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Abstract
Complex decision making tasks of different natures, e.g. economics, safety engineering,

ecology and biology, are based on vague, sparse, partially inconsistent and subjective

knowledge. Moreover, decision making economists / engineers are usually not willing to

invest too much time into study of complex formal theories. They require such decisions

which can be (re)checked by human like common sense reasoning. One important problem

related to realistic decision making tasks are incomplete data sets required by the chosen

decision making algorithm. This paper presents a relatively simple algorithm how some

missing III (input information items) can be generated using mainly decision tree topologies

and integrated into incomplete data sets. The algorithm is based on an easy to understand

heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve

decision problems under total ignorance, i.e. the decision tree topology is the only informa-

tion available. But in a practice, isolated information items e.g. some vaguely known proba-

bilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is

analysed under partial ignorance. The proposed algorithm reconciles topology related heu-

ristics and additional fuzzy sets using fuzzy linear programming. The case study, repre-

sented by a tree with six lotteries and one fuzzy probability, is presented in details.

Introduction
There is a broad spectrum of decision-making tasks, e.g. engineering, economics, sociology,
ecology, informatics etc., see e.g. [1–7]. These realistic decision-making tasks are often difficult
to solve by limited available input information items (III).

Moreover, realistic industrial and natural science decision-making applications are based on
vague data sets. For example, chemical, petrochemical and food processes take into decision
making processes inaccurate measurements, e.g. gross systematics errors, chaotic changes of
concentrations, flow rates, etc., see e.g. [8]. Bankruptcies, Loans and Investments are examples
from economics. Management of many common resources, e.g. environment and safety
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problems, is implemented and solved via group interactions, which is best described by public
goods games [9].

Most of decision-making tasks can be represented by single root trees, i.e. decision trees,
and sets of available III, such as probabilities, penalties, plausibility, etc., see e.g. [8]. In real-
world problems, the complete III set is usually not available; there is lack and uncertainty input
information, see e.g. [10, 11].

If uncertainties cannot be quantified using a simple probabilistic way then the topic of possi-
bility decision theory is often a natural one to consider, see e.g. [12, 13]. In many studies the
problem of information uncertainty is handled using fuzzy sets, e.g. fuzzy numbers, see.e.g.
[14–17].

Problems related to under-specification / lack information are usually solved by metaheuris-
tics, see e.g. [18, 19]. If all information items, e.g. probabilities, penalties, required by a chosen
decision making algorithm are not available then the decision task is solved under the total
ignorance. It means that the decision tree topology is the only input information available. The
traditional algorithms cannot take into consideration the individual heterogeneity / features
and the topology of complex systems / networks [20, 21]. This is partially correct for simple
structures as trees as well. EBAs (Entropy-based algorithms) can be applied under III condi-
tions [22]. They cover a broad spectrum of task of different natures, see e.g. [23, 24].

If isolated information items are available then the decision task is solved under the so-
called partial ignorance. Problems under partial ignorance are usually solved by Bayes' Theo-
rem (Bayesian), see.e.g. [25, 26]. However well-established decision making algorithms, e.g.
Bayesian [25, 27] cannot feasibly absorb these isolated additional information. This is particu-
larly true if additional information items are represented by vague heuristics based on common
sense reasoning.

Common sense heuristics are often the only available generators of III if the problem under
total ignorance is solved. Such heuristic generates ARII (all required information items). How-
ever, the partial ignorance problem incorporates some AII (additional information items).
ARII and AII are not consistent. A feasible reconciliation is inevitable. Common sense reason-
ing indicates that AII are more trustworthy. This fact must be taken into consideration.

Reconciliation algorithms are based on different formal tools, see.e.g. [28, 29]. There are sev-
eral incomplete decision making problems and the relevant algorithms how to solve them [4, 6,
30–32].

Decision making algorithms will be accepted by users from industry, business etc. if they are
simple. A decision making under total ignorance is simple if relevant heuristics are simple. The
bellow proposed algorithm is a simple variant how to solve decision problems under partial
ignorance. The advantage of this approach lies in the fact that is based on easy to understand
heuristics.

Heuristics
Decisions are often based on heuristics, see e.g. [33, 34]. This paper is based on an assumption
that decision makers are ready to accept some general heuristics based on common sense rea-
soning. There are many possible heuristics, which can be mutually contradictory.

An example of a pair of mutually exclusive heuristics is

H1: A longer decision tree sub-path is less probable,

H2: A longer decision tree sub-path is more probable.

Both heuristics reflect some features of common sense reasoning. The heuristic H1 reflects,
e.g. reliability and maintenance aspects [35]. A reliability interpretation of the heuristic H1 is:
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Simpler Systems are More Reliable.
The heuristic H2 is usually much more specific. For example—If credit related tasks are

studied then this heuristic becomes meaningful e.g.:
If a credit applicant satisfies more requirements then the final probability of the credit

granting is higher.
This paper is based on the heuristics H1, however, it is a simple task to modify the below

given theory using the heuristics H2.
The algorithm studied in this paper is based on a strong analogy between a water flow

through a one root tree system of pipes and the decision tree of the same topology. Let us sup-
pose that one litre of water is pumped into the root node of the decision tree each second and
there is no accumulation of water inside the tree. The consequence is that one litre of water
must leave the tree through its terminal nodes each second; see e.g. [36]. Flows through all
branches of the tree under study must be balanced. The relevant balance equation for a node
with one flow in, k flows out is written [14]:

INi ¼
Xk

j¼1

OUTj ð1Þ

where IN is flow into ith node and OUT are flows out of ith node. For example, the flow into
node no. 1 is the sum of flows into nodes no. 4 and 5, see Fig 1. Flow balancing equations of a
decision tree define a linear system of equations, see [14]:

A � yT ¼ B ð2Þ
where y is a vector of flows.

This paper deals with the second case where the available information is not reliable and
precise. There is a relationship between a flowrate through node and a probability of this node.
Then a reinterpretation of the heuristic H1 is

• H3: The flowrate of water through a node is equal to its probability.

The following classical axiomatic definition of probability can be found in a number of stan-
dard texts [37]. Let A be an event, and O is a sample space. A probability p(A) of event A, must
satisfy three axioms:

for all A 2 O; pðAÞ � 0 ð3Þ

pðOÞ ¼ 1 ð4Þ

pðA1 [ A2 [ . . . [ AnÞ ¼
Xn

i¼1

pðAiÞ ð5Þ

The relevant water flows through a node satisfies the axioms (3)–(5).

Topological Resistance
A decision tree has one root node r, see e.g. Fig 1, where circles / nodes represent either lotteries
or decisions [38].

The following definitions are used below:
T Set of terminals, see e.g. nodes 4, 6, 7 and 8, Fig 1.
N Set of all nodes.

Reconciliation of Decision-Making Heuristics
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sij Number of edges of the sub-tree where i is the root of the sub-tree and j is the node next
to the sub-root, see e.g. s15 = 3 namely the edges 1–5, 5–7, 5–8.

Si Number of all edges of the sub-tree where i is the sub-root (water resistance of ith node).

Si ¼
X

j

sij; see e:g:S1 ¼ s14 þ s15 ¼ 1þ 3 ¼ 4 ð6Þ

where j represents nearest downstream node of the sub-tree next to the ith node.

s�ij ¼ Si � sij; for all i; j 2 N � T; s15
� ¼ S1 � s15 ¼ 4� 3 ð7Þ

Fig 1. A decision tree.

doi:10.1371/journal.pone.0131590.g001
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S�i Number of edges of the ith sub-tree:

S�i ¼
X

j

s�ij; see e:g:S�1 ¼ s15
� þ s14

� ¼ 4 ð8Þ

where j represents nearest downstream node of the sub-tree next to the ith node.
To each node an appropriate splitting fraction is assigned [39]. This paper is based on the

following definition of the splitting fraction αi, j. Splitting ratio from ith node to jth node:

ai;j ¼ s�ij

.
S�i ; for all j 2 N � T; see e:g: a1;5 ¼ s15

�=S�1 ¼ 1=4 ð9Þ

pj of jth terminal for j2N is a flowrate of water through jth node. The value Pr of a root node
always equals one.

Pr ¼ 1 ð10Þ

Non-root node probability is, see Fig 2.

Pj ¼ Pi � ai;j; j 2 ðN � TÞ; ð11Þ

where i represents nearest upstream node (the sub-root node of the sub-tree). The Eq (11) is
based on the balance Eq (1).

The set of N–T linear Eq (11) (the set of balance equations) where the set P is a vector of
unknown variables and the splitting ratios α (9) are numerical constants can be easily solved.

Fig 2. A flowrate of water through jth node.

doi:10.1371/journal.pone.0131590.g002
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Example The heuristic H3 can be used to evaluate resistances S (6), see Fig 1:

ith node sij Si

r sr1 ¼ 5; sr2 ¼ 1; sr3 ¼ 2 8

1 s14 ¼ 1; s15 ¼ 3 4

2 �
3 s36 ¼ 1 1

4 �
5 s57 ¼ 1; s58 ¼ 1 2

6 �
7 �
8 �

where symbol “-” in third column indicates the ith node is a terminal.
The splitting ratios (9) are:

ar;1 ¼ 3=16 ¼ 0:187

ar;2 ¼ 7=16 ¼ 0:438

ar;3 ¼ 6=16 ¼ 0:375

ar;1 þ ar;2 þ ar;3 ¼ 1

a1;4 ¼ 3=4 ¼ 0:750

a1;5 ¼ 1=4 ¼ 0:250

a1;4 þ a1;5 ¼ 1

a3;6 ¼ 1

a5;7 ¼ 1=2 ¼ 0:500

a5;8 ¼ 1=2 ¼ 0:500

a5;7 þ a5;8 ¼ 1

ð12Þ

The system of linear Eq (11) with splitting ratios (12) is as follows, see Fig 1:

1 ¼ Pr

0:187 � Pr ¼ P1

0:438 � Pr ¼ P2

0:375 � Pr ¼ P3

0:750 � P1 ¼ P4

0:250 � P1 ¼ P5

1 � P3 ¼ P6

0:500 � P5 ¼ P7

0:500 � P5 ¼ P8

ð13Þ

Reconciliation of Decision-Making Heuristics
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Solving system of Eq (13) gives the following probabilities:

Pr ¼ 1:000

P1 ¼ 0:187

P2 ¼ 0:438

P3 ¼ 0:375

P4 ¼ 0:140

P5 ¼ 0:047

P6 ¼ 0:375

P7 ¼ 0:024

P8 ¼ 0:024

ð14Þ

Partial Ignorance
A typical feature of all realistic decision tasks is a shortage of information. However, it is not
true that nothing is known. The concept of the total ignorance represented by e.g. the heuristic
H1 helps to incorporate a set of isolated specific information items within a general framework
of the heuristics H3.

The set of additional information can be expresses by an additional set of probabilities for
some nodes:

R � ðR1;R2; . . . ;RhÞ ð15Þ

has h elements, h�N. For example the probability of node 2, see Fig 1 can be expressed by ver-
bal value ‘small’:

R2 ¼ small ð16Þ

The additional value(s) see Eqs (15) and (16) are reconciled with the heuristic H3. The first
reconciliation step is to prove that the reconciliation is inevitable. The additional data set R Eq
(15) is ignored, i.e. the total ignorance probabilities PTI is solved. It means that the set of linear
Eq (11) is solved and the set PTI is quantified, see e.g. Eq (13). If

PTIsufficiently equalR ð17Þ
then no reconciliation is required.

The concept sufficiently equal can be based on different soft calculus, e.g. fuzzy sets [40],
rough sets. It is not studied in this paper.

Fuzzy Reconciliation of Balancing Task
There are different types of reconciliation [41–43]. Data reconciliation consists in measured or
estimated quantities (in our paper probabilities) in order to balance the flows in a given deci-
sion tree. The vector of flows y can be subdivided into vectors x and u, i.e. known probabilities
x and totally unknown probabilities u, see [14]. Let us denote x� the vector of available proba-
bilities. In general, the system A(xu)t = B has no solution. The solved problem is to modify x,
while remaining as close as possible to x�, such that the balance Eq (2), with y = (xu), are satis-
fied [14, 44]. There are several approaches to solve reconciliation problem.

Reconciliation of Decision-Making Heuristics
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The traditional, i.e. least-squares, approach to the reconciliation considers measured data
sets. Measurement errors follow a normal distribution with zero average and a diagonal covari-
ance matrix [14]. The accuracy of each measurement xi�, denoted as a mean value, is character-
ized by its standard deviation σi. Data reconciliation becomes a problem of optimization under
linear constraints. The solution of this problem is known by e.g. weighted least-squares, see
[14, 45]. The main limitation of this approach is the fulfilment of the Gaussian hypothesis (a
random variable must be unbounded). The other limitations are shown in [14].

Fuzzy interval reconciliation, see [14], is the approach based on estimated quantities (in our
paper probabilities). Fuzzy interval reconciliation does not provide the same result as the least-
square method. This approach provides only intervals instead of precise values. More or less
possible values of each probability are limited by a fuzzy interval. Constraints of the mass bal-
ance Eq (2) are satisfied to a certain degree.

The problem of searching for a possible solution is based on a seeking an optimal position
within all the (fuzzy) intervals of possible values, see [14]. This optimization problem can be
solved by the max-min method, resolution methods such as α-cuts using fuzzy linear program-
ming, see [8, 14, 46, 47]. The main limitation of this approach is the inability to detect a mean-
ingful value of reconciliation (trade-off).

The reconciliation studied in this paper is based on fuzzy linear programming by [48]
which provides a possibility to detect a meaningful value of reconciliation (trade-off). Its result
is an optimal compromise:

Results of water probabilities (11) versus Additional probabilities (15).
The mathematical aspects of reconciliation are very important [49]. A fuzzy reconciliation

is a solution of an over-specified set of equations:

A �P ¼ B [P ¼ R ð18Þ

where A is the matrix of the splitting ratios (9) and the equations A�P = B is given in (11), P =
R is the set of additional probabilities.

The set of Eq (18) has n + h equations and n variables P. The reconciliation is solved by a
fuzzy linear programming [50–54].

Eq (18) are differently important / reliable and therefore their violations are differently
accepted by decision makers. Rather often certain equations cannot be violated at all. For
example probability of a terminal event, see e. g. node 4 in Fig 1, is known very accurately.
Therefore the corresponding probability P4 must be kept unchanged irrespective of any recon-
ciliation algorithm.

Our experience indicates that the fuzzy set Ri is meaningfully characterized by triangular
grades of membership [55], see e.g. Fig 3.

The triangular grades of membership can be expressed by a triplet (a, b, d), where

a < b < d ð19Þ

Then the additional probability from (15) can be written as follows

Pi ¼ Ri ¼ ða; b; dÞ ð20Þ

Reconciliation of Decision-Making Heuristics
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The i-th Eq (20) can be transformed into four linear inequalities [47] by introducing two
vectors of slack variables Su and Sl.

Xh

i¼1
ðaij � PiÞ þ Suj � bj ð21Þ

Xh

i¼1
ðaij � PiÞ � Slj � bj ð22Þ

0 � Suj � bj � aj ð23Þ

0 � Slj � dj � bj ð24Þ

where
bj, aj, dj- see Eq (19),
Suj- is the j-th upper slack variable,
Slj- is the j-th lower slack variable.

The set of inequalities (21)–(24) represents fuzzy description of j-th linear Eq (11).
The total ignorance can generate rather misleading decision making results. Therefore it is

highly desirable to over specify the problem by using additional information items (15). This
set of additional information allows us to cross check not only the heuristics but the additional
information items among themselves as well.

One possible objective function which represents a meaningful reconciliation (trade-off) is

Q ¼ minSuSl

Xm

j¼1
ðSuj=ðbj � ajÞ þ Slj=ðdj � bjÞÞ

� �
ð25Þ

The minimization problem (25) can be finally solved as a conventional linear programming
task [53].

Fig 3. Triangular grades of membership.

doi:10.1371/journal.pone.0131590.g003
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For example the probability of node 2, see e.g. Fig 1, is defined as ‘small’ (16). This verbal
value ‘small’ is expressed by a fuzzy set. The fuzzy set is characterized by its triangular grade of
membership (19)

a ¼ 0:1; b ¼ c ¼ 0:2; d ¼ 0:25 ð26Þ

and can be written as R2 = (0.1;0.2;0.25). This equation can be transformed by (21)–(24) into
four linear inequalities by introducing two slack variables Su and Sl.

0:1 � P2 þ Su � 0:2

0:1 � P2 � Sl � 0:2

0 � Su � 0:1

0 � Sl � 0:05

ð27Þ

The inequalities (27) are added to the balance Eq (11). The objective function, see Eq (25) is

Q ¼ minSuSl
ðSu=0:1þ Sl=0:05Þ ð28Þ

The classical linear programming task (27), (28) is solved using available software e.g.
GAMS [54].

The above described algorithm has the following advantages:

• It is simple and therefore transparent and easy to understand.
Majority of well-established decision making and consequently reconciliation algorithms
have not taken into consideration limits / extent of formal education (mathematics,

Fig 4. Decision Tree (Source: edited by [57]).

doi:10.1371/journal.pone.0131590.g004

Reconciliation of Decision-Making Heuristics

PLOS ONE | DOI:10.1371/journal.pone.0131590 July 9, 2015 10 / 18



computer science) of decision makers in e.g. industry, investment and public sector [56].
However, just simple and therefore transparent algorithms will be used extensively in indus-
try, etc.

• The heuristics can be easily modified / changed to fit into common sense reasoning of deci-
sion makers.

Table 2. Splitting ratios for all non-terminal nodes, see Fig 4.

Node Splitting ratios Node Splitting ratios

r αr,1 = 0.4211, αr,2 = 0.1052, αr,19 = 0.4736 5 α5,11 = 0.5, α5,12 = 0.5

1 α1,9 = 0.5, α1,10 = 0.5 6 α6,13 = 0.5, α6,14 = 0.5,

2 α2,3 = 0.5, α2,4 = 0.5 7 α7,15 = 0.5, α7,16 = 0.5,

3 α3,5 = 0.5, α3,6 = 0.5 8 α8,17 = 0.5, α8,18 = 0.5,

4 α4,7 = 0.5, α4,8 = 0.5

doi:10.1371/journal.pone.0131590.t002

Table 3. Node probabilities.

Node Probability Node Probability

r 1 10 0.2106

1 0.4211 11 0.01315

2 0.1052 12 0.01315

3 0.0526 13 0.01315

4 0.0526 14 0.01315

5 0.0263 15 0.01315

6 0.0263 16 0.01315

7 0.0263 17 0.01315

8 0.0263 18 0.01315

9 0.2106 19 0.4736

doi:10.1371/journal.pone.0131590.t003

Table 4. Fuzzy Probabilities I, II, III forGoodMarket (R4).

a b = c D

I 0.05 0.07 0.08

II 0.04 0.09 0.10

III 0.11 0.16 0.17

doi:10.1371/journal.pone.0131590.t004

Table 1. Profit and additional probabilities of terminal, see Fig 4.

Node Probability Profit (£) Node Probability Profit (£)

1 - - 11 - –30,000

2 - - 12 - 10,000

3 - - 13 - –70,000

4 - - 14 - –10,000

5 - - 15 - 30,000

6 - - 16 - 70,000

7 - - 17 - 80,000

8 - - 18 - 120,000

9 - 20,000 19 - 0

10 - 100,000

doi:10.1371/journal.pone.0131590.t001
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A set of potentially useful heuristics can be ad hoc generated for different branches of human
activities, e.g. for safety studies—a complex system is less reliable. Such ad hoc heuristics can
replace the general heuristics H1, H2 mentioned above.

• Complex decision trees can be easily treated.
If the problems under complete ignorance are solved then the linear programming problem
is the only limit. Therefore it is possible to solve very large trees.

• Incorporation of additional constraints is simple.
Introduction of slack variables for each / some additional probability(ies) (20) allows us to
have flexible control of the newly generated linear programming and perform, e.g. different
sensitivity analyses.

Illustrative Example
Amodified version of the original decision tree [57], see Fig 4 and Table 1, is self-explanatory.
The numbers of arcs given in Fig 4 are used to identify the corresponding probabilities. The
decision tree under study contains many nodes and edges, where circles mean lottery nodes
and squares mean decision nodes [57]. The tree has 20 nodes and 19 edges. The nodes 9–19 are
terminal nodes. Additional probabilities R (15) are not given. It means that the total ignorance
problem is solved, see Table 1.

The heuristic H1 is used to assess the probabilities. The resulting splitting ratios (9) are
given in Table 2.

The resulting probabilities are given in Table 3.
The problem under partial ignorance is represented by the total ignorance problem; see

Table 1 and Fig 4. and one additional probability R. The only additional probability R is the
probability of the Good Market, see Fig 4. The above described procedure (18)–(25) is used to
solve three cases of Good Market probabilities, see Table 4.

There are 20 nodes in Fig 4, therefore 20 variables (Pr–P19) are used and 20 linear Eq (9) are
compiled. The number of additional probabilities is 1. Therefore the total number of equations
is 20 + 1 = 21. The first fuzzy probability I, see Table 4, gives the following equation:

P4 ¼ R4 ¼ ð0:05; 0:07; 0:08Þ
This equation is transformed, using Eqs (21)–(24), into the following four linear inequalities

by introducing four slack variables Su1, Sl1.

P4 þ Su1 � 0:07

P4 � Sl1 � 0:07

0 � Su1 � 0:02

0 � Sl1 � 0:01

Table 6. Violation details.

Equation Su Sl Value of membership
function

Value of objective function
Q, see Eq (25)

I 21 (P4) 0.00 0.00 1.00 0.00

II 21 (P4) 0.035 0.00 0.30 0.70

III 21 (P4) The corresponding linear programming task has No Solution

doi:10.1371/journal.pone.0131590.t006
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The system of 24 constraints (equations) is solved together with the objective function (25)
using a linear programming algorithm. Table 5 gives the resulting probabilities based on the
splitting ratios (9), balance Eq (11) and partial ignorance value for each fuzzy probability from
Table 4.

The details of the calculations are listed in the Table 6.
The deviations Su and Sl are zero for the first case I. It means that the corresponding equa-

tions (21)–(24) are satisfied perfectly. In the second case II, the corresponding equations are
not satisfied perfectly. It means that it is a compromise solution (with value 0.7, see Table 6).

The evaluated probabilities, see Table 5, allow us to solve the decision making problem
using some classical methods, e.g. the expected value criterion [57].

The first case I (Table 4) the expected value of profit (the expected value criterion) is 63 150
£. The company should build the medium plant in the first step. If the market is good then the
company should build the other medium plant. If the market is poor then the company should
build no plant.

The second case II (Table 4) the expected value of profit is 60 000 £. The company should
build the large plant in the first step.

Table 7 gives the resulting probabilities based on the least-squares method for each initial
probability, i.e. 0.07, 0.09 and 0.16, from Table 4. All calculations, see Table 7, were performed
using GNU Octave, see e.g. [58].

Tables 5 and 7 show that the difference between the additional probabilities (15), see
Table 4, and the resulting probabilities (11) is smaller if the fuzzy linear programming is used
than in the case of the least-squares method.

Conclusion
Evaluations of realistic complex decision trees attract attention. Decision makers / field experts
in their desperation to satisfy increasingly demanding laws and regulations (e.g. safety and
environmental engineering) and / or pressure of competition (e.g. exchange rates hedging) are
ready to believe that there is a theoretical answer to their needs. However, the only solution is
to increase data / knowledge inputs into decision making processes. It means that no available
information item may be ignored. Therefore known isolated fuzzy probabilities must be mean-
ingfully incorporated into the decision making tasks.

The key reconciliation problem is the choice of the probabilities generation heuristic. If this
heuristic is not accepted by a decision maker then some modifications of this heuristic are inev-
itable to cover specific requirements of the decision making problem under study. This is, how-
ever, an ad hoc procedure.

The heuristic used in this paper is based on a strong analogy between a water flow through a
one root tree system of pipes and the decision tree of the same topology. The heuristic solves
decision problems under total ignorance, i.e. the decision tree topology is the only information
available. However, isolated information items e.g. some vaguely known probabilities (e.g.
fuzzy probabilities) are usually available. It means that a realistic problem is analysed under
partial ignorance. The present paper shows how a fuzzy linear programming is used to recon-
cile the probabilities generated by the water heuristic and the available set of fuzzy
probabilities.

The presented algorithm is a simple variant how to solve decision problems under partial
ignorance. The advantage of this approach lies in the fact that the objective function and the
equations of the individual constrain are linear, and therefore easily solvable using commonly
known simplex method. However, it is an easy task to incorporate not just fuzzy probabilities
but e.g. fuzzy penalties and profits into trees evaluations / reconciliations. In mathematical
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terms it means to use more complex fuzzy optimization algorithms [17, 48]. Moreover different
heuristics can be used to generate missing values. The negative consequence is that multidi-
mensional nonlinear optimization problems must be solved.

Decision trees can be generated using different algorithms. For example a genetic algorithm
can induce decision trees [59]. It means that not just missing values but some trees themselves
can be generated.

Limitation of proposed approach is the need to build decision tree (it can be large for exten-
sive projects). Also it should be noted that the proposed heuristics H1 is not the only one possi-
ble and it may not suit all decision-making problems. The choice of suitable heuristics depends
on the type of solved decision-making problem. It means it depends on the decision maker
requirements. Water heuristic H1 can be replaced by more general entropy based heuristics
using e.g. powers degrees [60].

The proposed approach have broad spectrum of applications, e.g. investment, biotechnol-
ogy, chemical engineering and medicine. Moreover it is possible to take into consideration
tasks where the probabilities are given vaguely, e.g. using fuzzy numbers, or they are specified
from different sources, e.g. from different members of project teams, experts of project man-
agement, etc.
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