHub intended to help programmers with writing code which was
used in form of a Visual Studio Code extension4. The following paragraph describing what
GitHub Copilot is was taken from the official website:

1https://code.visualstudio.com/
2https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter
3https://copilot.github.com
4https://marketplace.visualstudio.com/items?itemName=Metatype.copilot-vscode
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“GitHub Copilot is an AI pair programmer that helps you write code faster and with less
work. GitHub Copilot draws context from comments and code and suggests individual lines
and whole functions instantly.”

Copilot is powered by OpenAI Codex [8], an artificial intelligence model used to process
natural language, which is based on GPT-3 [5], a widely known and popular autoregres-
sive transformer model for natural language processing also developed by OpenAI. Copilots
model was trained on a selection of English language as well as source code from public
GitHub repositories, which enables it to provide assistance in a wide range of programming
languages. This tool was provided to me in a closed technical preview version, which was
granted to a limited number of signed-up users for testing purposes. During the imple-
mentation phase of this thesis, Copilot was tested on the Python, TypeScript, HTML, and
CSS languages. Its performance during testing was remarkably impressive. The ability to
generate syntactically correct code in a language the user is less familiar with, accurately
predict and suggest the next line the user wants to write, or help with generating boilerplate
code from scratch saves a lot of time and helps the end-user to focus on the problem and
less so on the implementation. It needs to be noted that the technology is still evolving and
the overall accuracy of the model is limited and the user’s supervision is necessary. The
overall experience with this tool was very positive and I believe that this technology has a
great potential.

6.2 Noise reduction methods
The programming language of choice for implementing both noise reduction methods was
Python. The main reason for this choice was its syntactical simplicity with minimal boiler-
plate code required, which greatly reduces the time needed for implementation. Moreover,
the Python language offers powerful libraries suited for machine learning tasks. The Py-
torch library was chosen for the implementation of both studied noise reduction methods.
Pytorch is a free and open-source deep learning framework that is both flexible and pow-
erful. Thanks to its built-in CUDA5 support, the Pytorch framework offers seamless GPU
acceleration out-of-the-box. Two other Python libraries that were heavily utilized were
NumPy for image manipulation and evaluation and Matplotlib for output visualization.

The first studied method, the DnCNN, was implemented in the Pytorch framework
in accordance with the original paper [47] and the official implementation in a GitHub
“monorepo” 6 created by the paper’s authors. The implementation utilized the basic build-
ing blocks offered by the Pytorch framework. The total depth of the network was set to 20
as per the authors’ recommendation for blind Gaussian noise reduction.

The BRDNet’s implementation was based on the method’s paper [39] and the official
implementation7. However, the implementation was written in the Tensorflow framework
and thus had to be translated to the Pytorch environment. A third-party library8 was used
to include the Batch Renormalization [21] layer in the method’s architecture as proposed
by the authors.

The Pytorch framework also allows for custom data loader implementation. Data load-
ers are Pytorch primitives that facilitate iteration over a dataset. Several optimizations,
such as preloading all dataset entries to minimize the costly IO operations, were made to

5https://developer.nvidia.com/cuda-toolkit
6https://github.com/cszn/KAIR
7https://github.com/hellloxiaotian/BRDNet
8https://github.com/ludvb/batchrenorm
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decrease the training and testing times. Even marginal improvements in speed can save a
substantial amount of time in tasks such as training that often take tens of hours to com-
plete. Moreover, custom implementation was also needed to perform data augmentation
and in certain cases the addition of artificial noise. Data augmentation was performed on
each sample and consisted of randomly cropping the image to the desired dimensions and
subsequently flipping and/or rotating it to prevent model overfitting.

6.3 Public survey tool
The public survey tool was implemented as a web application due to the fact that nowadays
the web is the most popular and accessible platform for the general public. The front-
end part of the app was implemented in the Angular9 framework. This TypeScript-based
framework is one of the most popular front-end frameworks used today due to its robustness,
scalability, and maturity. It is usually used for larger-scale web applications and thus this
choice may appear to be unnecessarily robust for this task. However, this framework was
chosen due to previous experience with it from other projects that I was involved in. Due
to the relatively simple structure of this web application, the back-end portion of the app
did not have to perform any complicated tasks. For this reason, Firebase was chosen as the
BaaS10 solution for this project. This service allows the developers to primarily focus on
developing the front-end part of the application and provides APIs and SDKs for simplified
back-end integration and communication.

The internal structure of the app was divided into three main parts:

1. Landing page: First page the user sees. It contains instructions, acknowledgments,
and a non-mandatory name field.

2. Survey: Set of pages responsible for presenting the survey contents to the user and
allowing them to rate individual image samples (Figure 6.1).

3. Finish screen: Page responsible for sending the collected survey data and acknowl-
edging the user about the state of the transaction.

Each part was implemented as an independent component. Due to the simplicity of the
app, all components belong to a single encapsulating module.

The survey consists of 12 image samples. Each sample contains three image variations:
An original image from the Survey Dataset (Section 5.2), an image with reduced noise by
BRDNet, and an image with reduced noise by DnCNN in randomized order. The user is
required to rate the images in terms of visual quality. This is done by ordering the image
labels from best to worst in a separate drag-and-drop area. Additionally, the user can
inspect closer details by using a draggable magnifying element which provides 4× zoom on
all of the image variations to help with spotting subtle differences between the presented
images. The user can proceed only after successfully rating the active image sample. They
also have the ability to inspect previous samples and/or change their ratings retrospectively
if the user changes their preferences.

The user interface portion of this app was kept as simple as possible to avoid user
distraction and keep the user’s focus on the main task. However, a UI library was used to

9https://angular.io/
10BaaS – Back-end as a Service
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aid with the implementation of the otherwise hard-to-implement features such as drag-and-
drop areas and draggable elements. The library of choice was Angular Material11 due to
its ease of use, seamless integration with the Angular framework, and previous familiarity
with using it.

Figure 6.1: Demonstration of the survey user interface during the rating phase.

All image samples are stored in the Firebase Cloud Storage12. The images with reduced
noise were saved in lossless compression format png to eliminate the influence of lossy
compression on the final choice. The original images were all captured and saved using
the lossy compression format jpeg and thus had to be saved in the same format. More
information about the used dataset can be found in Section 5.2. The collected user data,
that is the survey results, the user name (if given), and timestamp, are sent at the end of the
survey as a JSON object to the Firebase Cloud Firestore13 database for later evaluation.
The whole application is hosted on the Firebase Hosting14 platform to offer convenient
access from the world wide web to the public.

At the time of writing this thesis, the application is hosted on the following url15.
However, this hosting is not permanent and may be subject to change in the future. In
such case, please refer to the source codes described in the Appendix A to perform local
hosting.

11https://material.angular.io/
12https://firebase.google.com/docs/storage/
13https://firebase.google.com/docs/firestore/
14https://firebase.google.com/docs/hosting/
15https://denoise-survey.web.app/
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Chapter 7

Experiments and results

This chapter describes all experiments that were carried out and presents their results. The
goal of these experiments is to validate if the implementation of the two studied methods
was proper, compare their relative performance in various situations, and to explore testing
results that were missing in the original papers. Lastly, the run time performance of each
trained method was measured and compared to provide additional data to base conclusions
upon.

As was presented in Chapter 4, the two studied methods, DnCNN and BRDNet, were
trained for two image noise reduction tasks – the blind Additive White Gaussian Noise
(AWGN) reduction and the real image noise reduction. To differentiate between the two
tasks the methods were trained for, the following naming scheme will be used throughout
the rest of the thesis: the methods trained on blind AWGN will be referenced as DnCNN-B
and BRDNet-B, alternatively the methods trained on real noisy images will be referenced
to as DnCNN-R and BRDNet-R.

For evaluation of the noise reduction performance two commonly used metrics were
used – PSNR and SSIM. Visual results are presented in several figures to compare noise
reduction performance on images with both AWGN and real noise. In Section 7.4 results
from the Public Survey are presented and statistically analyzed in order to draw several
conclusions about the relative noise reduction performance of the studied methods on real
noisy images.

All experiments were implemented in the Linux Mint 20.1 and Python 3.8.10 environ-
ments and ran on a PC with Intel(R) Core(TM) i5-4460 CPU, Nvidia GeForce GTX 1650
GPU, and 12 GB of DDR3 RAM.

7.1 Gaussian noise reduction
In the first round of experiments the two selected methods, DnCNN and BRDNet, were
trained and tested in the task of removing Additive White Gaussian Noise. The goal of these
experiments is to compare the relative performance of the two methods and verify if the
implementation and training were proper by comparing the results with results proposed
by the methods’ authors. In the next section, models trained on AWGN will be used to
determine the effect a real image dataset has on real image denoising performance.

In this section, the term noise level refers to the 𝜎 value of the Gaussian distribution
of the noise that is added to the pixel values of the noiseless image in order to generate a
noisy image. The pixel values of the image are represented as 8-bit values in 3 channels in
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the range of [0, 255]. If the values fall out of range with the addition of noise, the values
are clipped.

Training

For training, 200 images from the BSD300 [29] dataset were used. Each image was randomly
cropped to patches of size 50×50 px and then randomly rotated and/or flipped during mini-
batch training. The Gaussian noise level range was set to 𝜎 ∈ [0, 50] with 𝜇 = 0. The reason
for choosing random levels of 𝜎 is the presumption that the noise level present in digital
photography is of random nature and thus a random level of image noise seems appropriate.
It is noted that levels of 𝜎 as high as 75 were used in training on known fixed levels in the
BRDNet publication [39]. However, such high levels of noise were deemed to be unrealistic
for noise reduction in photos and thus were not considered in the training process. The
mini-batch sizes were set to 64 and 20 for DnCNN-B and BRDNet-B respectively. Both
models were trained over 100000 epochs to match the training volume presented in the
papers. The training times for RDNet-B and DnCNN-B were 65 and 31 hours.

The loss function and optimizers were set similarly for both methods in accordance
with the official implementations. The loss function used was the L1 loss, which utilizes the
mean absolute error (MAE) to calculate the loss value. The optimizer of choice was Adam
[25], a popular optimizer that is computationally efficient and leads to optimal results in
the cases of both DnCNN and BRDNet. The learning rate was fixed to 1𝑒− 4.

Testing results

Testing was conducted on the CBSD68 and Kodak24 datasets (more information about
chosen datasets can be found in Section 4.3). Noise reduction performance was measured
by the PSNR and SSIM metrics on four different noise levels of 15, 25, 35, and 50. The
results can be seen in Table 7.1. Results contain calculated metrics for the noisy image,
DnCNN-B output image, and BRDNet-B output image in relation to the original image.

When observing the results, it is apparent that the BRDNet-B method is superior to
the DnCNN-B method across all noise levels in both PSNR and SSIM metrics. The average
difference in favor of BRDNet-B is 0.23 dB and 0.0053 for PSNR and SSIM respectively
across both testing datasets and noise levels. The average improvement over the noisy
image for DnCNN-B was 11.99 dB in PSNR and 0.5046 in SSIM while BRDNet-B showed
an improvement of 12.23 dB in PSNR and 0.5099 in SSIM. These results are not surprising
due to the fact that BRDNet is a more recent and complex network than DnCNN.

The results shown in table 7.1 correlate with results presented in the original BRDNet
and DnCNN publications [39][47] and an independent overview of current noise reduction
methods [38]. It needs to be noted that the original BRDNet publication presented results
only for networks trained on fixed noise levels. However, the authors failed to mention
this vital information when presenting their noise reduction results. Methods used in this
thesis were trained on an unknown level of noise and thus their results perform marginally
worse than in the original publication. The difference is approximately 0.2 dB in PSNR
on average, which is very impressive given the more flexible nature of this approach. The
overall testing results show that the training on Gaussian noise was done properly and
successfully.

Visual results are presented in Figure 7.1 and Figure 7.2 on selected sample images
from the Kodak24 and CBSD68 datasets. The difference between the noisy image and
images denoised by both DnCNN-B and BRDNet-B is glaringly apparent – there can be
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Datasets Methods 𝜎 = 15 𝜎 = 25 𝜎 = 35 𝜎 = 50

CBSD68
– 24.61/0.5876 20.17/0.4150 17.25/0.3113 14.15/0.2180

DnCNN-B 33.85/0.9302 31.15/0.8832 29.49/0.8408 27.81/0.7869
BRDNet-B 34.03/0.9329 31.35/0.8878 29.70/0.8471 28.04/0.7941

Kodak24
– 24.61/0.5265 20.17/0.3500 17.25/0.2531 14.15/0.1714

DnCNN-B 34.57/0.9223 32.07/0.8781 30.48/0.8384 28.84/0.7888
BRDNet-B 34.79/0.9252 32.32/0.8829 30.75/0.8449 29.14/0.7966

Table 7.1: Average results of the noisy images (–), DnCNN-B output images, and BRDNet-
B output images on the CBSD68 and Kodak24 datasets with noise levels of 15, 25, 35, and
50. Results are shown as PNSR(dB)/SSIM. Best results are shown in red.

(a) (b)

(c) (d)

Figure 7.1: Gaussian noise reduction results from the Kodak24 dataset with 𝜎 = 25. Qual-
ity is measured as PSNR in relation to the original image. (a) Original image, (b) Noisy
image/20.18 dB, (c) DnCNN-B/29.57 dB, (d) BRDNet-B/29.71 dB

no doubt that both of these methods produce state-of-the-art noise reduction performance
in images with Gaussian noise. On the other hand, the visual difference between images
produced by DnCNN-B and BRDNet-B is more subtle. Selected areas were enhanced in the
figures demonstrating the noise reduction performance of both methods in order to aid with
spotting the subtle differences. Upon closer inspection, the DnCNN-B appears to perform
worse than BRDNet-B in preserving details in images, which is an expected result due to
the fact that BRDNet was designed specifically to tackle this deficiency. This phenomenon
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(a) (b)

(c) (d)

Figure 7.2: Gaussian noise reduction results from the CBSD68 dataset with 𝜎 = 50. Qual-
ity is measured as PSNR in relation to the original image. (a) Original image, (b) Noisy
image/14.16 dB, (c) DnCNN-B/27.31 dB, (d) BRDNet-B/27.55 dB

can be clearly seen in Figure 7.1 where the window blinds are more distinct and textured
in the BRDNet-B output image as opposed to the rather blurry output from DnCNN-B.

7.2 Real image noise reduction
In the second round of experiments, the two studied methods were trained and tested
on real noisy image datasets to evaluate their denoising capabilities in photos and to de-
termine which method offers better denoising performance in this task. The real image
denoising performance of DnCNN-R and BRDNet-R was then compared with their coun-
terparts trained on AWGN to establish the effects of a proper training dataset on real image
denoising.

Training

For real image noise reduction, 100 images from the PolyU [44] dataset were used to train
both methods. Each image was cropped into patches and augmented in the same way as
in the random AWGN training process. The mini-batch sizes were set similarly to random
Gaussian training to 64 and 20 for DnCNN-R and BRDNet-R respectively. The number
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of epochs was set to 150000 for both models. Training times were 50 and 24 hours for
BRDNet-R and DnCNN-R respectively.

The loss function and optimizer were chosen similarly to the previous task – MAE and
Adam were selected for the loss function and optimizer respectively. Both methods again
utilized the same configuration in these two parameters and had the same fixed learning
rate of 1𝑒− 4.

Testing results

Testing of real image noise reduction was conducted on the CC dataset. The noise reduction
performance was measured similarly to the Gaussian noise reduction in PSNR and SSIM
metrics. The results were calculated for both the methods trained on random AWGN and
methods trained on real noisy images in order to establish if training on real noisy datasets
brings significant improvement in noise reduction performance.

Dataset Methods PSNR (dB) SSIM

CC

DnCNN-B 33.71 0.8224
BRDNet-B 33.81 0.8274
DnCNN-R 36.80 0.9346
BRDNet-R 36.97 0.9374

Table 7.2: Average results of DnCNN-B, BRDNet-B, DnCNN-R, and BRDNet-R on the
CC dataset consisting of real noisy images. Best results are shown in red.

The results shown in Table 7.2 show significant differences in performance between
methods trained on random AWGN and methods trained on real noisy images – DnCNN-R
improved by 3.09 dB in PSNR over its Gaussian noise alternative and BRDNet-R improved
by 3.16 dB in PSNR. The visual comparison shown in Figure 7.3 clearly shows that DnCNN-
B and BRDNet-B do not produce competitive results on images with real image noise.

When comparing DnCNN-R and BRDNet-R, similar observations as with DnCNN-B
and BRDNet-B in synthetic noise testing can be made. The BRDNet-R takes the edge over
the DnCNN-R in both the PSNR and SSIM metrics, which correlates with the expected
results. The BRDNet-R again performs better than DnCNN-R in preserving fine image
details as was the case in the Gaussian noise reduction testing. Figure 7.3 clearly shows
BRDNet-R’s superiority in this aspect.

When comparing results from Table 7.2 with results from BRDNet paper (Table 7.3),
it is apparent that the BRDNet-R training was proper. However, we can notice that the
authors list DnCNN’s average performance on the CC dataset as 33.86 dB PSNR, which is
significantly worse than what was observed on DnCNN-R in this thesis. The figure more
closely resembles the results from DnCNN-B, which hints that the authors compared their
proposed BRDNet method that was trained on real noisy images with DnCNN trained on
AWGN. As was demonstrated, if DnCNN is trained on real noisy images, its performance
on real image noise removal is orders of magnitude better. It is still outperformed by
BRDNet, but the advantage is significantly smaller than what was presented in the original
paper. It needs to be noted that no suggestions of malicious intent by the authors are
being made because the DnCNN paper [47] itself did not present results on real noisy
images. However, it is apparent that results presented in papers should be validated due to
possibly misleading results leading to inaccurate and/or biased conclusions on the proposed
method’s performance.

30



(a) (b) (c)

(d) (e) (f)

Figure 7.3: Real image noise reduction results from the CC dataset. Quality is measured
as PSNR in relation to the original image. (a) Original image, (b) Noisy image/33.26 dB,
(c) DnCNN-B/34.05 dB, (d) BRDNet-B/34.26 dB, (e) DnCNN-R/38.70 dB, (f) BRDNet-
R/39.18 dB

7.3 Overall results
The results from testing showed that the implementation of both methods was proper and
their performance was on par with claims made in their respective papers. Testing also
showed decisive results favoring the newer and more complex BRDNet over its counterpart
DnCNN. The improvement was decisive in both AWGN and real image testing in both
PSNR and SSIM metrics. The newer and wider architecture of BRDNet allows it to capture
more detail and produce fewer artifacts which resulted in a more desirable output in all
tested scenarios.

The real image noise reduction testing demonstrated the importance of a proper train-
ing dataset on the real image denoising performance. The methods trained on real images
showed an improvement of approximately 3 dB PSNR and 0.11 SSIM over their counter-
parts trained on AWGN. These results also unveiled some discrepancies in the BRDNet
publication’s claims about the performance of DnCNN on real image denoising. It can be
concluded that the BRDNet’s wider and newer network architecture translates to better
results in real image denoising as well with noticeable improvements over DnCNN in both
PSNR and SSIM.
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Camera settings CBM3D DnCNN BRDNet

Canon 5D ISO=3200
39.76 37.26 37.63
36.40 34.13 37.28
36.37 34.09 37.75

Nikon D600 ISO=3200
34.18 33.62 34.55
35.07 34.48 35.99
37.13 35.41 38.62

Nikon D800 ISO=1600
36.81 35.79 39.22
37.76 36.08 39.67
37.51 35.48 39.04

Nikon D800 ISO=3200
35.05 34.08 38.28
34.07 33.70 37.18
34.42 33.31 38.85

Nikon D800 ISO=6400
31.13 29.83 32.75
31.22 30.55 33.24
30.97 30.09 32.89

Average 35.19 33.86 36.76

Table 7.3: Table taken from [39] comparing real image noise reduction performance of
BRDNet and competing methods on the CC dataset. Only showing selected methods.
Best results are shown in red and second-best are shown in blue. Shown values are in
PSNR (dB).

Run times

In addition to output visual quality, another important aspect of a noise reduction method
is its testing speed. Table 7.4 shows the run times of the studied methods on images with
sizes of 512 × 512, 1024 × 1024, and 2048 × 2048. It needs to be noted that the results
are bound to the tested hardware and should be used only for illustration purposes. Each
method was tested on GPU by using the Pytorch Profiler1 tool to measure the performance
of the studied methods. The time for memory transfer between CPU and GPU is ignored
as in [47][9]. The times were averaged over 100 iterations to provide more accurate results.

Methods DnCNN-B BRDNet-B DnCNN-R BRDNet-R
512× 512 166 ms 355 ms 168 ms 359 ms

1024× 1024 675 ms 1470 ms 673 ms 1450 ms
2048× 2048 2682 ms 5780 ms 2712 ms 5850 ms

Table 7.4: Measured run times of the implemented studied methods.

The experimental results reveal that there is no significant difference in run time between
similar methods trained on Gaussian noise and real image noise, which is to be expected
and indicates that these models were trained and implemented properly. Additionally, the
BRDNet method is on average 2.15× slower in processing given input than DnCNN. This
result is to be expected due to BRDNet having a more complex network architecture than
DnCNN. However, this difference in time complexity is quite significant and needs to be
taken into account when comparing these methods.

1https://pytorch.org/docs/stable/profiler.html
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7.4 Public survey results
The public survey was conducted for the purpose of evaluating the perceived visual quality
of a real noisy image by the average person. The results were gathered in total from 41
respondents. As described in Section 6.3, the respondents were tasked with rating 12 image
samples from the Survey Dataset. Each sample contained 3 versions of the same image: the
original image, the image processed by DnCNN-R, and the image processed by BRDNet-R.
In total, 492 image samples were rated. The results were then collected and analyzed in
the Python language by using the Pandas2 library to perform data analysis, the Seaborn3

library to visualize the results and the SciPy4 library to perform statistical tests. To help
evaluate the results a scoring system for image samples was introduced. The user’s ranking
order for each sample was translated to scores in the following way: the best-rated image
was given 2 points, the average 1 point, and the worst was given 0 points.

Figure 7.4: Bar plot showing the mean score values for each image sample from the public
survey. A higher score is better. Indices of images with low image noise are shown in blue
and images with high image noise are shown in red.

Firstly, the scores for each sample across all respondent entries were averaged and vi-
sualized in Figure 7.4. The results show strongly heterogenic results that show a strong
preference for the original image over the images produced by the studied noise reduction
methods in some of the image samples from the Survey Dataset. Specifically, the images
numbered {2, 4, 8} show a strong preference for the original image, images {1, 3, 7} show
indecisive results between the original and the versions with reduced noise, and images
{5, 6, 8, 9, 10, 11, 12} show decisive results in favor of the images with reduced noise by the
DnCNN-R and BRDNet-R. After examination of the characteristics of the images in the
Survey Dataset, a correlation between the image noise level and perceived visual quality
produced by the noise reduction methods appears to exist. Image samples showing either
a strong preference for the original image or indecisive results all share a common char-

2https://pandas.pydata.org/
3https://seaborn.pydata.org/
4https://scipy.org/
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acteristic – lower levels of image noise. An example of this phenomenon can be seen in
Figure 7.5 which shows image number 8 from the Survey Dataset which achieved one of the
highest average scores for an original image in the survey. It is apparent that while reduc-
ing the unwanted image noise that is corrupting the image, the noise reduction methods
visually appear to blur the image and soften or completely remove high-frequency details
or textures from the original image. This trade-off between reduction of noise and image
detail loss was perceived as unfavorable by the majority of respondents. On the other hand,
image samples showing decisive results in favor of images with reduced noise all contain
higher image noise caused by worse lighting conditions and higher ISO values. Figure 7.6
shows image number 10 from the Survey Dataset which contains a high level of image noise
caused by poor lighting conditions, higher ISO level, and smaller camera sensor size. In
these cases, the decrease in corruption caused by the higher image noise level seems to
justify the trade-off between noise reduction and loss of image detail.

(a) (b) (c)

Figure 7.5: Noise reduction results on the image number 8 from the Survey Dataset with
a low level of image noise: (a) Original image, (b) DnCNN-R, (c) BRDNet-R.

(a) (b) (c)

Figure 7.6: Noise reduction results on the image number 10 from the Survey Dataset with
a high level of image noise: (a) Original image, (b) DnCNN-R, (c) BRDNet-R.

To determine if our assumptions that the studied methods perform worse in images
with low image noise were correct, the following null, and alternative hypotheses were
constructed:
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Hypothesis 1 (𝐻0) DnCNN-R and BRDNet-R perform equally well on images with low
image noise and high image noise.

Hypothesis 2 (𝐻1) DnCNN-R and BRDNet-R do not perform equally well on images
with low image noise and high image noise.

To test these hypotheses we use the Person’s chi-squared test5 𝜒2 which will help us deter-
mine if the null hypothesis can be rejected on a significance level of 𝛼 = 95%. To apply this
test, the image samples had to be categorized as either low-noise images or high-noise images
in order to test the hypothesis. Images numbered {1, 2, 3, 4, 7, 8} from the Survey Dataset
were labeled as low-noise images and the remaining images numbered {5, 6, 9, 10, 11, 12}
were labeled as high-noise images as stated in Section 5.2. Additionally, conditions for
evaluating if DnCNN-R and BRDNet-R improved the observed image had to be set. If the
original image was selected as the best image (i.e. received full 2 points), the image sample
was deemed as not improved by the noise reduction methods. Conversely, when the original
image was selected as the worst image (i.e. received 0 points), the image was deemed to be
improved by the noise reduction methods. However, in 5.69% of cases, the original image
was ranked as the average (i.e. received 1 point) – in this case, the result was marked as
not improved by the noise reduction methods. It needs to be stated that even if the result
was marked as an improvement, the end result was not affected due to the low frequency
of this phenomenon. Figure 7.7 visualises the total number of score occurrences for each
method.

Figure 7.7: Bar plot showing the number of occurrences of score values for BRDNet-R,
DnCNN-R and the original image collected from the public survey.

After applying the test and calculating the significance level, we observe that the test
statistic exceeded the 𝜒2 critical value and thus the null hypothesis (Hypothesis 1) can be

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.contingency.chi2_contingency.html
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rejected and the alternative hypothesis (Hypothesis 2) can be accepted with the significance
level of 𝛼 = 95%. Moreover, after comparing the expected values from the 𝜒2 test with the
gathered data, we can conclude that the DnCNN-R and BRDNet-R methods performed
worse on images with low image noise, which corresponds with the predictions and visual
results.

Figure 7.8: Bar plot showing the average scores and standard errors of the two noise
reduction methods and the original image from the public survey results.

Lastly, the data gathered was used to analyze if the BRDNet-R method shows improve-
ment over the DnCNN-R method as was the case in PSNR and SSIM metrics in Sections
7.1 and 7.2. For this purpose, mean scores for each method and the original image were
computed and visualized in Figure 7.8. The mean score values and standard error values
were 1.0833 ± 0.0314 for DnCNN-R, 1.0792 ± 0.0336 for BRDNet-R and 0.8373 ± 0.0432
for the original image. The average difference between the DnCNN-R and BRDNet-R was
0.0041 in favor of DnCNN-R. However, due to the high levels of standard error, the advan-
tage of DnCNN-R over the BRDNet-R cannot be declared statistically significant. From
these results, we can conclude that both DnCNN-R and BRDNet-R on average show im-
provement in perceived image quality in real noisy images. However, results show that the
average person could not notice a significant difference in perceived visual quality between
DnCNN-R and BRDNet-R.

7.5 Summary
The two studied noise reduction methods DnCNN and BRDNet were successfully trained
and tested for both random AWGN reduction and real image noise reduction tasks. The
BRDNet method outperformed the DnCNN method in all experiments solidifying its su-
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periority in image denoising tasks due to its more advanced architecture. The BRDNet’s
ability to better preserve image details was demonstrated in several presented figures.

Real image noise testing revealed that the methods trained on blind AWGN were
severely outperformed by their counterparts trained on real noisy images in both PSNR
and SSIM metrics. The presumption that AWGN is unsuitable for modeling real image
noise was thus proved. Furthermore, this highlighted the importance of a proper train-
ing dataset on the final denoising performance, especially when dealing with real image
denoising.

Finally, the public survey revealed that conventional metrics used to measure image
quality do not always correlate with perceived visual quality in photos. By statistically
analyzing the gathered data, it was proven that DnCNN-R and BRDNet-R perform worse
on images with low image noise and perform better on images with high levels of image
noise. It was also proven that images with low image noise showed on average a decrease in
perceived visual quality for both DnCNN-R and BRDNet-R with the original image being
preferred by the respondents, which would be impossible to predict by using traditional
metrics. Moreover, the advantage of BRDNet-R over the DnCNN-R in PSNR and SSIM
did not translate to an advantage in perceived visual quality – both methods showed similar
results within the measured margin of error in noise reduction performance.

7.6 Future work
Although it was proven that noise reduction methods based on deep convolutional neural
networks deliver state-of-the-art performance, there is still a lot of room for improvement
mainly in the detail preservation aspect. As was demonstrated in the carried out experi-
ments, the loss of image detail can in certain cases lead to a decrease in perceived visual
quality, which is an issue that should not be overlooked. Some possible solutions may in-
clude different network architectures or the incorporation of better-suited loss functions for
the problem of removal of image noise in digital photography.

Experiments carried out in this thesis also showed the importance of training datasets on
real image noise reduction performance. However, currently, the amount of real noisy image
datasets is fairly limited. In my opinion, more emphasis should be given to constructing
real noisy image datasets with greater variability of image sensors, scene types, and levels
of image noise to facilitate greater flexibility and noise reduction performance in trained
methods. In recent years, methods focused on synthesizing training datasets imitating the
properties of real image noise have been proposed [46]. This approach seems promising due
to the fact that big volumes of diverse data can be produced almost instantly. However,
more testing and validation is still needed in this area as the comparison with real noisy
image datasets is yet to be presented by the authors.

The results from the public survey also showed that the traditional evaluation metrics
do not have to perfectly correlate with the perceived visual quality of digital images. More
emphasis should be put on discovering new methods of evaluating digital image quality
because it is apparent that the currently used metrics are imperfect.
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Chapter 8

Conclusion

The goal of this thesis was to get acquainted with the problem of image denoising in
digital photography and current methods based on deep neural networks. Two methods
called DnCNN and BRDNet were selected to demonstrate the current state of denoising
techniques.

The selected methods were successfully implemented and trained on publicly available
datasets. The training was performed on both additive white Gaussian noise and real image
noise to determine the influence of a proper training dataset on denoising performance in real
photographs. Results have shown that models trained on real images showed improvement
of over 3 dB in PSNR and 0.11 in SSIM over their counterparts trained on additive white
Gaussian noise, which proved the necessity of proper training data in this task. Additional
experiments highlighted the advantage of BRDNet over DnCNN in denoising performance
due to its novel architecture. Evaluation on both real and synthetic data showed that
BRDNet outperformed DnCNN in both PSNR and SSIM due to its ability to better preserve
image details albeit for the cost of roughly double the computational time.

Additionally, a user testing experiment was designed, implemented, and carried out to
find out if traditional metrics successfully represent the perceived visual quality of images.
Results on the custom dataset have shown that statistically, both denoising methods per-
form worse in low-noise images and better in high-noise images. The tests revealed that,
surprisingly, humans on average preferred the original noisy image in low-noise conditions
due to greater detail fidelity. Moreover, results also revealed that the test subjects did not
notice any significant difference in performance between DnCNN and BRDNet unlike in
numerical testing, which proved the importance of appropriate quality measuring metrics
in image denoising.

To summarize, I researched the field of image denoising by deep neural networks and
selected two different methods to highlight the advancements in the field. I then successfully
implemented both of them and performed extensive experiments to draw several conclusions
about their performance and the importance of proper training datasets. I then developed
a user testing tool along with an appropriate dataset to further evaluate the denoising
performances of the two methods, which revealed interesting results regarding perceived
image quality. Finally, conclusions were drawn with respect to the observed results, and
ideas for future work were presented.
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Appendix A

Contents of the included storage
media

• survey/ Folder with the Public Survey source code and additional data

• methods/ Folder with methods’ source codes and additional data

• tech-report/ Folder with LATEXrouce files

• video.mp4 Demonstration video

• README.md Project description with setup instructions

• tech-report.pdf Technical report
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Appendix B

Video

The video summarizing this thesis can be found at https://youtu.be/cyRqxUzki-c. The
video is also present on the included storage media.
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