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Abstract

In this paper the piecewise-linear (PWL)
autonomous dynamical systems are described. The
sensitivity properties for all models are calculated
(analytically and numerically). We will start with
circuit model of 2™-order system, which relative
eigenvalue sensitivity of characteristic polynomials
with respect to all circuit parameters change is
calculated. Using the cascade models we can proceed
fo the third- and higher-order models and their
relative sensitivity we can obtain easily from the
lower-order models. In the last part of this paper the
sensitivity of Chua's circuit is compared with the
sensitivity of the third-order elementary canonical
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1. Introduction

The state models of circuits that we will study are
autonomous. These nonlinear dynamical systems can be
described by the system of 1* order ordinary differential
equations (ODE) generally:

x = F(x) x(0)=1x, (1-1)

where x = x(f)e R" is called the state vector, the function
F(x(r))=F(x) is an autonomous vector field, i.. the
vector field dependent only on state not on time, x, are the
initial condition and x = x() denote the derivative x(¢)
with respect to time. The vector field F(x) for the analysis
of piecewise-linear dynamical systems is described by:

x=Ax+b x(0)=1x, (1-2)

where b is the column vector, A the state matrix.

Piecewise-linear (PWL) analysis means to divide the
state space of a nonlinear dynamical system into a set of
separate affine regions and to study each region separately
and the result means “to glue” these pieces together.

The driving-point characteristic, which can have a
different nonlinearity-gradient, simulates the nonlinearity
in circuit [6] as shown in Fig.1, i.e.
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Fig. 1 Symmetric PWL function of nonlinear resistor

The gradient of PWL function has influence on
dynamic behavior [7] as will be show in next chapters.
PWL autonomous dynamical system belonging to Class C
of vector field in R" can be described by state equation in
matrix form [1]:

x=A x+ba(w'x) (1-3)

where A,eR™", vectors b, weR" and the simplest form of
PWL function is:

h(w’z):%ﬂw’x +1|—|w’x-q) (1-4)
The function is continuous, odd-symmetric and partitiones
the vector field R" by two parallel planes into the inner
region and two outer regions.

The dynamical behavior of such systems is described
by two sets of eigenvalues s4, W representing two
characteristic polynomials associated with corresponding
regions [1], i.e. for:

-inner region —» |w’x{(l
P(s) =det(ls —Ao) = (s — g, J(s — pty) - (s — 1, ) =
=s" - p;s"! +P23”“1 +"'+(_l)n-lpu
-outer regions — rw’x| =1
Q(s) =det(ls = A) = (s —v, Ws=v,y)-(s-v,)=
=5"=qis" g™ 4ok (-1 g,
(1-5a,b)
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1 is a unity matrix and
equivalent eigenvalue

where Ao=A +bw',
coefficients g, pr are the
parameters.

2. Second-order Systems

The simplest models suitable for sensitivity analysis
are the 2"-order circuits. The state matrix A has general
form A or a special form Ay [4], which will be used for
next calculations:

A, =1:au al!} A, =|:a” an} @2-1)

a, 4n a, 0

The form of characteristic polynomial is:
(s=v,)-(s=-v,)=s"-5-q, +q, (2-2)

The analytical results of relative sensitivity will be show in
the next Chapter.

3. Third-order Systems

3.1 Chua’s Circuit

The so-called Chua’s circuit family represents the
dynamical systems, which are canonical in the sense of the
minimum of free parameters needed for their design [3].
The dimensionless Chua’s equations [7] can be rewritten
to the matrix form (1-3), where:

(—ka(b+1) ka 0
A= k -k k
| 0 -kB —ky
(ka(b-a) 1
b= 0 w=|0 (3-1)
.0 0

Dimensionless Chua’s equations represent the
general, compact and universal ODE form suitable for the
comparison with other ODE equivalent.

Many other state models can be derived utilizing the
linear topological conjugacy. The topological conjugacy
expresses the mutual relations between two qualitatively
equivalent systems having the same eigenvalues. The
topological conjugacy conditions are in [7].

3.2 Canonical ODE Models

These models are linearly conjugate to Chua’s
oscillator. They are canonical with respect to the behavior
of the associated vector field, with respect to the number of
circuit parameters, i.e. they contain minimum number of

elements necessary. They have elementary relation
between equation parameters and the equivalent
eigenvalue parameters.

The state matrix of first canonical ODE model has
form with equivalent eigenvalue parameters pp g where
the main parameters are identical with the equivalent

eigenvalue parameters for outer and inner region
respectively:
(g, -1 0 p -1 0
A=|q, 0 -1 A, =|p, 0 -1
g, 0 0 p, 0 0
-Pt_ql 1
b=|p,—-q, w=|0 (3-2)
Py—4q, 0

Dual case to the first one represents second canonical
ODE model:

(9. 4. 4,
A=|-1 0 0
_‘0 -1 0
1 P—4q
b=|0 wW=p,—4q, (3‘3)
_0 P4

The forms of partial transform matrix K, resultant
transform matrix T and corresponding integrator-based
circuit are in [8].

3.3 The Block-diagonal and Block-
triangular Forms

The other state models are derived using linear
topological conjugacy.

The block-diagonal App and block-triangular Agr
forms of 3™-order systems are based on the decomposition

of the state matrix A, i.e.:
A 0 A 0
Aw = Asr ="
0 A, A, A

a, a,
A, ={ :i A,=a, A, =aq, (3-4)

a

21 e

Let v,,=v't,v" denote the complex conjugate

eigenvalues and v; the real eigenvalue. Then for the two
cases can be written:
¢ Elementary Canonical Submatrix

vi+yy, =110

A= (3-5a)

41 &)
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¢ Complex Decomposed Submatrix Z S,(vy.a,,)=1 (5-1b)

1=l
(3-5b) for case b # 0 [3] is
(a,, +b,) ou
Sr[)uk!(a[uf +b;)]= 2 - 'a ' b =
. . ouk (au + :)
For both cases is valid: b o +b (5-2)
a i
w =1 0 1] and b =[b, b, b] (3-6) ==, (b)) = =5, (. a,,)

The forms of partial transform matrix K, resultant
transform matrix T and corresponding integrator—based
circuit are in [8].

4. Fourth-order Systems

The higher-order models are based on decomposition
of state matrix A. We can use the so-called cascade models
[4). The submatrices of state matrix A have form
(generally):

A = all aﬂ A - all ali
l a!l an ! aﬂ aﬂ
A = a]) aM
’ ad! 0“
By comparing the individual polynomial coefficients

with state matrix A we obtain conditions for new models
of 4®-order [4]. Their forms are:

A, = v,+v, 1 A, = v,+v, 1 4-2)
v,'v, 0 v,-v, 0

@4-1)

and the complex decomposed form for v,, =v| £ jv] and

V34 =Vy i vy
vioov" v
A! =[ : :} A! =[
vi v, v

5. Sensitivity Analysis

3 V:J
> o 4-3)
sy v

The sensitivity properties are very important for
realization of all circuit models.

5.1 Eigenvalue Sensitivity

The relative sensitivity of state matrices eigenvalues
parameters on all elements parameters change of the
modeled circuit is determined by definition in [2]. For
circuit elements a,, of state matrix A the sensitivity has

form:

Sr(v.l'aq) = Eli" av*

fori, j,k=1.2..
v, oa, / 7

v
(5-1a)

i ai'.j
As a special case is derived relative sensitivity of
eigenvalues, separately for real part v’ and imaginary part
v'"" of eigenvalues of the state matrix. Let v, =Vv'+ jVv".

The relative sensitivity is given:

- for real part
7\ Y
S,(V,a,, )= =—(a 5-3a
(V.a,)=—" " {aa,,,] v( s/ (5-3a)
- for imaginary part
a, ov" S”
S(v'a,,)=—~. 5-3b
(V'.a,,) T [aa,_,] T ~(a,,) (5-3b)
e For 2™-order system relative sensitivity has the form:
S,(v,,a,)= ﬂ S,(v,,anjza—”ﬂ
=4, vy 2v, —g,

-a a
S'(v"a“)=sr(vvan)= v : 2v iq:
k 4,

e The analytically derived results (for 3™-order models)
are presented in [3]. The best results we get for the block-
diagonal and block-triangular form of state matrices in
complex-decomposed form. These results are confirmed
numerically too.

e The results for the block-diagonal form of the state
matrix (for outer regions D., ) generally:

fork=1,2
S, (Vtrau) ___V—ﬂn S, (Vvan) = &

v, 2v,—q v, 2v,—q,
S.(v,.a,)=

S (v,,a,)=0
a I3 [ 2e + |

=S, (Vvazl)_v_ﬁ
fork=3 S (Vy,a5) =1

Real part sensitivity Imaginary part sensitivity

S, a,,)«i% S(v* a,,)-—%g-(-v-:ﬂ
S,(V'a,)=

S, (V’- au)‘ S,(V,a,)=0 =S,(v"a, )=~ ‘;u‘:i:

S, (V,a, «-la—’f- S,(V'-an)=“%g‘l‘l")‘
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o The analytical results of relative sensitivity of | TabVl Block-diagonal matrix (complex-decomposed)
djmcn§iOMess parameters of Chua_’s oscillator ba.lvF. a all al2] alire| allim| alZre| alZim
F;omphcaled form. The sum of all eigenvalue sensitivities setl | 0.002-0.030i| 0.498+0,030i] 0,500] 0,000] 0,000] 0,500
is not 1 (opposite to canonical state models). Most set2 | 0,009-0,068i] 0,491-0,068i| 0,500] 0,000] 0,000] 0,500
sensitive is the state model to gradient of the PWL set3 | 0,018+0,094i 0,482-0,094i| 0,500/ 0,000| 0,000] 0,500
function. Foro{herODEequiva]entsthe sensmwty is more setd | 0,041+0,138i| 0,459-0,138i| 0,500/ 0,000] 0,000] 0,500

equally spread between the particular terms. It means, that
these circuits are not so much sensitive to the parameters
change.

The relative sensitivities for small different change of
equivalent parameters are calculated too. The results
proved regularity of the piecewise-linear method.

5.2 Equivalent Eigenvalue Sensitivity

The relative sensitivity of state matrices equivalent
eigenvalues parameters on all elements parameters change
of the modeled circuit is determined by eq. (5-1) in form:

Tab.l Sets of equivalent eigenvalue parameters for relative fork =1,2,3:
sensitivity calculation 1
ql q2 q3 pl p2 p3 S(q.a,)= zr— [V,S. (V;-ﬂu )]
sett] -1,168] 0,846[ -1,295] 0,090] 0,43] 0,653] fig.2 Vi
set2 | -10,288| -1,200{ -2,719] 0,363 1,06 0,277| fig.3 '
seB| -1,910] 0,141] -2,387] -0,122] 11,93] 7.655| fig4 .S',(q,.a,d)=ZS,(v,.a,,)
set4 | -2,400{ -0,710| -3,270| 0,800| 100,21] 20,018] fig.5 k
1 4 '(Vi +v, )S‘r (Vi'ay)"'
Tab.ll Calculated itivities for el ntary canonical model
a alcuia sensilivities Tor eleme ry nical mode Sf(ql.au):_' +V2 '(V1 +V3}gr (V:,a'j)"' (5_4)
all(v) | at2(v) | azi(v) | a23(v) | a31(v) +v,-(v1 +V:)Sr(V;,%)
set1 | 0,533] 0,056 -0,300[ 03s5[ 0,355
set2§ 0971 00134 -0011} 0,002} 0,002 The relative sensitivity of state matrices equivalent
set3 §  0,608] 01241 -0,0201 0,1447 0,144 eigenvalues parameters on all elements parameters change
setda | 0,606] o0,151] 0,060] 0,092] 0,092 " o >
all+bl | a21+b2 | a31+b3 | al2(p) | a23(k) of the. 3™-order modeled circuit of modeled systems is
setl 0,035] -0,229 0,474 0,246 0,474 show in next.
setz]  0,089] -0,982] 0,958| -0,024] 0,958
set3 | -0,006] -0,902] 0,937 0,035] 0,937 1. Elementary canonical model of first type
seta | 0,002] -1,002] 1,001 -0,001] 1,001
S’(?lvau):l Sr(qi,a“)=0 Sr('9'3’all)=0
Tablll  Calculated sensitivities for Chua's oscillator Sr(,,a,,)=0 Sr(9,.a,)=1 Sr(g;,a,)=1
Sr(q‘,an):o Sr(gz,an)=l Sr(g3,au)zl
A — L 2 - Sr(g,,a,)=0 Sr(g,,a,,)=0 Sr(gy,ay)=1
setl | 14,065| 5298 -0,043]  -28,103 -8,782 B9 )= 2,9 330 =
set2 13,624 2,570 2,217 24,875 43,286
set3] -0,453] -0,004| 0,061 0,011 -0,384 2. Block diagonal state matrix
setd -0,273 0,000 0,002 0,000 -0,271
- - - - - a!l — al‘ g +a¥l - a‘laua)l
Q(P_) B(P_} T(F} I(p.) sum Sr(ql +ay, ) = ; Sr(?:' a, ) - _(z;f_) Sr(q,. an) 4,
sett | 20,160] 6,082] 0,121] 124263] 150,626 Srg.a)=0 lona)- s o) s
set2 | 887,592| 133,753| 796,181| -7050,098] -5232,572 el = e
Sr(Q|'a:|)= 0 _ Ta,q, _ TG, 0,,dy,
Tab.IV  Calculated sensitivities for block-diagonal state model Sr{q,.a,‘)~ q, Sr(q,,a“)— q,
all al2 allre| allim | al2re| al2im _ay ay(a, +a, a,,a,a,,
setl (10,061i)] _ 0,5+0,030i[ 1,000] -0,004] 0.000] 0,502 S’(‘-""“”)__‘ Srlg, az)= @ Srlgy an)= ,
) (0,039 0,5+0,069i] 1,000] -0,019] 0,000] 0,510 Sloa)-
set3 (-0,195)[ _ 0,5+0,098i| 1,000[ -0,038] 0.000 0,519] | |sr(g,.a,)=22 |Sr(g,.ay,)=22 @+ an) | Srlanan)=
setd (-0,31) 0,5+0,151] 1,000{ -0,090{ 0,000] 0,545 1 = _als(alzaﬂ"anau)
4qs
Tab.V  Calculated sensitivities for block-diagonal state model (min. Zsr(g"“v )=1 Z.S'r(q,,ay)z 2 ZSr (@,.9,)=3
nonzero parameters)
all al2 allre| allim | al2re| al2im . . .
setl (0.0610] __0.5+0.0301] 1,000] -0,004] 0,000] 0.502] | ., Lpe relative sensitivity of higher order models (eg.
set2 (0,0391)| _0,5+0,069i] 1,000] -0,019] 0,000] 0,510 | 4 -order modf:l) we obtain as addition of the sensm:rmes
set3 (0,195 _ 0,5+0,098i| 1,000 -0,038] 0,000 0,519] | of corresponding models of lower-order systems (2™ and
setd (-03)] ___0,5+0.15i] 1,000] -0,090] 0,000] 0,545| | 3"-order).
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Fig.5 Chaotic attractor for equivalent eigenvalue in Tab.l, set 4

6. Conclusions

The relative sensitivity is important for finding the
most acceptable chaotic phenomena model with the least
number of nonzero parameters in state matrix and having
the best stability for realization.

From the detail analytical and numerical results of
relative sensitivity for new canonical models and the
block-diagonal and block-triangular forms we see, that
these models can be the best for practical realization. The
sensitivity properties of Chua’s circuit were numerically
calculated to compare the results with results of the third-
order elementary canonical models.
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