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Abstract. The subject of this article is the implementation of new knowledge on material and 

geometric characteristics obtained from an experimental research program in advanced 

numerical modelling of compressed columns made of austenitic stainless steel using the 

ANSYS Classic software. Nonlinear stress–strain curves were obtained using our own 

experimental program and studied in terms of identifying the most suitable nonlinear material 

model. Additional material and geometric characteristics were obtained from literature and 

other independent research. Numerical models differing in mesh density localization, 

formulation of element integration, non-linear material model, and initial geometric 

imperfections were created and compared. The aim of the models was the ultimate limit state 

of a strut of circular hollow cross-section stressed by compression and analysed using the 

geometrically and materially nonlinear solution with consideration to the influence of initial 

imperfections. Static resistance and limit state deformations are compared for each model. The 

paper presents the analysis of model uncertainty by comparing SHELL and SOLID FE models, 

which must be characterized before the start of the analysis of the random influence of 

imperfections on the limit states. The mean values and the coefficients of variation are 

practically the same for both approaches. In summary, the presented models can be considered 

sufficiently validated and eligible for integration in tandem with simulation sampling methods.  

1.  Introduction 

Computational modelling is a traditional practice in many technical fields. With the development of 

computers in recent decades, computational modelling has been integrated into most technical 

sciences and has become an integral part of the design of structures and bridges [1], structural 

mechanics [2], engineering geology [3], or operations research [4]. Slender members of steel 

structures can be modelled using the finite element method utilizing many types of finite elements 

such as BEAM elements [5, 6], SHELL elements [7, 8], or SOLID elements [9, 10]. Although the 

conciseness and accuracy of models grow more or less naturally towards SOLID elements, there is 

also a growing risk of creating a less accurate or an inaccurate model, and many model parameters and 

other tasks must be set up and addressed to make the model a valuable and useful tool. 

The presented article aims to compare computational models created using the SHELL and SOLID 

finite element method with the inclusion of material and geometric nonlinearities [11]. The paper 

presents the analysis of the buckling resistance of stainless steel using advanced modelling with 

consideration to the influence of initial imperfections and material nonlinearities. 
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2.  Experimental Testing Program 

Two sets of CHS column specimens, 106×3 (set of 9 different columns), and 104×2 (set of 8 different 

columns), were tested. 

An elaborate description of the experimental program is presented in the study of Mr. Buchanan et 

al. [12] (p. 298 - 303). 

3.  Numerical Finite Element Models 

Ansys parametric design language (APDL) macros in the environment of ANSYS Classic [13] were 

used to create the parametric numerical finite element model. Geometrical parameters, amplitudes of 

initial global imperfection (ω0 + e0) (Table 1 – Table 2), and material parameters (Table 3) were 

considered as the input variables. 

3.1. Modelling approaches, Adopted Finite Element formulations 

This study compares two varying approaches to numerical modelling. In approach #A, the model is 

comprised of shell elements, while the model in approach #B is comprised of solid elements. 

3.1.1. Modelling Approach #A (shell model). The CHS columns were modelled using SHELL 181 

elements (4-node structural shell elements) with 3 translational degrees of freedom (DOF) and 3 

rotational DOF per node.  Bending and membrane stiffness is present in the elements (Mindlin-

Reissner theory), which include the linear effect of transverse shear deformation. The shell elements 

are rectangular with a maximum edge size of 8 mm in the longitudinal direction and 5 mm in the 

tangential direction (along the circumference) (Figure 1 a). Reduced integration with hourglass control 

was used for the modelling with 1 integration point (3 through the thickness). Shear locking was 

relieved using the shear strain formulation of Bathe-Dvorkin [13]. 

3.1.2. Modelling Approach #B (solid model). The CHS columns were modelled using the solid 

structural finite element SOLID 185 (Figure 1 b). The mesh sizes are the same as in approach #A. 

Three elements were considered in the radial direction, along the cross-section thickness t. The 

selective reduced integration method also known as the B-bar method [13], which prevents volumetric 

locking in nearly incompressible cases, was considered by selecting the default key option (0) of the 

element technology. 

 

   

(a) (b) (c) 

Figure 1. 104×2-950 specimen: (a) approach #A - shell model geometry; (b) approach #B - solid 

model geometry; (c) Results of Nodal solution, total displacements 
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3.2. Geometry of the Numerical Models 

The geometric parameters, D (outer diameter of the cross-section), t (wall thickness), L (effective 

structural length, with consideration to the additional knife edge lengths), and imperfection amplitudes 

(ω0 + e0) were considered according to the measured values of the respective specimens (see Table 1 – 

Table 2 below, based on data from Table 5 – Table 6 in [12], respectively). 

Table 1. Measured geometric parameters of the 106×3 CHS cross-section of the pin-ended columns 

Specimen D [mm] t [mm] L [mm] L/(ω0 + e0) 

[-] 

(ω0 + e0) 

[mm] 

106×3-550-P 105.74 2.78 554.27 1218 0.455 

106×3-750-P 105.81 2.88 754.21 1034 0.729 

106×3-750-PR 105.77 2.72 754.21 880 0.857 

106×3-950-P 105.78 2.79 954.00 957 0.997 

106×3-1150-P 105.84 2.83 1154.00 1000 1.154 

106×3-1650-P 105.63 2.74 1657.00 945 1.753 

106×3-2150-P 105.88 2.71 2152.90 997 2.159 

106×3-2650-P 105.64 2.73 2652.50 987 2.687 

106×3-3080-P 105.67 2.70 3083.00 1044 2.953 

 

Table 2. Measured geometric parameters of the 104×2 CHS cross-section of the pin-ended columns 

Specimen D [mm] t [mm] L [mm] L/(ω0 + e0) 

[-] 

(ω0 + e0) 

[mm] 

104×2-550-P 103.97 1.89 553.77 1180 0.469 

104×2-750-P 104.01 1.89 753.84 887 0.850 

104×2-950-P 103.97 1.88 954.00 827 1.154 

104×2-1150-P 104.14 1.86 1153.50 1115 1.035 

104×2-1650-P 104.09 1.85 1656.60 963 1.720 

104×2-2150-P 104.08 1.79 2153.60 999 2.156 

104×2-2650-P 103.92 1.75 2653.50 1064 2.494 

104×2-3080-P 104.10 1.79 3084.00 1036 2.977 

 

3.3. Geometric Imperfections 

Global imperfections were introduced into the FE model using the lowest global buckling modal shape 

obtained from the prior modal analysis, e.g., see Figure 1 c. Initial global imperfections and 

eccentricity were simulated using the global imperfection amplitude. The amplitudes of ω0 + e0 were 

considered according to Tables 1 - 2. Local imperfections were neglected, because of relatively small 

influence on the global results for the considered geometries [11]. Increasing number of scaled 

buckling modes might be added to the perfect geometry of certain structures to achieve accuracy 

including the appropriate scaling factors [14]. Such approach was appropriate in order to define the 

imperfections of more complex structures (frames) [14], however for a single column does not seem to 

be applicable. 

3.4. Material model 

The stress-strain relation offered by Ramberg and Osgood [15] and modified by Hill [16] was adopted 

to describe the behaviour of the stainless steel material: 
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where σ and ε represent the engineering stress and strain respectively, E0 is Young’s modulus, σ0.2 is 

the material 0.2% proof stress, and n is a strain hardening exponent. The model overestimates the 

stress values at strain values greater than the σ0.2 value [17]. Closer agreement with experimental data 

is offered by the 2-stage compound stress-strain curve proposed by Mirambell and Real [18] for stress 

values higher than the 0.2% proof stress [17]. A modification of the second stage was proposed by 

Gardner [19] for compressive loading: 
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where σ1.0 is the 1% proof stress of the material, n’0.2,1.0 is the strain hardening exponent, and E0.2 is the 

stiffness (tangent modulus) at the 0.2% proof stress given as: 
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A multilinear isotropic hardening material model (Mises plasticity) was considered for the finite 

element (FE) numerical analysis. A more detailed description can be found in the author’s previous 

study [20]. However, the stress-strain behaviour was considered as ideal elastic only up to the value of 

0.1 σ0.2 to neglect plasticity at low strains in comparison with the value of 2/3 σ0.2 considered in [20], 

which was too high for certain cases. The nominal stress-strain material curves were transformed into 

true stress and logarithmic strain dependences to match the geometric nonlinear FE analysis results: 

 )ε(σσ nomnomtrue += 1  (4) 

 )εln(ε nomtrue += 1 , (5) 

where σnom is the nominal engineering stress, εnom is the nominal engineering strain, and εtrue is the true 

total (mechanical) strain. εnom was introduced with negative values for the compressive material 

properties. Due to the unfeasibility of defining the negative tangent of the stress-strain relation while 

adopting isotropic hardening [13], the stress-strain relation was defined as ideal plastic with its tangent 

slope positive and close to 0 without any softening after the peak stress. Figure 2 below shows an 

example of the verification of the material model using the parameter values of 106×3 cross-section 

set – Table 3). 

 

Figure 2. Verification of the material model using one element uniaxial compression test for the 

106×3 set of material properties (Table 3) 

 

Low values of membrane residual stresses have been noted in cold-formed CHS and thus can be 

neglected [21]. Through-thickness residual stress is included by taking into account the measured 

material property values [22].  
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3.5. Material property values 

The set of material properties values were considered using the stub column material properties (SCP) 

listed in the study of Mr. Buchanan et al. [12]. These values, which are summarized below in Table 3, 

are based on the averaged values from all available relevant data (Table 4 in [12]). 

Table 3. Summarization of considered material properties 

Cross sectional 

set 

E0 [GPa] σ0.2 [MPa] σ1.0 [MPa] n [-] n’0.2,1.0 [-] σu [MPa] 

106×3 196.05 283.50 323.50 8.60 3.65 615.00 

104×2 202.05 359.50 407.00 4.80 2.87 726.25 

 

3.6. Boundary conditions and loading 

To simulate the pin-ended column, circumferential nodes located at the end of the CHS tube were 

joined in the radial direction with a single node situated on the second axis. The offset of the node is 

77 mm as defined in [12] (page 301). Nodal connections were modelled using rather stiff beam 

elements. This boundary condition was considered at both ends of the CHS tube (see Figure 1 a and 

b). Loading during FE analysis was performed using a prescribed displacement of the upper node uz 

(in the direction of the CHS tube axis). All translational and 2 rotational DOF of the bottom node were 

constrained while 2 translational and 2 rotational DOF of the upper node were constrained. 

4.  Results 

The results of performed FE analyses for both modelling approaches, #A (shell model) and #B (solid 

model), which include the ultimate axial loads Nu, ultimate mid-height lateral deflections ωu, and 

experimental results (Nu,exp and ωu,exp) [12] are tabulated in Tables 4 – 5. Validation of the FE models 

was performed by comparing the averaged (mean) values of the normalized ultimate loads Nu,#/Nu,exp 

and the averaged normalized deflections ωu,#/ωu,exp (Table 6), along with the standard deviations and 

the coefficient of variation of the whole set. Results of the “opposite” specimen, i.e., specimen with 

negative values of ωu,exp, were excluded (Table 4: 106×3-550-P, and Table 5: 104×2-550-P and 104×2-

750-P) for the normalized deflections ωu,#/ωu,exp marked with an asterisk “*” (Table 6). The negative 

values of ωu,exp arise because the specimens change the initial direction of the mid-height lateral 

deflection caused by the applied eccentricity before the peak force Nu,exp is reached as described 

in [12]. 

The global slenderness   is computed in dependence on the class of the cross-section, which is 

defined in EN 1993-1-4 [23]. Equation 6 is considered for classes (cl.) 1 - 3, and Equation 7 is 

considered for class 4 cross-sections: 
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where A is the cross-section area, σ0.2 is the 0.2 % proof stress, E is Young’s modulus, I is the second 

moment of area, L is the effective length and, Aeff is the effective cross-section area determined 

according to the formula listed in BS 5950-1 [24]: 
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The limits of the compressive class slenderness were considered according to EN 1993-1-4 [23]. 

The compressive classes (cl.) are listed in Tables 4 – 5. 

Figure 3 illustrates the N-ω (axial load – mid-height deflection) curves for two selected cases. 

Modelling approaches #A (shell model) and #B (solid model) are compared graphically. 

Table 4. Results of the cross-section set 106×3 CHS pin-ended columns 

Specimen   [-] cl. Nu,#A 

[kN] 

ωu,#A 

[mm] 

Nu,#B 

[kN] 

ωu,#B 

[mm] 

Nu,exp 

[kN] 

ωu,exp 

[mm] 

106×3-550-P 0.18 1 270.6 2.61 270.2 2.40 267.0 -9.56 

106×3-750-P 0.25 1 265.0 3.33 264.6 3.53 244.8 4.02 

106×3-750-PR 0.25 2 249.2 3.38 248.8 3.58 242.2 4.66 

106×3-950-P 0.32 1 242.9 4.74 242.5 4.70 253.4 3.76 

106×3-1150-P 0.38 1 234.1 6.13 233.6 6.22 248.8 4.10 

106×3-1650-P 0.55 1 198.7 7.35 198.2 7.35 201.3 7.10 

106×3-2150-P 0.71 2 176.2 7.97 175.7 8.19 185.5 10.66 

106×3-2650-P 0.88 2 156.6 9.84 156.1 9.25 159.4 13.27 

106×3-3080-P 1.02 2 139.0 11.70 138.5 11.05 150.8 10.57 

 

Table 5. Results of the cross-section set 104×2 CHS pin-ended columns 

Specimen   [-] cl. Nu,#A 

[kN] 

ωu,#A 

[mm] 

Nu,#B 

[kN] 

ωu,#B 

[mm] 

Nu,exp 

[kN] 

ωu,exp 

[mm] 

104×2-550-P 0.21 3 228.8 2.24 228.7 2.29 241.1 -2.21 

104×2-750-P 0.28 3 218.9 2.44 218.6 2.33 232.1 -1.95 

104×2-950-P 0.35 3 206.7 3.68 206.4 3.48 204.2 5.17 

104×2-1150-P 0.43 3 195.9 5.06 195.6 4.68 180.8 6.24 

104×2-1650-P 0.62 3 163.5 10.21 163.2 10.42 154.8 10.50 

104×2-2150-P 0.79 4 132.3 14.05 132.0 14.05 126.4 15.19 

104×2-2650-P 0.97 4 108.5 15.35 108.2 15.65 109.0 19.40 

104×2-3080-P 1.14 4 95.4 17.84 95.2 18.32 89.7 22.81 

 

Table 6. Statistical comparison of modelling approaches #A (shell model) and #B (solid model)  

Item #A (shell 

FE model) 

#B (solid 

FE model) 

Mean (average) Nu,#/Nu,exp [-] 1.001 0.999 

Standard deviation Nu,#/Nu,exp [-] 0.051 0.051 

Coefficient of variation (COV) Nu,#/Nu,exp [%] 5.1 5.1 

Mean (average) ωu,#/ωu,exp [-] 0.611 0.613 

Standard deviation ωu,#/ωu,exp [-] 0.726 0.719 

Coefficient of variation (COV) ωu,#/ωu,exp [%] 118.8 117.3 

Mean (average)* ωu,#/ωu,exp [-] 0.924 0.922 

Standard deviation* ωu,#/ωu,exp [-] 0.223 0.225 

Coefficient of variation (COV)* ωu,#/ωu,exp [%] 24.1 24.4 
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(a) (b) 

Figure 3. Experimental and FE axial loads (Nz) vs. mid-height lateral deflection (ωx) curves: 

(a) specimen 106×3-950-P; (b) specimen 106×3-1650-P 

 

Figure 4 below shows the contour plots of the equivalent plastic strains for the case 106×3-1650-P. 

The values of deformation load uz and corresponding axial load Nz are specified for both modelling 

approaches #A and #B at two stages of the analysis: at the ultimate load Nz = Nu,# (Figure 4, a, c), and 

the last analysed sub-step of the nonlinear analysis (Figure 4, b, d). 

 

    
(a) (b) (c) (d) 

Figure 4. Equivalent plastic strains for specimen 106×3-1650-P: (a) #A, at the ultimate load; (b) #A, 

last analysed sub-step; (c) #B, at the ultimate load; (d) #B, at the last analysed sub-step 

5.  Discussion 

For longer specimens, global buckling was the most common failure mode, see Figure 4. In shorter 

specimens, a local buckle is developed near the mid-height of the compressed side of the tubular 

cross-section after the peak load has been reached. The buckling modes are comparable to those 

presented in the study by Buchanan et al. [12]. 
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The comparison of the two modelling approaches, #A (shell FE model) and #B (solid FE model) is 

performed in the matter of the globally monitored results. The average values of the normalized 

ultimate loads Nu,#/Nu,exp and deflection ωu,#/ωu,exp are tabulated in Table 6 (average, standard deviation, 

and CoV), and are illustrated graphically in Figure 5 (average and standard deviation bars). Both of the 

considered modelling approaches yield essentially the same mean (average) values and coefficients of 

variation (CoV). The difference between the load-deflection curves depicted in Figure 3 for two 

chosen cases is negligible. Although the ultimate limit state is the main research interest, the behaviour 

of the compressed column upon reaching its load-carrying capacity is also an interesting output of the 

study. In several of the modelled cases, the behaviour in the post-peak softening region, where large 

strains were involved, varied slightly (e.g., Figure 3 b). For example, the last converged sub-step for 

the case shown in Figure 4 for specimen 106×3-1650-P was at the value of the axial translation uz = 

24 mm for modelling approach #A (Figure 4 b). Different values of the axial load Nz and mid-height 

lateral deflection ωx (Figure 3 b) were obtained for modelling approach #B (Figure 4 d) where the 

analysis continued until the final value of the defined axial translation uz = 32.6 mm. 

For both modelling approaches, the mean (average) values of the ultimate axial load Nu,#/Nu,exp are 

quite close to the value of 1.0, and the coefficient of variation is approximately 5%. Similar results 

were obtained in the study performed by Mr. Buchanan et al [12] thus validating the presented finite 

element models. 

Conversely, the mean (average) values of the ultimate lateral deflection ωu,#/ωu,exp are quite far 

from the value of 1.0 and the coefficient of variation is over 100% for both approaches.  

The main reason for this is the opposite direction of the mid-height lateral deflection caused by the 

introduced eccentricity for three of the shortest specimens. Global structural response was considered 

in the presented finite element models. In numerical analysis, where the specimen material properties 

are considered the same along the whole structure, it is impossible to obtain a lateral deflection 

direction that is different from the direction induced by the initial global imperfection, unless some 

local imperfections of the material itself would be modelled. This would require modelling additional 

imperfections that are random and can be modelled using random fields rather than deterministically. 

This problem was observed only in cases of the shortest specimens with small global initial geometric 

imperfections, and local material imperfections might have a greater effect on the final lateral 

deflection direction. For longer specimens, the lateral deflection direction was identical to the 

direction of the initial global imperfection. 

   
(a) (b) (c) 

Figure 5. Average values with standard deviation bars for (a) normalized ultimate axial load, (b) 

normalized ultimate lateral deflection, and (c) normalized ultimate lateral deflection with the 

exclusion of certain specimens (3 out of 17) 

 

Upon excluding the values of these “opposite” cases from the statistical evaluation we obtained 

average values of the normalized mid-height lateral deflections ωu,#/ωu,exp that was much closer to 1.0 
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(Figure 5 c), with better coefficients of variation (Table 6) – 24.1% (modelling approach #A) and 

24.4% (modelling approach #B). The load-deflection curves are quite flat near the maximum values of 

the ultimate axial load. Higher values of standard deviations and coefficient of correlation can be 

expected in the evaluation of the results of normalized ultimate lateral deflections ωu,#/ωu,exp, similarly 

to the study by Mr. Buchanan et al [12]. The results presented here are similar to the results in the 

study [12], hence these results can be considered very representative. 

6.  Conclusion 
Stainless steel is a modern material with little information on its behaviour in load-bearing structural 

elements. This article fills this gap with a study that compares the load-carrying capacity and limit 

state deformations of several geometrically and materially nonlinear models of imperfect columns 

subjected to compression. The numerical models are based on SHELL 181 and SOLID 185 elements, 

which are some of the most efficient and well-documented finite elements of their kind available in the 

ANSYS program. This article describes the effects of several variant mesh sizes, models of 

imperfections, boundary conditions, and other model characteristics on the model outputs and 

describes the similarities and differences in the behaviour of the compressed column. The presented 

model outputs are in very good agreement with the results of experimental research, which was carried 

out independently at another workplace [12]. The differences between the models presented in this 

paper are relatively small, which confirms the rationality of the adopted approaches and opens up the 

possibility of use in probabilistic reliability analysis [25, 26] to explain the variance in results obtained 

from experimental research, which is another objective. 
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