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ANALYTIC SOLUTIONS FOR SINGULAR INTEGRAL

EQUATIONS AND NON-HOMOGENEOUS FRACTIONAL PDE

ARMAN AGHILI

Abstract. In the last three decades, transform methods have been used for solving
fractional differential equations, singular integral equations. In this article, the

author considered a new class of the inverse Laplace transforms of exponential types.

We also evaluated certain types of integrals and solved partial fractional equations
of Cauchy type.The result reveals that the transform method is very convenient and

effective.

1. Introduction and preliminaries

In this paper, the author implemented transform method for solving singular in-
tegral equations and partial fractional differential equation which arises in ap-
plications. Several methods have been introduced to solve fractional differential
equations, the popular Laplace transform method [1–3, 6], the Fourier transform
method [14], the iteration method [13] and operational method [7, 9, 10]. How-
ever, most of these methods are suitable for special types of fractional differential
equations, mainly the linear with constant coefficients. More detailed information
about some of these results can be found in a survey paper by Kilbas, Srivastava
and Trujillo [8]. Atanacković and Stanković [4, 5] and Stanković [17] used the
Laplace transform in a certain space of distributions to solve a system of partial
differential equations with fractional derivatives, and indicated that such a system
may serve as a certain model for a visco-elastic rod. Oldham and Spanier [11,12],
by reducing a boundary value problem involving Fick’s second law in electro an-
alytic chemistry obtained a formulation based on the partial Riemann–Liouville
fractional derivative of order 1/2. Wyss [19] and Schneider [16] considered the time
fractional diffusion and wave equations and obtained the solution in terms of Fox
functions. In the last section of this paper, we consider four-term time fractional
non homogeneous sub ballistic partial differential equation (time fractional in the
Caputo sense).
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112 A. AGHILI

1.1. Definitions and notations

Definition 1.1. The left Caputo fractional derivative of order α (0 < α < 1)
of φ(t) is defined as follows [13]

Dc,α
a φ(x) =

1

Γ(1− α)

∫ t

a

1

(t− ξ)α
φ′(ξ) dξ.

Definition 1.2. The Laplace transform of a function f(t) is defined as follows

L{f(t)} =

∫ ∞
0

e−stf(t) dt = F (s).

If L{f(t)} = F (s), then L−1{F (s)} is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s) ds,

where F (s) is analytic in the region Re(s) > c [15].

The most important use of the Caputo fractional derivative is treated in initial
value problems where the initial conditions are expressed in terms of integer order
derivatives. In this respect, it is interesting to know the Laplace transform of this
kind of derivative. Using the Laplace transforms of Caputo fractional derivatives
of a non-integer order 0 < α ≤ 1, we get [8, 14]

L{Dc,α
a f(t)} = sF (s)− f(0+), 0 < α < 1,

and generally [14]

L{Dc,α
a f(t)} = sα−1F (s)−

k=m−1∑
k=0

sα−1−kfk(0+), m− 1 < α < m.

The Laplace transform provides a useful technique for the solution of such frac-
tional singular integro-differential equations.

Definition 1.3. The two-parameter function of the Mittag-Leffler type is de-
fined by the following series expansion [8]

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
. (1.1)

The simplest Wright function is given by the series

W (α, β; z) =

∞∑
n=0

zn

n! Γ(αn+ β)
,

when α, β, z ∈ C. We have the following relationship [14]

L{tβ−1Eα,β(±atα)} =
sα−β

sα ∓ a
(
Re(s) > |a| 1α

)
.

Generalizations of the Mittag-Leffler function (1.1) to two variables were further
extended by H. M. Srivastava.
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Definition 1.4. The error function is defined by the integral

Erf(t) =
2√
π

∫ t

0

e−u
2

du.

This function is encountered in the theory of errors, the theory of heat conduc-
tion, and various branches of engineering and mathematical physics.

Definition 1.5. The complementary error function is defined by the integral

Erfc(t) =
2√
π

∫ ∞
t

e−u
2

du = 1− Erf(t)

Lemma 1.6. (Efros’s theorem) Assume that L{f(t)} = F (s) and L{u(t, τ)} =
U(s) exp(−τq(s)) where U(s), q(s) are analytic. Then, we have

L
{∫ ∞

0

f(τ)u(t, τ) dτ

}
= U(s)F (q(s)).

Proof. See [3, 7]. �

Corollary 1.7. Let L{f(t)} = F (s). Then, the following identities hold true.

(1) L−1{F (sα)} = 1
π

∫∞
0
f(u)

∫∞
0
e−tr−ur

α cosαπ sin(urα sinαπ) drdu,

(2) L−1
{F (

√
s)√
s

}
= 1√

πt

∫∞
0
e−

u2

4t f(u) du,

(3) L−1{F (
√
s)} = 1

2t
√
πt

∫∞
0
ue−

u2

4t f(u) du,

(4) L−1
{

1√
s(
√
s+a)

}
= ea

2t Erfc(a
√
t).

(5) L−1
{
e−λs

α

s

}
= 1

π

∫∞
0

e−tr−λr
α cosπα

r sin(λrα sin(πα)) dr.

Proof. See [1, 3]. �

Example 1.8. If we set U(s) = s−α and q(s) = sα, then we get

L{u(t, τ)} = U(s) exp(−τq(s)) =
exp(−τsα)

sα
.

This leads to
u(t, τ) = tα−1W (−α, α : τt−α).

Thus, we obtain

L
{∫ ∞

0

f(τ)u(t, τ)dτ

}
= L

{
tα−1

∫ ∞
0

f(τ)W (−α, α : τt−α) dτ

}
=
F (sα)

sα

Lemma 1.9. We have the following integral relation∫ 1

0

Erf(sinφ) Erf(cosφ) sin 2φdφ = 1.

Proof. Let us take f(t) = Erf(
√
t), then we have L{f(t)} = F (s) = 1

s
√
s+1

,

define

G(s) = F (s)F (s) =
1

s2(s+ 1)
,

at this point, we invert G(s) in two different ways

L−1{G(s)} = L−1
{

1

s2(s+ 1)

}
= te−t − e−t + 1,
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and, by the convolution of the Laplace transform, one gets the following sequence
of relations

L−1{G(s)} = L−1{F (s)F (s)} = f(t) ∗ f(t)

= Erf(
√
t) ∗ Erf(

√
t) =

∫ t

0

Erf(
√
ξ) Erf(

√
t− ξ)dξ.

Finally, we obtain

L−1{F (s)F (s)} =

∫ t

0

Erf(
√
ξ) Erf(

√
t− ξ)dξ = te−t − e−t + 1,

Taking t = 1 and making the change of variable ξ = sin2 φ, after simplifying, we
arrive at ∫ 1

0

Erf(sinφ) Erf(cosφ) sin 2φdφ = 1.

�

1.2. Solution to singular integral equation with trigonometric kernel

The Laplace transforms can be used to solve certain types of singular integral equa-
tions. Singular integral equations arise in many problems of mathematical physics.
The mathematical formulation of physical phenomena often involves Cauchy type,
or more severe, singular integral equations [15]. Applications in many important
fields, such as fracture mechanics, elastic contact problems, the theory of porous
filtering contain integral and integro-differential equations with singular kernel.

Lemma 1.10. Let us assume that Lf(t) = F (s), then the following relations
hold true

1. L
{∫ ∞

0

sin(2
√
tτ)√

τ
f(τ) dτ

}
=

√
π

s3
F
(1

s

)
,

2. L
{∫ ∞

0

cos(2
√
tτ)√
t

f(τ) dτ

}
=

√
π

s
F
(1

s

)
.

Proof. See [3]. �

Lemma 1.11. Let us consider the following singular integral equation of the
form

f(x) = g(x) + λ

∫ ∞
0

sin(2
√
xτ)√
τ

f(τ) dτ, λ 6= 0,±1,

where g(x) is a function with the Laplace transform G(s). Then, the above singular
integral equation has the following formal solution

f(x) =
1

2iπ

∫ c+i∞

c−i∞

G(s) + λ
s
√
s
G( 1

s )

1− λ2
exs ds.

Proof. Let F (s), G(s) be the Laplace transforms of f(x) and g(x), respectively.
Then, taking the Laplace transform of the integral equation term wise and in view
of part one of the above Lemma 1.10, we get the following relation,

F (s) = G(s) + λ

√
π

s3
F
(1

s

)
. (1.2)
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Now, in the above relation we replace s by 1
s to obtain

F
(1

s

)
= G

(1

s

)
+ λs

√
πsF (s). (1.3)

A combination of (1.3) and (1.2) and calculation of F (s) leads to the following,

F (s) =
G(s) + λ

s
√
s
G( 1

s )

1− λ2
, (1.4)

upon using complex inversion formula, relation (1.4) reads

f(x) =
1

2iπ

∫ c+i∞

c−i∞

G(s) + λ
s
√
s
G( 1

s )

1− λ2
exs ds.

Example 1.12. Let us solve the following singular integral equation.

f(x) = e−ax + λ

∫ ∞
0

sin(2
√
xτ)√
τ

f(τ) dτ, λ 6= 0,±1.

Solution. Taking the Laplace transform of the above integral equation term wise,
leads to the following equation

F (s) =

1
s+a + λ

s
√
s

s
as+1

1− λ2
,

therefore, the final solution is

f(x) =
1

2iπ

∫ c+i∞

c−i∞

1
s+a + λ√

s
1

as+1

1− λ2
exs ds,

or,

f(x) =
e−ax

1− λ2
+

λ

a(1− λ2)

1√
πx
∗ e− xa ,

equivalently

f(x) =
e−ax

1− λ2
+

λ

a(1− λ2)

∫ x

0

e−
ξ
a√

π(x− ξ)
dξ.

Lemma 1.13. Let us consider the following fractional singular integral equation

Dc,α
x f(x) = g(x) + λ

∫ ∞
0

sin(2
√
xτ)√
τ

f(τ)dτ, λ 6= 0,±1, 0 < α ≤ 1, f(0) = 0.

The above integral equation has the formal solution as

f(x) =
1

2iπ

∫ c+i∞

c−i∞

sα−1G(s) + λ
s
√
s
G( 1

s )

1− λ2
exs ds,

equivalently

f(x) =
1

(1− λ2)Γ(α)
x1−α ∗ g(x) + λ

∫ ∞
0

sin(2
√
xτ)√
τ

g(τ) dτ.



116 A. AGHILI

Proof. Let F (s), G(s) be the Laplace transforms of f(x), g(x), respectively,
then we get the following relation,

sαF (s) = G(s) + λ

√
π

s3
F
(1

s

)
. (1.5)

Now, in the above relation, we replace s by 1
s to obtain

s−αF
(1

s

)
= G

(1

s

)
+ λs

√
πsF (s). (1.6)

A combination of (1.5) and (1.6) and calculation of F (s) leads to the following,

F (s) =
s−αG(s) + λ

s
√
s
G( 1

s )

1− λ2
, (1.7)

upon using complex inversion formula, relation (1.7) reads,

f(x) =
1

2πi

∫ c+∞

c−i∞

s−αG(s) + λ
s
√
s
G( 1

s )

1− λ2
exs ds. (1.8)

�

Example 1.14. Let us solve the following fractional singular integro-differential
equation,

Dc,0.5
x f(x) = sinβx+ λ

∫ ∞
0

sin(2
√
xτ)√
τ

f(τ) dτ, λ 6= 0,±1, f(0) = 0.

Solution. Using relation (1.8) leads to the following formal solution

f(x) =
1

2πi

∫ c+∞

c−i∞

s−0.5( β
s2+β2 ) + λ

s
√
s
( βs2

β2s2+1 )

1− λ2
exs ds,

finally, we obtain the solution as below

f(x) =
1

1− λ2

∫ x

0

1√
π(x− ξ)

(
β sinβξ +

λ

β
cos
( ξ
β

))
dξ.

Theorem 1.15. Let us consider the system of time fractional Fredholm sin-
gular integro-differential equations, where g1(t), g2(t), are Laplace transformable
functions with the Laplace transforms G1(s), G2(s), respectively and

Dc,α
x φ(x) = g1(x) + λ1

∫ ∞
0

cos(2
√
xτ)√
x

ψ(τ) dτ, λ1 6= 0,±1, 0 < α ≤ 1, φ(0) = 0.

Dc,β
x ψ(x) = g2(x) + λ2

∫ ∞
0

sin(2
√
xτ)√
τ

φ(τ) dτ, λ2 6= 0,±1, 0 < β ≤ 1, ψ(0) = 0.

Then, the above system has the following formal solutions

φ(x) = −
∞∑
k=0

(πλ1λ2)−(k+1)g1(x) ∗ xk(β−α+2)+β+1)

Γ(k(β − α+ 2) + β + 2)

−
√
πλ1

∞∑
k=0

(πλ1λ2)−(k+1)R(x)

Γ(k(β − α+ 2) + 1)
,
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ψ(x) =

∞∑
k=0

(πλ1λ2)kg2(x) ∗ xk(β−α+2.5)+β−1

Γ(k(β − α+ 2.5) + β)

+
√
πλ2

∞∑
k=0

(πλ1λ2)kQ(x)

Γ(k(β − α+ 2) + β − α+ 1.5)
,

where R(x) and Q(x) are as follows

R(x) = xk(β−α+2)) ∗
∫ ∞
0

sin(2
√
xξ)

ξ
g2(ξ) dξ,

Q(x) = xk(β−α+2)+β−α+0.5) ∗
∫ ∞
0

cos(2
√
xξ)

ξ
g1(ξ) dξ.

In the above relation, ∗ stands for the convolution product.

Proof. Taking the Laplace transform of the above system term-wise and using
Lemma 1.10 and initial conditions leads to the following relations

sαΦ(s) = G1(s) + λ1

√
π

s
Ψ
(1

s

)
, (1.9)

sβΨ(s) = G2(s) + λ

√
π

s3
Φ
(1

s

)
. (1.10)

Now, in the above relations, we replace s by 1
s , to obtain

s−αΦ
(1

s

)
= G1

(1

s

)
+ λ1

√
πsΨ(s), (1.11)

s−βΨ
(1

s

)
= G2

(1

s

)
+ λ2s

√
πsΦ(s). (1.12)

At this point, by inserting relations (1.11), (1.12) in (1.10)) and (1.9), respectively,
we get the following equations

sαΦ(s) = G1(s) + λ1

√
π

s
sβ
(
G2

(1

s

)
+ λ2s

√
πsΦ(s)

)
,

sβΨ(s) = G2(s) + λ

√
π

s3
sα
(
G1

(1

s

)
+ λ1

√
πsΨ(s)

)
,

finally, we arrive at the following

Φ(s) =
G1(s) + λ1

√
πsβ−0.5G2( 1

s )

sα − πλ1λ2sβ+2
,

Ψ(s) =
G2(s) + λ2

√
πsα−2.5G1( 1

s )

sβ − πλ1λ2sα−2.5
.

Further, simplifying yields

Φ(s) =
1

sα − πλ1λ2sβ+2
G1(s) +

λ1
√
πsβ+1

sα − πλ1λ2sβ+2

(
1

s
√
s
G2

(1

s

))
,

Ψ(s) =
1

sβ − πλ1λ2sα−2.5
G2(s) +

λ2
√
πsα−1.5

sβ − πλ1λ2sα−2.5

(
1

s
G1

(1

s

))
.
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Let us make series expansions of all fractions in the above relations to obtain

Φ(s) = −G1(s)

∞∑
k=0

(πλ1λ2)−(k+1)

sk(β−α+2)+β+2
−
√
πλ1

(
1

s
√
s
G2

(1

s

)) ∞∑
k=0

(πλ1λ2)−(k+1)

sk(β−α+2)+1
,

Ψ(s) = G2(s)

∞∑
k=0

(πλ1λ2)k

sk(β−α+2.5)+β
+
√
πλ2

(
1

s
G1

(1

s

)) ∞∑
k=0

(πλ1λ2)k

sk(β−α+2)+β−α+1.5
.

Taking the inverse Laplace transforms term wise leads to the following formal
solutions

φ(x) =−
∞∑
k=0

(πλ1λ2)−(k+1)g1(x) ∗ xk(β−α+2)+β+1)

Γ(k(β − α+ 2) + β + 2)

−
√
πλ1

∞∑
k=0

(πλ1λ2)−(k+1)R(x)

Γ(k(β − α+ 2) + 1)
,

ψ(x) =

∞∑
k=0

(πλ1λ2)kg2(x) ∗ xk(β−α+2.5)+β−1

Γ(k(β − α+ 2.5) + β)

+
√
πλ2

∞∑
k=0

(πλ1λ2)kQ(x)

Γ(k(β − α+ 2) + β − α+ 1.5)
,

where R(x) and Q(x) are as follows

R(x) = xk(β−α+2)) ∗
∫ ∞
0

sin(2
√
xξ)

ξ
g2(ξ) dξ,

Q(x) = xk(β−α+2)+β−α+0.5) ∗
∫ ∞
0

cos(2
√
xξ)

ξ
g1(ξ) dξ.

�

1.3. Inverse Laplace transforms of exponential functions involving
nested square roots

Let us pass to a new class of inverse Laplace transforms of exponential functions in-
volving nested square roots.The inverse Laplace transforms involving nested square
roots arise in many areas of applied mathematics, usually as a result of linear evolu-
tion partial differential equations in fourth order in the spatial variables. Examples
of such problems abound in fluid mechanics.

Lemma 1.16. The following relation holds true

L−1
{

exp(−λ
√

2as+ 2
√
a2s2 − k2

}
=
aλ2e−

kt
a

4π

∫ t

0

e
2kξ
a −

atλ2

4ξ(t−ξ)√
(t− ξ)3

dξ.

Proof. Let us assume that F (s) = exp
(
−λ
√

2as+ 2
√
a2s2 − k2

)
, then F (s)

can be rewritten as follows,

F (s) = exp

(
−λ
√

2as+ 2
√
a2s2 − k2

)
= exp(−λ

√
as+ k) exp(−λ

√
as− k).
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On the other hand, from the Laplace transforms table, we have the following
relations

L−1
{

exp(−λ
√
as± k

}
=

λ
√
a

2t
√
πt

exp

(
∓kt
a
− aλ2

4t

)
.

Finally, we have

L−1
{

exp
(
−λ
√

2as+ 2
√
a2s2 − k2

)}
= L−1{exp

(
−λ
√
as+ k

)
} ∗ L−1{exp

(
−λ
√
as− k

)
},

hence,

L−1{F (s)} =

∫ t

0

λ
√
a

2(t− ξ)
√
π(t− ξ)

exp

(
−k(t− ξ)

a
− aλ2

4(t− ξ)

)
λ
√
a

2ξ
√
πξ

exp

(
kξ

a
− aλ2

4ξ

)
dξ.

Further, simplifying leads to the following result

L−1{F (s)} =
aλ2e−

kt
a

4π

∫ t

0

e
2kξ
a −

atλ2

4ξ(t−ξ)√
(t− ξ)3

dξ.

�

Lemma 1.17. By using complex inversion formula for the Laplace transforms,
we get

1. L−1
{
e−

k2

4s

√
s

}
=

cos k
√
t√

πt
,

2. L−1
e
− k2

4(
√
λ+
√
s)√

λ+
√
s

 =
1

2t
√
πt

∫ ∞
0

we−
w2

4t

(
e−λw

2w
√
πw

∫ ∞
0

ue
−u2
4w J0(k

√
u) du

)
dw.

Proof. 1. Direct application of complex inversion formula leads to the following
relation,

f(t) = L−1
{
e−

k2

4s

√
s

}
=

1

2πi

∫ c+i∞

c−i∞

(
e−

k2

4s

√
s

)
ets ds. (1.13)

In order to calculate the above complex integral, we may use the following integral
representation for the integrand,

e−
k2

4s

√
s

=
2√
π

∫ ∞
0

e−
au2

k2 cosu du. (1.14)

At this point, if we set (1.14) in (1.13), we get the following

f(t) = L−1
{
e−

k2

4s

√
s

}
=

1

2πi

∫ c+i∞

c−i∞

(
2√
π

∫ ∞
0

e−
su2

k2 cosu du

)
etsds.
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By changing the order of integration which is permissible, we obtain

f(t) =

∫ ∞
0

cosu

(
1

2πi

∫ c+i∞

c−i∞
etse−

su2

k2 ds

)
du

=

∫ ∞
0

cosu

(
1

2πi

∫ c+i∞

c−i∞
e

(
t−u2

k2

)
sds

)
du.

But the value of the inner complex integral is δ(t− u2

k2 ), therefore, we get

f(t) =

∫ ∞
0

δ
(
t− u2

k2

)
cosu du.

If we introduce the new change of variable t − u2

k2 = η in the above integral and
use the well–known elementary properties of Dirac delta function, we get

f(t) =
1√
π

∫ t

−∞
δ(η)

cos(
√
t− η)√

t− η
dη =

cos k
√
t√

πt
.

2. Let us define

G(s) =
e
− k2

4
√
s+λ

√
s+ λ

,

we have

L−1{G(s)} =
e−λt

2t
√
πt

∫ ∞
0

ue
−u2
4t J0(k

√
u) du.

By using Efros’s theorem or Corollary 1.7, we get the following

L−1{G(
√
s)} =

1

2t
√
πt

∫ ∞
0

we−
w2

4t

(
e−λw

2w
√
πw

∫ ∞
0

ue
−u2
4w J0(k

√
u) du

)
dw.

�

In the above relations, Jν(·) stands for the Bessel’s function of the first kind of
order ν.

Lemma 1.18. The following relation holds true.

L−1
{∫ a

0

e
−η(1+ w√

s+w
)

√
s+ w

dη

}
=

1

2
√
πt3

∫ ∞
0

ξe−
ξ2

4t

(∫ a

0

e−ηJ0(2
√
wξη)dη

)
dξ.

Proof. Let us take

F (s) =

∫ a

0

e−η(1+
w
s+w )

s+ w
dη.

Then, we have

F (
√
s) =

∫ a

0

e
−η(1+ w√

s+w
)

√
s+ w

dη.

By using the complex inversion formula, we get

L−1{F (s)} =
1

2πi

∫ c+i∞

c−i∞

(∫ a

0

e−η(1+
w
s+w )

s+ w
dη

)
estds,
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changing the order of integration which is permissible, to obtain

L−1{F (s)} =

∫ a

0

e−η

(
1

2πi

∫ c+i∞

c−i∞

e−η(
w
s+w )

s+ w
estds

)
dη.

Let us introduce a change of variable z = s+ w in the inner integral to get

L−1{F (s)} =

∫ a

0

e−η

(
1

2πi

∫ c′+i∞

c′−i∞

e−η(
w
z )

z
eztdz

)
e−wtdη.

The value of inner integral is J0(2
√
wtη) so that

L−1{F (s)} =

∫ a

0

e−ηJ0(2
√
wtη) dη.

At this point, application of Efros’s theorem leads to the following result

L−1{F (
√
s)} =

1

2
√
πt3

∫ ∞
0

ξe−
ξ2

4t

(∫ a

0

e−ηJ0(2
√
wξη)dη

)
dξ.

�

2. Evaluation of certain trigonometric integrals
via the Laplace transform

An interesting application of Laplace transform involves the evaluation of certain
integrals, particularly those containing a free parameter. Some integrals may be
evaluated by first taking the Laplace transform of the integrand with respect to
a free parameter. The resulting integral is hopefully easier to evaluate than the
original and, by applying the inverse Laplace transform, we obtain our desired
result.

Theorem 2.1. The following integral relation holds true.∫ ∞
0

sinxt sin
(1

t

) dt

tν+2
=
π

2
x(

ν
2 )+1Jν+2(2

√
x), ν = 0, 1, 2, 3, . . . .

Proof. Let us assume that

I(x) =

∫ ∞
0

sinxt sin
(1

t

) dt

tν+2
.

Taking the Laplace transform of the above integral, we obtain

L{I(x)} = K(s) =

∫ ∞
0

L{sin tx} sin
(1

t

) dt

tν+2
.

After simplifying, we arrive at

K(s) =

∫ ∞
0

1

t2 + s2
sin
(1

t

) dt

tν+1
.

In order to evaluate the above integral, by introducing the change of variable
t−1 = ξ

s , we obtain

K(s) =
1

sν+3

∫ ∞
0

ξν+1

ξ2 + 1
sin
(ξ
s

)
dξ.
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At this point, we use the following well known integral identity∫ ∞
0

cos ru

u2 + 1
du =

π

2
e−r.

By Leibniz’s rule, after ν + 1 times differentiation with respect to r, we get∫ ∞
0

uν+1 sin ru

u2 + 1
du =

π

2
e−r,

replacing r by 1
s in the above equation, we obtain

K(s) = L{I(x)} =
π

2

e−
1
s

sν+3
,

hence, we get

I(x) = L−1
{
π

2

e−
1
s

sν+3

}
=
π

2
x
ν
2+1Jν+2(2

√
x).

In the special case of ν = 0, x = 1, we have

I(1) =
2

π

∫ ∞
0

sin t sin
(1

t

)dt
t2

= J2(2).

�

3. Main Results

In this section, the author considered certain non-homogeneous time fractional
partial differential equations which are a generalization of the Cauchy problem. In
this study, only the Laplace transformation is considered as it is easily understood
and being popular among engineers and scientists.The basic goal of this paper is to
employ the Laplace transform method for studying the above mentioned problem.
The goal has been achieved by formally deriving the exact solution. Transform
method introduces a significant improvement in this field over the existing tech-
niques.

Solution to non-homogeneous partial fractional differential equation
with constant coefficients

In recent years, it has turned out that many phenomena in fluid mechanics, physics,
biology, engineering and other areas of the sciences can be successfully modeled
by the use of fractional derivatives. That is because of a realistic modeling of
a physical phenomenon having dependence not only at the time instant, but also
the previous time history can be successfully achieved by using fractional calcu-
lus. Fractional differential equations arise in the unification of diffusion and wave
propagation phenomenon. The time fractional heat equation, which is a math-
ematical model of a wide range of important physical phenomena, is a partial
differential equation obtained from the classical heat equation by replacing the
first time derivative of a fractional derivative of fractional order in the Caputo
sense [14]. The Laplace transforms is very useful in finding the solution to initial
value problems described by linear PDEs. The following example of application
illustrates the method of the transforms.
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Problem 3.1. (Non-homogeneous sub-ballistic fractional PDE with constant
coefficients) Let us solve the following Cauchy type non-homogeneous partial frac-
tional differential equation with constant coefficients. The special case of the
problem was considered by V. V. Uchaikin [18].

Dc,α
t u+

∂u

∂x
− ku = λf(x), 0 < α ≤ 1, x, t > 0,

u(x, 0) = β.

Solution. We define the Laplace transform of u(x, t) by

U(x, s) =

∫ ∞
0

u(x, t)e−stdt.

Application of the Laplace transforms leads to the solution of the transformed
problem in the following form

∂U

∂x
+ (sα − k)U = βsα−1 +

λf(x)

s
.

The above equation has the following solution

U(x, s) =
βsα−1

sα − k
+ λ

e−(s
α−k)x

s

∫ x

0

e(s
α−k)ηf(η) dη.

In order to invert the above relation, let us rewrite the above equation as follows

U(x, s) =
βsα−1

sα − k
+ λekx

∫ x

0

e−(x−η)s
α

s
e−kηf(η) dη. (3.1)

Taking the inverse Laplace transform of the above relation, leads to the following
result

u(x, t) = L−1
{
βsα−1

sα − k

}
+ λekx

∫ x

0

L−1
{
e−(x−η)s

α

s

}
e−kηf(η) dη.

In view of the Corollary 1.7 and Definition 1.3, we arrive at

u(x, t) = Eα,1(ktα)

+ λekx
∫ x

0

(

∫ ∞
0

e−tr−(x−η)r
α cosπα

πr
sin((x− η)rα sin(πα))dr)e−kηf(η) dη.

At this point, let us consider the the special case of α = 0.5. From relation (3.1)
we obtain

U(x, s) =
β√

s(
√
s− k)

+ λ
e−(
√
s−k)x

s

∫ x

0

e(
√
s−k)ηf(η) dη.

Finally, after taking the inverse Laplace transform, we get

u(x, t) = L−1
{

β√
s(
√
s− k)

}
+ λekx

∫ x

0

e−kηL−1
{
e−(x−η)

√
s

s

}
f(η) dη,

or

u(x, t) = βek
2t Erfc(−k

√
t) + λekx

∫ x

0

e−kη Erfc

(
x− η
2
√
t

)
f(η) dη.
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For the special case off(x) = δ(x−c), we get the following impulsive time fractional
partial differential equation

D
c, 12
t u+

∂u

∂x
− ku = λδ(x− c), 0 < α ≤ 1, x, t > 0,

u(x, 0) = β,

with the below solution

u(x, t) = βek
2t Erfc(−k

√
t) + λekx

∫ x

0

e−kη Erfc

(
x− η
2
√
t

)
δ(η − c)dη,

or

u(x, t) = βek
2t Erfc(−k

√
t) + λekc Erfc

(
x− c
2
√
t

)
.

Note. It is easy to verify that u(x, 0) = β.

4. conclusion

The paper is devoted to studying and application of the Laplace transform to
solving certain systems of time fractional partial differential equations and eval-
uation of integrals of Bessel’s functions. The author considered a generalization
of the problem of sub-ballistic fractional PDE with constant coefficients, studied
by V. V. Uchaikin. The transform method provides a powerful method for ana-
lyzing linear systems. The main purpose of this paper is to develop a method for
finding analytic solutions of the system of integro-differential equations and time
fractional PDEs.
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[4] T. M. Atanacković and B. Stanković, Dynamics of a viscoelastic rod of fractional derivative
type, Z. Angew. Math. Mech. 82 (2002), 377–386.
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Iaşi, Secţ. I 24 (1978), 29–34.
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