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Figure 1: Left-hand side: Locations in a composite material where a singular stress concentration is expected.
Right-hand side: Sharp material inclusion tip where a singular stress concentration is expected

1. Introduction
Fracture mechanics has been developed following the fact that the majority of components and structures in engi-
neering application contain cracks or crack-like flaws [1]. Linear elastic fracture mechanics (LEFM) uses methods
of the linear elastic stress analysis of a cracked part to determine the conditions under which a crack, or crack-like
flaw will extend. The linear elastic analysis of a body with a crack shows that the stresses around the crack tip
vary according to r−1/2 where r is the distance from the crack tip. It is obvious that the elastic stresses become
unbounded as r approaches the crack tip [2, 3].

As a result of the near tip stress field character of a crack, it is among so called singular stress concentrators. A
crack can be conceived as a special case of a sharp V-notch with an opening angle equal to zero. It has been found
that the stress field in the vicinity of a sharp V-notch tip (with a non-zero opening angle) also has the singular
character, nonetheless different from the case of a crack [8]. The singular stress concentrators discussed above
originate from a discontinuity in geometry. However, singular stress character in a body different from a crack can
also arise from a material properties discontinuity. This may be the case of a bi-material junction which is a model
for a sharp polygon-like inclusion embodied in a parent material, Figure 1. An ultimate case of a singular stress
concentrator a sharp bi-material notch is the case combining both geometrical and material discontinuities.

Nowadays we encounter a rising number of components and structures made out of composite materials. The
composite materials (or composites) consist of two or more combined constituents that are combined at a macro-
scopic level [6]. One constituent is called the reinforcing phase and the one in which the reinforcement is embedded
is called the matrix as shown in Figure 1. The reinforcing phase material may be in the form of fibers, particles,
or flakes. One of the reasons to choose composites is that for example monolithic metals and their alloys cannot
always meet the demands of today’s advanced technologies. Only by combining several materials can the perfor-
mance requirements be met as we can see in the aerospace industry where a combination of supreme structural
characteristics and low weight is critical. On the other hand, the very nature of composites (the material properties
mismatch) brings higher complexity of their description in terms of fracture mechanics.

Advanced studies of the linear elastic fracture mechanics of cracks show an influence of particular singular and
non-singular stress series terms on the fracture behavior of solids with a crack. It is shown in literature that the
first non-singular (constant) term of Williams’ stress series [9] called T-stress plays an important role within crack
behavior assessment both in the case of brittle fracture and in the case of fatigue crack propagation [11, 12, 13, 14].
Similarly, the effects of the T-stress on interfacial cracks in isotropic bi-materials were studied [15].

Contrary to this, the approaches that will be able to assess the influence of the non-singular stress terms on a
fracture initiation in the general singular stress concentrators are in the focal point to be developed. The following
stress concentrators are considered: the sharp V-notch, the sharp bi-material notch and the bi-material junction. In
the case of the general stress concentrators, the influence of the non-singular terms has not been studied sufficiently,
but it is expected as well. The stress concentrators mentioned above can model a number of typical dangerous
points of components usually responsible for their failure.

Depending on loading conditions and geometry of a component with the stress concentrator, a generalized
constraint can have a positive or negative influence. It can counteract crack initiation or it can stimulate it. Thus
assessment not covering the influence of the constraint provides overestimated or underestimated results. In the
first case the new approaches can save a certain volume of material, while in the second case the new stability
assessment can prevent a fatal damage. Thus the results of the future research can raise the credibility and extend
the application possibilities of the fracture mechanics.
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Figure 3: V-notch in the left-hand side, bi-material notch in the right-hand side.

2. Methods and results
2.1. Limitations of single-parameter fracture mechanics
The area near the crack in which the stress field is precisely described only by a singular term is known as the
K-dominated region (in the case of fracture mechanics of cracks). A similar region can be found near the notch tip
or the sharp material inclusion tip, and it is again a region where the singular stress terms dominate as illustrated
in Figure 2. This region with dominating singular terms is one of the building blocks of classic fracture mechanics.
Some of crack initiation criteria of generalized stress concentrators require establishing a specific distance from
the tip of the concentrator, which depends on material characteristics (the strength and fracture toughness of the
material [23] or the size of material grain, [18, 19]). In fact, these distances are in some cases much larger than
the characteristic dimension of the domain of prevailing singular stress terms [16, 17, 21, 22]. This means that
a description only by a singular term may not be sufficient to describe stresses precisely enough and therefore to
assess reliably the stability of a dangerous point. Single-parameter fracture mechanics is not sufficient in the case
of assessment of crack initiation and propagation in silicate-based composites. In these quasi-brittle materials a
fracture process zone ahead of a crack has a larger size (in the order of millimeters) than a plastic zone occurring
in the case of metallic materials (typically from micrometers to 1 mm). For this reason, stress distribution must be
described reliably in a larger area ahead of the stress concentrator by singular and non-singular terms.

2.2. Fracture mechanics of V-notch and bi-material notch
A V-notch and bi-material notch are shown in Figure 3. The geometry of a V-notch is characterized by the angles
γ1 and γ2 and complementary opening angle 2α. The case of a bi-material notch has three geometric parameters
γ1, γ2 and γ3 and complementary opening angle 2α. The material properties are given by the elastic constants of
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Figure 4: Dependence of eigenvalues λk of the V-notch on the opening angle 2α. The black dashed line divides the
graph into fields where singular and non-singular eigenvalues are found. The yellow dashed line represents notch
free plate.

Young’s moduli and Poisson’s ratios. The solution mostly presupposes the approximation of plane strain or plane
stress. For the case of a bi-material notch a perfect bonding (displacement and traction continuity) is assumed
at the interface. Furthermore, the notch surfaces are traction-free. Stress distribution in the case of a V-notch or
bi-material notch [17, 27] is given by:

σij (r, θ) =
∞∑
k=1

{
Hkr

λk−1fijk(θ) + H̄kr
λ̄k−1f̄ijk(θ)

}
. (1)

where the indices (i, j) ≡ (r, θ) are polar coordinates. The symbol Hk stands for the Generalized Stress Intensity
Factor (GSIF) with the unit of [Hk] = MPa � m1−λk . The fijk (θ) is the angular eigenfunction, which is dimension-
less. The stress terms exponents 1− λk , where λk is the kth eigenvalue of the problem are in general complex. In
most of the geometrical and material configurations of V-notches and bi-material notches there are two real singular
stress terms exponents in the interval (0, 1) corresponding to the singular terms of the series [28]. Eigenvalues with
the real part greater than 1 correspond to the higher order terms (non-singular). The stress terms exponents are
dependent only on the local geometry of the problem. The boundary conditions of the V-notch correspond to the
zero traction on the notch free surfaces. Similarly, the boundary conditions for the bi-material notch are based on
zero traction on the notch free surfaces as well as the displacement and traction continuity through the interface.
The determination of eigenvalues λk is virtually identical for the case of a V-notch or a bi-material notch. It is
based on the solution of the eigenvalue problem:

A (λ) v = 0, (2)

The general dependence of eigenvalues λk on the opening angle 2α is shown in Figure 4 for a V-notch and in Figure
5 for a bi-material notch. Note, that in the case of the V-notch for angle 2α ∼ 103° the eigenvalue λ2 = 1. For larger
angles 2α, the term associated with eigenvalue λ2 is always a non-singular one. This is in accordance with results
of Ayatollahi and Nejati in [36] who report the angle value of 102.55°. The generalized stress intensity factors Hk

are dependent on the global geometry and the loading. Methods of its calculation are the combination of numerical
and analytical approaches. One of the possible method of its determination is the path independent Ψ-integral by
which the kth GSIF can be calculated as:

Hk = Ψ(uFE(θ), r−λkf−ik(θ))
Ψ(rλkfik(θ), r−λkf−ik(θ))

. (3)
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Figure 5: Dependence of eigenvalues λk of the bi-material notch on the opening angle 2α. The black dashed
line divides the graph into fields where singular and non-singular eigenvalues are found. The yellow dashed line
represents the free edge singularity. The geometry of studied case is γ1 = α, γ2 = π, γ3 = 2π − α. The Young’s
moduli ratio is E1/E2 = 0.25 and Poisson’s ratio is ν1 = ν2 = 0.25.

Because of the Ψ-integral path independence the analytical term in denominator Ψanalyt
k = Ψ(rλkfik(θ), r−λkf−ik(θ))

can be calculated once for all for given problem. The term in the numerator ΨFE
k = Ψ(uFE (θ) , r−λkf−ik (θ)) is

calculated from the finite element results. Another method of GSIFs determination is the overdeterministic method.
The ODM belongs to so called direct methods and is based on the least-squares solution of overdetermined system
of linear equations. In the general case of Hk ∈ C the system has the following form:

<
{
frr1 (θ1) rλ1

}
=
{
frr1 (θ1) rλ1

}
. . . <

{
frrn (θ1) rλn

}
=
{
frrn (θ1) rλn

}
<
{
frr1 (θ2) rλ1

}
=
{
frr1 (θ2) rλ1

}
. . . <

{
frrn (θ2) rλn

}
=
{
frrn (θ2) rλn

}
...

...
...

...
<
{
frr1 (θm) rλ1

}
=
{
frr1 (θm) rλ1

}
. . . <

{
frrn (θm) rλn

}
=
{
frrn (θm) rλn

}
<
{
frθ1 (θ1) rλ1

}
=
{
frθ1 (θ1) rλ1

}
. . . <

{
frθn (θ1) rλn

}
=
{
frθn (θ1) rλn

}
<
{
frθ1 (θ2) rλ1

}
=
{
frθ1 (θ2) rλ1

}
. . . <

{
frθn (θ2) rλn

}
=
{
frθn (θ2) rλn

}
...

...
...

...
<
{
frθ1 (θm) rλ1

}
=
{
frθ1 (θm) rλ1

}
. . . <

{
frθn (θm) rλn

}
=
{
frθn (θm) rλn

}
<
{
fθθ1 (θ1) rλ1

}
=
{
fθθ1 (θ1) rλ1

}
. . . <

{
fθθn (θ1) rλn

}
=
{
fθθn (θ1) rλn

}
<
{
fθθ1 (θ2) rλ1

}
=
{
fθθ1 (θ2) rλ1

}
. . . <

{
fθθn (θ2) rλn

}
=
{
fθθn (θ2) rλn

}
...

...
...

...
<
{
fθθ1 (θm) rλ1

}
=
{
fθθ1 (θm) rλ1

}
. . . <

{
fθθn (θm) rλn

}
=
{
fθθn (θm) rλn

}





<{H1}
= {H1}
< {H2}
= {H2}

...
<{Hn}
= {Hn}


= SFE

[3m].

The matrix on the left-hand side is formed of the known analytical eigenfunctions. On the left-hand side we also
find the unknown vector of n GSIFs. The right-hand side vector consists of radial, shear and tangential stress
components, determined by FE. For an overdetermined system of stress based linear equations above that is in a
short form written:

F[3m×n]H[n] = SFE
[3m], (4)

no exact solution exists since 3m > n . The approximation of the solution is found by minimizing the residual
vector by least squares method. The method can be also based on displacements, which is in short form written:

F[2m×n]H[n] = uFE
[2m]. (5)
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The displacement based method is in some cases preferred due to higher inherent precision of displacement based
FE codes. The theoretical and numerical derivation of both λk and Hk is in detail commented in the dissertation.

Criteria of crack initiation direction and stability criteria

A V-notch, bi-material notch and a crack in homogeneous material are all the singular stress concentrators. Thus
we suppose that the mechanism of crack initiation in a V-notch or bi-material notch is the same as the mechanism
of crack propagation in single material. The criteria of the direction of crack initiation at a V-notch or bi-material
notch tip and the criteria of the stability of a V-notch or bi-material notch are derived in analogy to the approaches
of a crack in homogeneous material. The classic fracture mechanics approach of comparison of the stress intensity
factor KI with its critical value KIcrit is generalized to the following relation:

H1 (σappl) < H1,crit (KIcrit) . (6)

A crack is not initiated at the notch tip if the value H1 is lower than its critical value H1,crit. The value H1 (σappl)
follows from a numerical solution and depends mainly on the level of external loading and on the global geometry.
Its critical value H1,crit depends on the critical material characteristic KIC or KIth and has to be deduced with the
help of the controlling variable L, see [41]. The controlling variable L needs to have a clear and identical physical
meaning in the case of assessing both a crack in homogeneous material and a V-notch or bi-material notch. With
respect to particularities of a V-notch or bi-material notch following controlling variables L were chosen: (i) the
mean value of the stress component σθθ and (ii) the mean value of the strain energy density factor Σ. In this work
we use multi-parameter approach, which consider first n terms of the stress series. Contrary to the case of a crack,
direction of maximum of tangential stress near tip of a bi-material notch is dependent on the radial distance. In
order to mitigate the radial dependence of the maximum in tangential stress, an average value over specific distance
d which is fracture mechanism or material microstructure is used.

The criterion of maximum of average tangential stress. The detailed derivation of the equations bellow is
found in the dissertation, therefore this sub-chapter presents only the equations in its final form. We can find the
crack initiation direction θ0, where the σθθ (θ) has its global extreme by solving the equation:

n∑
k=1

Γk1
dλk

λk

∂fθθk (θ)
∂θ

= 0, (7)

where the Γk1 is the ratio between individual GSIFs Γk1 = Hk/H1. The critical value of GSIF for a notch problem
is for complex λk and Hk:

H1C,m = KIC,m
√

2π<
{∑n

k=1 Γk1
dλk− 1

2
λk

fθθk (θ0,m)
} . (8)

As introduced by Eq. (6) on p. 8, the generalized fracture toughness H1C,m depends on the fracture toughness
KIC,m of the material m. In the case of a bi-material notch, there are two materials in which the crack can initiate.
If the value H1C,1 is lower than H1C,2, crack initiation is expected into the material 1, otherwise it onsets in the
material 2. The third option is the crack initiation in the interface. The value H1C,interface is determined based on
fracture toughness of the interface, KIC,interface. Note that for all the critical values H1C,1, H1C,2 and H1C,interface,
the shape functions fθθk (θ) shall contain corresponding angle of potential crack initiation θ0,m(m = 1, 2, interface).
The angle θ0,m is determined by Eq. (7) for the case when the material contains the global maximum of σθθ (θ) and
equals to γ2 for the remaining cases of local maximum of σθθ (θ) of the interface failure. Then, the crack initiation
occurs if the following stability criterion is violated [20]:

H1 < {H1C,1, H1C,2, H1C,interface} . (9)

In general, the criteria always compare value H1 with critical values H1C,m. This is true for approach when only
the singular terms factors are employed as well as for the multi-parameter approach. There is no need to compute
critical values for other terms Hk since they are dependent on H1 by the ratio Γk1. Finally the critical load for
crack onset from a bi-material notch can be calculated:

8
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σC = σappl
min (H1C,1 (θ0,1) , H1C,2 (θ0,2) , H1C,interface (θ0,interface))

H1 (σappl)
. (10)

The average strain energy density factor criterion. According to (ii) the mean value of the strain energy
density factor Σ, the equation by which we will find the crack initiation angle θ0 is:

n∑
k=1

n∑
l=k

Γk1Γl1
dλk+λl−1

λk + λl

∂Ukl (θ)
∂θ

= 0, (11)

where Γl1 = Hl/H1. The formula for determination of critical value of GSIF is:

H1C,m = KIC,m

√√√√ km

2π<
{∑n

k=1
∑n
l=k Γk1Γl1 d

λk+λl−1

λk+λl Ukl (θ)
} . (12)

Note that all the critical values H1C,1, H1C,2 and H1C,interface should be evaluated for calculated corresponding
angles of crack initiation θ0,1, θ0,2 and θ0,interface respectively, which were determined earlier by Eq. (11). Once
the critical fracture toughness values are known, in order to assess stability, the generalized stability condition as
stated in equation (6) is used. The condition of stability for the case of a bi-material notch is written identically
as in Eq. (9) in the MTS criterion section, since it is a general one. The crack onset load is then calculated by Eq.
(10).

Failure load predictions vs. experimental data. Experiments on three point bending specimens made of
polymethyl methacrylate (PMMA) with a V-notch were conducted by Dunn et al. in [61]. Dunn et al. tested
specimens with notch opening angle 2α of 60°, 90° and 120°. They also varied the notch depth, so the specimens
with a/h ratio of 0.1, 0.2, 0.3 and 0.4 were tested. In [61] Dunn et al. measured fracture toughness of PMMA as
an average value KIC = 1.02 MPa

√
m with standard deviation of 0.12 MPa

√
m and the average strength σu = 124

MPa. They reported on failure strength σf of notched specimens of individual geometric configuration. We compare
their experimental results with our prediction by above mentioned criteria. The H1C,m are determined by Eq. (8)
on p. 8 in the case of criterion of maximum of average tangential stress or by Eq. (12) on p. 9 in the case of average
strain energy density factor criterion. The generalized fracture toughness is computed by the above stated KIC of
PMMA. The crack initiation angle is assumed to be θ0 = 180° because of problem symmetry. The parameter d
related to microstructure or fracture mechanism was varied, so the charts show predictions with d = 0.001 mm, d
= 0.01 mm and d = 0.1 mm. The results for specimens with notch opening angle 2α = 60° and 2α = 90° are found
in Figure 6 and the results for 2α = 120° in Figure 7. The review of results show, that the very good agreement
between experimental data and theoretical predictions occur for d = 0.01 mm especially in the case of the largest
opening angle 120°. The use of the above mentioned criteria and parameter d = 0.01 mm leads to results which
underestimate the actual failure load. From the engineering point of view, it is a desirable situation, since the
results lay on so called safe side. The criteria used to predict the failure force are multi-parameter, nevertheless
on distances in order of 10−2 mm, the contribution of higher order terms is small. The difference in failure loads
predicted by the single-parameter criteria and multi-parameter criteria is in units of percents. The higher order
terms contribution would become significant for materials and configurations where larger d is necessary.

2.3. Fracture mechanics of sharp material inclusion
The geometry of a bi-material junction as shown in Figure 8 is characterized by angles γ0, γ1 and γ2. Analogically
to the case of the sharp notch, complementary opening angle 2α is defined. The joint has two interfaces and no
free surface. The material is considered as linear elastic and fully described by Young’s moduli and Poisson’s ratios
in terms of elasticity. Perfect bonding is assumed at the interfaces so the displacements and tractions are assumed
to be continuous. The solution mostly presupposes the approximation of plane strain or plane stress. The stress
distribution in the case of a bi-material junction is given by the asymptotic expansion [42]:

σij (r, θ) =
∞∑
k=1

{
Hkr

λk−1fijk(θ) + H̄kr
λ̄k−1f̄ijk(θ)

}
. (13)

9
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Figure 6: Comparison of experimental failure forces [61], the MTS and SEDF criterion predicted critical forces for
a V-notch. The cyan color represents results of 2α = 60° and the magenta color represents results of 2α = 90°.
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Figure 9: Dependence of eigenvalues λk the opening angle 2α. The geometry of the studied bi-material junction
is defined: γ0 = −α, γ1 = α, γ2 = 2π − α. The Young’s moduli ratio is E1/E2 = 0.25 and Poisson’s ratios are
ν1 = ν2 = 0.25.

where the indices (i, j) ≡ (r, θ) are polar coordinates. The symbol Hk again stands for the GSIF. Generally, the
eigenvalue λk is a complex number. For λk satisfying 0 < < (λk) < 1, the corresponding stress term is considered
singular. For λk where 1 < < (λk) the corresponding stress term is considered non-singular. The boundary
conditions of the problem reflect the traction and displacement continuity on both interfaces. Eigenvalue λk is
found as a solution of the characteristic equation rising from determinant of matrix A (λ) as in the case of a notch.
The dependence of eigenvalues for particular bi-material configuration of E1/E2 = 0.25 is shown in Figure 9. The
Hk are determined by methods which are the combination of analytical and numerical approaches such as the
Ψ-integral and ODM, as in the case of a notch. However, there are some particular differences in determination of
both λk and Hk, commented in detail in the dissertation.

Criteria of crack initiation direction and stability criteria

A sharp material inclusion is regarded as a singular stress concentrator, which is represented by a model of a bi-
material junction. The mechanism of crack initiation from the bi-material junction tip is presumed to be identical
to the mechanism of crack propagation in single homogeneous material. The stability condition of a bi-material
junction suggests the condition when the crack is initiated from the bi-material junction tip. Analogical to the
case of a V-notch or bi-material notch, the stress singularity exponent changes as the step function during crack
initiation. Since an inherently combined loading mode is observed in majority of cases it is generally speaking
not possible to separate the modes from each other (possible only in e.g. the symmetrically loaded symmetrical
bi-material junction). The stability assessment of a GSSC as it is defined in (6) for a notch can be utilized for the
case of a bi-material junction. Then the controlling quantity L regarding the identical physical meaning for a crack
in homogeneous material and a bi-material junction has to be chosen.

When we consider sharp rectangular material inclusion, there are 8 possible cases of loading direction and
bi-material stiffness ratio variation. This determines the character of singularity, which exists at the singular
concentrator tip. These 8 possible configurations are illustrated in Figure 10. For some cases, the singular terms
describe the singular solution with solid accuracy (as in Part 1 of the Numerical example on p. 15), in other
instances, the employment of higher order terms is essential (as in Part 2 of the Numerical example on p. 18). Let’s
analyse the configurations with the vertical loading, cases (i)-(iv). The Young’s modulus of an inclusion is denoted
by E1 and the modulus of matrix by E2. The cases (i) and (iii) both act like a V-notch, since the inclusion acts like
a compliant reinforcement. In the former case loaded in tension and the latter case in compression. In both cases
the singular terms describe the stress state well. Employment of higher order terms increases precision on larger
distances from the tip. On the other hand, we have configurations (ii) and (iv) which represent inclusion stiffer than
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inclusion more compliant than matrix (E1 < E2) inclusion stiffer than matrix (E1 > E2)
loading case description by s. t.: use of n. s. t.: case description by s. t.: use of n. s. t.:
vertical (i) good increased precision (ii) poor necessary
vertical (iii) good increased precision (iv) poor necessary
horizontal (v) poor necessary (vi) good increased precision
horizontal (vii) poor necessary (viii) good increased precision

Table 1: Summary of results, the particular cases are shown in Figure 10. The acronym s. t. stands for singular
terms and n. s. t. for non-singular terms.

matrix. The case (ii) is similar to Part 2 of Numerical example, where the stress is not described well by singular
terms. The case (iv) is its equivalent in compression, characterized also by poor description of the stress field by
singular terms. Employment of higher order terms is essential to obtain stresses that truly represents the stress
state near the inclusion tip. The configurations with horizontal tension (v)-(viii) show a different pattern. The
cases (v) and (vii), i.e. cases of inclusion more compliant than matrix are characterized by poor stress description
by singular terms. To obtain results that represent the actual stress field, employment of higher order terms is
necessary. In contrast, in the cases (vi) and (vii) with inclusion stiffer than matrix singular terms describe the
stress state well. Again, precision is increased by use of higher order terms. The Table 1 provides a summary of
all the cases. The general load of an engineering component is a combined one. Moreover, the orientation of an
inclusion in composite is random (depending on the composite type). Therefore, we can not state that the singular
terms only are sufficient for the case of an inclusion more compliant than matrix and that the non-singular terms are
crucial for the case of inclusion stiffer than matrix. By comparing e.g. the cases (i) and (v) it is obvious, that even
for cases of an inclusion more compliant than matrix, the non-singular terms do not describe the stress precisely
enough.

The criterion of maximum of average tangential stress
As described in the sub-section 2.2 on p. 8, the maximum tangential stress criterion states that the crack will

initiate in the direction of maximal tangential stress. General case of a bi-material junction (non-symmetrical) is
characterized by radial dependence of the direction of maximum σθθ (r, θ). To mitigate this dependence, as in the
case of a bi-material notch, we determine the average value of tangential stress σθθ (θ) over some specific distance
d. This distance d is established by the relation to microstructure or fracture mechanism. The derivation of the
multi-parameter formula to assess stability of a bi-material junction is analogical to the case of a bi-material notch,
which is shown in the dissertation. Thus we can rewrite the equation (7):

n∑
k=1

Γk1
dλk

λk

∂fθθk (θ)
∂θ

= 0, (14)

by which we find the global and local maximum of σθθ (θ). Recall that Γk1 is the ratio between GSIFs defined as
Γk1 = Hk/H1. In the equation above, the angle of global maximum is the only unknown. In the case of a bi-material
junction, there are three possible directions of crack onset. The crack can onset into direction with global maximum
of σθθ (θ), into a local maximum, or in one of the interfaces. These three depend on the fracture toughness of
inclusion, matrix and the interface, the KIC,1, KIC,2 and KIC,interface respectively. Based on an assumption that the
crack initiation mechanism is the same as in the case of a crack propagation in homogeneous media, we compute
the generalized critical value of fracture toughness as:

H1C,m = KIC,m
√

2π<
{∑n

k=1 Γk1
dλk− 1

2
λk

fθθk (θ0,m)
} (15)

The generalized fracture toughness of the matrix, inclusion and the interface H1C,1, H1C,2 and H1C,interface have to
be calculated on corresponding angles of crack onset θ0,1, θ0,2 and θ0,interface respectively. The condition of stability
is a general one, common for both cases of a bi-material notch and junction, as written in Eq. (9) on p. 8. The
critical load is calculated by Eq. (10) on p. 9.

The average strain energy density factor criterion
The strain energy density factor (SEDF) criterion, developed by Sih, found many applications in assessment of
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Figure 10: 8 possible cases of rectangular inclusion loading and bi-material variation
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Figure 11: Model of the sharp material inclusion specimen subjected to 3 point bending.

crack problems. The problem of a sharp material inclusion, modeled as a bi-material junction can be assessed by
this criterion as well. The theoretical multi-parameter approach is identical to the case of a bi-material notch.
The global and local minimum of the SEDF is found as a potential crack initiation direction. Thus we rewrite the
formula (11) on p. 9:

n∑
k=1

n∑
l=k

Γk1Γl1
dλk+λl−1

λk + λl

∂Ukl (θ)
∂θ

= 0. (16)

Based on the SEDF approach, we determine the generalized fracture toughness for all potential crack onset di-
rections, the global minimum, local minimum and the interface. This is achieved by Eq. (12) on p. 9, written
as:

H1C,m = KIC,m

√√√√ km

π<
{∑n

k=1
∑n
l=k Γk1Γl1 d

λk+λl−1

λk+λl Ukl (θ)
} . (17)

The condition of stability is a general one, common to all general singular stress concentrators, stated in Eq. (9)
on p. 8. Finally the formula for critical load, also a general one, is given by Eq. (10) on p. 9.

Numerical example: Crack initiation direction and initiation load in the case of a bi-material junction

Part 1 Let’s consider a problem shown in Figure 11, which represents a three point bending specimen with
rectangular inclusion. In the Part 1 we consider inclusion more compliant than matrix where E1/E2 = 0.033.
The material region 1, which represents the inclusion, is modeled with PMMA material properties E1 = 2.3 GPa,
ν1 = 0.34 and the material region 2, which represents matrix, with aluminum material model characterized by
E2 = 69 GPa, ν2 = 0.33. To assess crack initiation direction we use (a) criterion of maximum of average tangential
stress and (b) average strain energy density criterion. The fracture toughness of PMMA is KPMMA

IC = 1.02 MPa
√

m
[61]. The fracture toughness of aluminum is 14÷28 MPa

√
m depending on the particular alloy and treatment. We

choose aluminum alloy (7075) with KAl
IC = 24 MPa

√
m. Without an experiment with the particular bi-material

configuration, it is uneasy to estimate fracture toughness of the interface. In [62] Shatil and Shaimoto tested
aluminum/PMMA bi-material 3PB specimens, however they do not provide value regarding fracture toughness of
the interface. To bond the materials together they use epoxy adhesive. Experimental evaluation in [64, 63] show
that the fracture toughness of interface can vary widely depending on conditions and particular configuration of
materials to be bonded. Our estimation for this numerical example therefore is K interface

IC = 0.75 MPa
√

m.

(a) The criterion of maximum of average tangential stress. The tangential stress is averaged over a
specific distance d, which is chosen as 1 mm. The averaged tangential stress calculated by (i) singular terms (the
yellow dotted line) and by (ii) singular and non-singular terms (the cyan dotted line) is shown in Figure 12. The
yellow line with markers represents the solution of σθθ (r, θ) on d = 1 mm by singular terms. In similar manner, the
cyan line with markers represents the singular and non-singular terms solution. For this particular bi-material and
geometrical configuration there are two singular terms. Regarding the singular and non-singular terms solution,
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Figure 12: Average value of the σθθ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular
terms: the cyan line. The black dashed lines denote the interfaces.

two singular and two non-singular terms are considered. Please recall the formula to find potential crack initiation
directions (14) on p. 13. We see that there are two extremes in the tangential stress angular distribution, the global
maximum (occurs in the matrix, m = 2) and the local maximum (occurs in the inclusion, m = 1). In both cases, the
singular terms solution of extreme (represented by the vertical yellow solid line) and the non-singular terms solution
of extreme (represented by the vertical cyan dashed line) has the same direction (both in the local and global average
tangential stress maximum). The potential crack initiation direction in the global maximum is θglb.

0 = 180◦ and in
local maximum θloc.

0 = 0◦ which is apparent because of the problem symmetry. Nevertheless, as the solution by
employment of non-singular terms is more precise, increase in precision of the critical parameters is also expected.
In the previous theoretical chapter we stated that the crack initiation can occur in the inclusion, matrix or the
interface, whereas each of them possesses a particular material parameter K1C,m and therefore different H1C,m. We
calculate these critical values by Eq. (15). The results (i) singular terms solution are found in Table 2 and results
of (ii) non-singular terms solution in Table 3. The methods (i) and (ii) lead to difference of 5.94 % in H1C,2 which
is in global maximum, 1.72 % in H1C,1 which is in local maximum and 0.83 % in interface critical GSIF value. The
minimum value of H1C,m is found in the PMMA. By criterion of maximum of average tangential stress the crack
is therefore predicted to initiate in this direction and material. Remember, that we assume interface with perfect
adhesion, which allows full traction transmission. If the actual interface does not comply to this assumption and
crack may not initiate in this predicted direction.

θ0,m m H1C,m

global maximum 180.0° 2 ≡ aluminum 177.765048
local maximum 0.0° 1 ≡ PMMA 62.32677

interface ±45.0◦ interface 72.968331

Table 2: The generalized fracture toughnessH1C,m for global minimum, local minimum and the interface determined
by (i) singular terms and (a) criterion of maximum of average tangential stress.
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θ0,m m H1C,m

global maximum 180.0° 2 ≡ aluminum 188.317388
local maximum 0.0° 1 ≡ PMMA 61.254716

interface ±45.0◦ interface 72.359732

Table 3: The generalized fracture toughnessH1C,m for global minimum, local minimum and the interface determined
by (ii) singular and non-singular terms and (a) criterion of maximum of average tangential stress.
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Figure 13: Average value of the Σ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular
terms (the cyan line). The black dashed lines denote the interfaces.

(b) The average strain energy density factor criterion. The averaged strain energy density factor over
distance d = 1 mm is plotted in Figure 13. The yellow line represents solution by (i) two singular terms and the
cyan line represents solution by (ii) two singular and two non-singular terms. We see that there is a global minimum
and a local one, found by solving Eq. (16). Both (i) and (ii) return identical angular values corresponding to these
points. However some offset of Σ(θ) between solutions exists, therefore difference in critical parameters is expected.
The generalized fracture toughnesses are calculated by formula (17). The results (i) singular terms solution are
found in Table 4 and results of (ii) non-singular terms solution in Table 5. The methods (i) and (ii) leads to the
difference of 9.6 % in H1C,2 which corresponds to local minimum, 2.9 % in H1C,1 for global minimum and 2.2 %
in interface critical GSIF value prediction. The lowest value of generalized fracture toughness corresponds to the
interface, thus the crack is expected to initiate in this direction. We see that the crack initiation direction and
material predicted by (a) and (b) is different as in the former case the crack is predicted to initiate in PMMA with
θglb.

0 = 0◦ and the latter case it is predicted to initiate in the interface with θ0,interface = ±45◦. In (a) only the
tangential stress component is used to calculate H1C,m whereas in (b) all stress components are employed. The
level of tangential stress acting on the interfaces is low, leading to higher value of H1C,interface calculated by (a)
than by (b).

θ0,m m H1C,m

global minimum 0.0° 1 ≡ PMMA 62.786943
local minimum 179.9° 2 ≡ aluminum 187.279553

interface ±45.0◦ interface 39.704644

Table 4: The generalized fracture toughnessH1C,m for global minimum, local minimum and the interface determined
by (i) singular terms and (b) average strain energy density criterion.
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θ0,m m H1C,m

global minimum 0.0° 1 ≡ PMMA 60.974337
local minimum 179.9° 2 ≡ aluminum 205.32978

interface ±45.0◦ interface 38.813687

Table 5: The generalized fracture toughnessH1C,m for global minimum, local minimum and the interface determined
by (ii) singular and non-singular terms and (b) average strain energy density criterion.
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Figure 14: Average value of the σ̄θθ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular
terms (the cyan line). The black dashed lines denote the interfaces.

Part 2 In the Part 2 we consider three point bending specimen with rectangular inclusion stiffer than matrix
where E1/E2 = 30. The elastic constants remain identical to those in Part 1, only the inclusion is modeled with
aluminum material properties and the matrix with PMMA material properties. Again, to assess crack initiation
direction and critical value of GSIF we use (a) the criterion of maximum of average tangential stress and (b) the
average strain energy density criterion. In the part 2 of the numerical example, we use averaging distance d = 0.5
mm.

(a) The criterion of maximum of average tangential stress. The distribution of σθθ (θ) is shown in
Figure 14, where the yellow dotted line represents the averaged tangential stress solution given by (i) two singular
terms. The cyan line represents the solution given by (ii) two singular and two non-singular terms. In addition,
the stress on particular distance d is plotted by (i) and (ii) and denoted by lines with markers. Please note that
the tangential stress given by (i) is compressive for all θ. The black squares represents the FE solution. As in the
previous case, we see two extremes of σθθ (θ) represented by vertical lines, the yellow in case of (i) and the cyan in
case of (ii). Both singular and non-singular solution predict identical angles of crack initiation, i. e. θglb.

0 = 180◦
and θloc.

0 = 0◦ . The difference in stress description by (i) and (ii) is severe, therefore significant difference in value
of critical parameters is expected. The results by (i) are listed in Table 6. The results given by (ii) is summarized
in Table 7. When (i) only the singular terms are taken as an input for critical GSIF calculation a negative valued
H1C,m are obtained (since the σθθ (θ) is compressive). For (ii), the minimum value is H1C,2 and the crack is expected
to initiate in the direction of global maximum found in PMMA.
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θ0,m m H1C,m

global maximum 180.0° 2 ≡ PMMA (-0.015640)
local maximum 0.0° 1 ≡ aluminum (-0.117511)

interface ±45.0◦ interface (-0.001800)

Table 6: The generalized fracture toughnessH1C,m for global minimum, local minimum and the interface determined
by (i) singular terms and (a) criterion of maximum of average tangential stress.

θ0,m m H1C,m

global maximum 180.0° 2 ≡ PMMA 0.004104
local maximum 0.0° 1 ≡ aluminum 0.178545

interface ±45.0◦ interface (-0.004031)

Table 7: The generalized fracture toughnessH1C,m for global minimum, local minimum and the interface determined
by (ii) singular and non-singular terms and (a) criterion of maximum of average tangential stress.
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Figure 15: Average value of the Σ̄ (θ) plotted by (i) singular terms: the yellow line, by (ii) singular and non-singular
terms: the cyan line. The black dashed lines denote the interfaces. In the region of inclusion, i.e. the Σ̄ (θ) is
multiplied by factor of 10.

(b) The average strain energy density factor criterion. The angular distribution of strain energy density
factor Σ(θ) is shown in Figure 15. The yellow line represents (i) two singular terms solution. The cyan line
represents (ii) two singular and two non-singular terms solution. Because the problem is a symmetric one, there are
two directions where global minimum and local minimum are found. The yellow and cyan vertical lines represent
the locations of local minima. The global minima are found at the interfaces. The results by (i) are listed in Table
8 and by (ii) in Table 9. The results by (i) are listed in Table 8. The results given by (ii) is summarized in Table
9.The difference in H1C,m by (i) and (ii) is 1.1 % for the global minimum, 10.7 % for local minimum and 1.1 %
for the interface. The lowest value of H1C,m is found at the interface, therefore it is the expected angle of crack
initiation. The angle and material of expected crack initiation is different from (a), but as discussed in first part of
this example, the possible explanation is that the SEDF uses all the stress components rather than tangential stress
only. The thorough explanation of such behavior will be a subject of following research as well as experimental
evaluation of the problem.
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θ0,m m H1C,m

global minimum ±45.0◦ 1 ≡ aluminum 0.027674
local minimum 85.9°, 274.4° 2 ≡ PMMA 0.001334

interface ±45.0◦ interface 0.000865

Table 8: The generalized fracture toughnessH1C,m for global minimum, local minimum and the interface determined
by (i) singular terms and (b) average strain energy density criterion.

θ0,m m H1C,m

global minimum ±45.0◦ 1 ≡ aluminum 0.027360
local minimum 85.9°, 273.9° 2 ≡ PMMA 0.001477

interface ±45.0◦ interface 0.000855

Table 9: The generalized fracture toughnessH1C,m for global minimum, local minimum and the interface determined
by (ii) singular and non-singular terms and (b) average strain energy density criterion.
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Figure 16: Crack terminating at the inclusion/matrix interface.

Developing a complete description of crack initiation and propagation near the sharp material in-
clusion

This chapter examines possible scenarios of crack behavior near the sharp material inclusion embedded in matrix.
Crack in matrix terminating at inclusion/matrix interface is shown left-hand side of Figure 17. Similarly, the crack
in inclusion terminating at the inclusion/matrix interface is shown in right-hand side of Figure 17. This case can
be modeled as a crack with its tip at a bi-material interface. The geometry of problem is shown in Figure 16.
The crack that terminated at the interface can either propagate to the other material or propagate through the
inclusion/matrix interface. The latter situation is examined further in Figure 18, where crack propagating through
the inclusion/matrix interface is shown. In the left-hand side of the Figure 18 the crack originates in matrix and
in the left-hand side of the Figure 18 it originates in inclusion. These cases is modeled as interfacial cracks (special
case of the bi-material notch model with 2α = 0◦ and e.g. γ1 = 0◦, γ2 = 180◦ and γ3 = 360◦. Another situation
occurs when the crack reaches the end point of the sharp material inclusion, as shown in Figure 19 (another special
case of the bi-material notch model with 2α = 0◦ and e.g. γ1 = 0◦, γ2 = 270◦ and γ3 = 360◦). Figure 20 shows
crack initiated at the tip of the sharp material inclusion in the matrix (left-hand side) or in the inclusion (right-hand
side). This case is modeled as a bi-material junction. Above mentioned situations capture complete crack behavior
near the sharp material inclusion and all can be modeled by methods described in the dissertation.
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Figure 17: Crack terminating at the inclusion/matrix interface. On the left-hand side the crack originates in matrix.
On the right-hand side the crack originates in the inclusion.

Figure 18: Crack propagating through the inclusion/matrix interface. On the left-hand side the crack originates in
matrix. On the right-hand side the crack originates in the inclusion.

Figure 19: Crack propagated to the end point of inclusion/matrix interface. On the left-hand side the crack
originates in matrix. On the right-hand side the crack originates in the inclusion.

Figure 20: Crack initiated at the tip of the sharp material inclusion. On the left-hand side the crack initiates in
matrix. On the right-hand side the crack initiates in matrix.
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3. Conclusions
Methods of the classical fracture mechanics can not be directly applied on general singular stress concentrators
and its generalization is the current objective of many researchers. The identical motivation stays behind this
thesis. Although the dissertation is primarily theoretical, it provides the researchers with the framework in order
to fully assess generalized singular stress concentrators in terms of the multi-parameter criteria proposed herein.
Experiments to verify the theory on general singular stress concentrators different from a V-notch are the next step
to be conducted. For this purpose the specimens modeled in this work can be used.

The dissertation presents methods to determine the eigenvalues to form the exponents of singular and non-
singular stress terms in cases of general singular stress concentrators. When the eigenvalues are determined, the
angular eigenfunction can be easily formed. The cases of a V-notch, bi-material notch and bi-material junction are
studied in detail. However, the methods presented herein allow researchers to determine the order of singularity for
any type of multi-material general singular stress concentrator (for example quad-material notch or quad-material
junction). In the following part, application of two different methods to determine generalized stress intensity
factors of singular and non-singular terms are studied. The main advantage of the Ψ-integral method is, that it
allows independent determination of kth generalized stress intensity factor. The overdeterministic method is simpler
and computationally less expensive. When some requirements are fulfilled, i.e. if the integration path is far enough
from singular point in the case of the Ψ-integral, or number of terms n to be determined is high enough in the
case of the ODM, both methods return results very close to each other. By the knowledge of the eigenvalues and
generalized stress intensity factors, stress field near singular point can be reconstructed. The analytical solution
can be compared with pure finite element solution. When we are interested in the stress field on distances such
as 0.1− 1 mm, the employment of non-singular terms leads either to significant increase in precision (notches and
inclusion more compliant than matrix) or provides the only means to describe the stress field well (inclusion stiffer
than matrix).

The dissertation also presents stability criteria modified to contain higher order terms. These multi-parameter
criteria are namely the criterion of maximum of average tangential stress and the average strain energy density
factor criterion. Both criteria are applied on problems of V-notch, bi-material notch and bi-material junction. In
the case of V-notch, comparison of the predicted failure loads and experimental data show very good agreement. In
other cases, the crack initiation direction and critical parameters are calculated. Use of the multi-parameter criteria
leads to change in the predicted critical parameters in order of percents. The experimental validation of proposed
criteria will be a subject of further research.
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