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ABSTRACT
In this thesis we study de Sitterian special relativity, which takes place in de Sitter
spacetime instead of Minkowski spacetime. We start with study of the symmetry group of
de Sitter spacetime. We try to use these results to develop kinematics in this spacetime.
We also review connection between electrodynamics on fixed background spacetime and
electrodynamics in macroscopic media in flat spacetime. We apply this on de Sitter
spacetime and find refractive index of associated macroscopic media.

KEYWORDS
de Sitter spacetime, kinematics, Lie groups, special relativity, electrodynamics , refractive
index

ABSTRAKT
V této práci se zabýváme de Sitterovou speciálńı relativiou, která se odehrává v de Sit-
terově časoprostoru naḿısto Minkowského časoprostoru. Zač́ınáme studíı grupy syme-
trie de Sitterova časoprostoru. Snaž́ıme se použ́ıt tyto poznatky k rozvinut́ı kine-
matiky v de Sitterově časoprostoru. Dále p̌rezkoumáváme spojeńı mezi elektrody-
namikou na pevně zvoleném časoprostoru a elektrodynamikou v makroskopickém médiu
v plochém časoprostoru. Toto aplikujeme na de Sitter̊uv časoprostor a hledáme index
lomu sdruženého média.

KĹIČOVÁ SLOVA
de Sitter̊uv časoprostor, kinematika, Lieovy grupy, speciálńı relativita, elektrodynamika,
index lomu

MICHAĹIK, Tomáš Point particle kinematics and light propagation in de Sitter space-
time: bachelor’s thesis. Brno: Brno University of Technology, Faculty of Mechanical
Engineering, Institute of Physical Engineering, 2015. 23 p. Supervised by Klaus Bering
Larsen, PhD.
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NOTATIONS AND CONVENTIONS

χA Coordinates in 5-dimensional Minkowski spacetime

δ0 Vertical variation

δ0
ξ Vertical variation with respect to ξ

δa Horizontal variation

δaξ Horizontal variation with respect to ξ

` Pseudoradius

εijk Totally antisymmetric tensor density, ε123 = 1

ηµν Metric of Minkowski spacetime

Γµνρ Levi-Civita connection

γA Basis of Clifford algebra

Λ O(1,4) transformation

Λc Cosmological constant

k, l, p, . . . Lie algebras

Lm Matter lagrangian density

∇ Covariant derivative

Πµν de Sitterian energy-momentum tensor

πµ de Sitterian momentum

Πµ Generator of generalized translations

£ Lie derivative

ρ Charge density

Σµ Spin matrices

� Covariant d’Alembert operator

Θ Cartan involution of Lie group

ϑ Cartan involution of Lie algebra

ix



Aµ Four-potential

Bi Magnetic induction

Di Electric induction

Ei Electric intensity

F µν Field strength tensor

Gµν Einstein tensor

gµν Metric tensor

Hi Magnetic intensity

Jµ Current four-vector

ji Electric current

Kµν Proper conformal current

Kµ Generator of proper conformal transformations

kµ Wave four-vector

n Refractive index

Pµ Generator of translations

R Scalar curvature

Rµν Ricci tensor

T µν Energy-momentum tensor

x Coordinates on de Sitter spacetime

I will be using west coast metric (+,−,−, ...).
• 5-dimensional indices will be denoted by capital Latin letters A,B, ... and will

run from 0 to 4.

• 4-dimensional indices will be denoted by Greek letter α, β, ... and will run from

0 to 3.

• 3-dimensional indices will be denoted by small Latin letters a, b, ... and will

run from 1 to 3.

x



INTRODUCTION

Just like Newtonian mechanics was replaced by special relativity when the invariance

of the speed of light appeared in Maxwell’s equations, there exists a generalization

of special relativity which also admits a invariant length parameter. Such a length

parameter is for example the cosmological constant. In fact, an invariant length pa-

rameter is present in the special relativity as well, but it is easy to overlook, because

it is infinite. If we want this parameter to be finite, we must replace Minkowski

spacetime with de Sitter one. De Sitter spacetime is defined as a one sheeted hy-

perboloid embedded in 5-dimensional Minkowski spacetime and its invariant length

parameter is its pseudoradius. In this thesis we will discuss changes which arise when

we replace Minkowskian relativity with de Sitterian one. In the first chapter we will

construct de Sitter spacetime and its metric and talk about its symmetries and sym-

metry group. We will find the explicit form of an arbitrary de Sitter transformation

using the elegant isomorphism between quaternionic matrices and 5-dimensional

Minkowski spacetime. In the second chapter we will discuss the notion of tran-

sitivity in de Sitter spacetime, which is changed significantly, as compared to the

Minkowski spacetime. With this change comes also a change in the Euler-Lagrange

equations and the Noether currents. The change in the Euler-Lagrange equations

will modify every equation of motion obtained from the action principle, such as

the geodesic equation. Modified Noether currents lead to the different conservation

laws. We will observe that the correction term depends on the pseudoradius and we

are able to recover the ordinary special relativity in the infinite pseudoradius limit.

In the third chapter we will take a look at the propagation of electromagnetic waves.

We will use the fact, that we are able to convert the problem of the electromagnetic

wave propagation in a curved spacetime into propagation in a refractive media in

the Minkowski spacetime, which will lead to an interesting results. The propagation

speed of electromagnetic waves is actually different from the physical constant speed

of light.

xi



1 DE SITTER SPACETIME AND ITS SYMME-

TRIES

The aim of this chapter is to present de Sitter spacetime and explore its geometrical

properties and symmetry group, which will help us to define kinematics in this

spacetime later on.

1.1 De Sitter hyperboloid

The de Sitter hyperboloid dS(1, 3) is a hypersurface of 5-dimensional Minkowski

spacetime given by the equation

ηABχ
AχB = −`2 (1.1)

where l is the pseudoradius, a length parameter invariant under de Sitter trans-

formations. Using basic differential geometry and the fact that de Sitter space is

maximally symmetric, we are able to relate this pseudoradius to the cosmological

constant using the Einstein field equations (EFE). The resulting relation is given by

Λc =
3

`2
(1.2)

This allows us to inspect our theory in various limits, mainly in the flat limit, which

should lead to Einstein’s special relativity.

The biggest difference between Minkowski and de Sitter space is that de Sitter

space does not have a preferred coordinate system. The most important thing in

de Sitter special relativity is therefore choice the of a coordinate system, in which

we will be able to find similarities with Einstein’s special relativity. I will use the

coordinate system introduced in [1]. This coordinate system is given by

χµ = Ω(x)xµ

χ4 = `Ω(x)
(

1 + σ2

4`2

) (1.3)

where

Ω(x) :=
1

1− σ2/4`2
(1.4)

σ2 := ηµνx
µxν (1.5)

The induced metric in this coordinate system is

gµν = Ω2(x)ηµν (1.6)

1



This coordinate patch is conformally equivalent to Minkowski spacetime and there-

fore we expect that kinematics in this coordinate system will have nice properties.

This later turns out to be true.

Rewriting the equation for de Sitter spacetime in form

− 1

`2
Ω2 (x)σ2 +

(
χ′

4
)2

= 1 (1.7)

where χ′4 is a dimensionless coordinate we can see that for a infinite pseudoradius,

which corresponds to a vanishing cosmological constant, we obtain

χ′
4

= 1 (1.8)

which defines 4-dimensional Minkowski hyperspace as expected.

1.2 Symmetry group of dS(1,3)

The symmetry group of de Sitter spacetime is a group, which sends a point from

de Sitter spacetime to another point in de Sitter spacetime. It clearly has to leave

equation 1.1 invariant. In matrix notation, this equation is

χ>ηχ = −`2 (1.9)

If we transform vectors by a linear transformation Λ, we the obtain vector

χ′
A

= ΛA
Bχ

B (1.10)

and we the get equation

(Λχ)> η (Λχ) = −`2 (1.11)

This gives us an equation for matrices belonging to the symmetry group of de Sitter

spacetime

Λ>ηΛ = η (1.12)

This group is called de Sitter group and we will denote it O(1, 4). Let’s take a look

at these matrices.

By taking the determinant of the equation we find out, that

det (Λ)2 = 1 (1.13)

When we take a look at the equation for the Λ0
0, we get(

Λ0
0

)2
= 1 +

(
Λ1

0

)2
+
(
Λ2

0

)2
+
(
Λ3

0

)2
+
(
Λ4

0

)2
(1.14)

2



And therefore we can also choose the sign of Λ0
0. Transformations with negative

sign reverse the time flow. We can see that there is no continuous way to change

the determinant of the matrix from −1 and 1 and sign of Λ0
0 from − to +. This

tells us that the de Sitter group has (at least) four connected components. However,

only one of these connected components is a subgroup, namely the one with positive

determinant and sign of Λ0
0. We will denote this subgroup SO+ (1, 4). It is called

the restricted de Sitter group. The parametrization of this group would require

solving a set of 10 quadratic equations for 20 unknowns. We are not able to do it

directly, so we have to find smart way to do it.

1.2.1 De Sitter algebra

Let’s take a look on infinitesimal de Sitter transformations. These transformations

have the form

Λ = I + εX +O
(
ε2
)

(1.15)

By inserting this into the equation for de Sitter group we find out, that X has to

satisfy the equation

X> = −ηXη−1 (1.16)

These transformations have one upper and one lower index. In indices, this

equation has the form (
X>
)
A
B = −ηACXC

Dη
DB (1.17)

These matrices form a 10-dimensional vector space denoted so (1, 4), hence every

element of this space can be obtained as linear combination of basis elements. To

find this subspace, it is convenient to define a basis of the linear space of matrices.

This basis is given by (
eC

D
)A

B := δACδ
D
B (1.18)

Multiplication is defined by(
eC

DeE
F
)A

B =
(
eC

D
)A

G

(
eE

F
)G

B = δDE
(
eC

F
)A

B (1.19)

Now we define matrices with lower indices as

(eCD)A B := δACηDB (1.20)

3



It is easy to see that in this case the result of a matrix multiplication is

eCDeEF = ηEDeCF (1.21)

Using these relations, we find that the linear subspace is generated by antisymmetric

matrices with lower indices

tAB := eAB − eBA (1.22)

On this space, we are able to define another operation, called Lie bracket or com-

mutator, defined as

[X, Y ] = XY − Y X X, Y ∈ so (1, 4) (1.23)

By inserting this expression into the equation of our vector space we find out that

this indeed lies inside and therefore corresponds to some other infinitesimal transfor-

mation Z. This promotes the space of infinitesimal transformations to a Lie algebra.

An easy calculation for basis elements gives us the result

[tAB, tCD] = ηBCtAD + ηADtBC − ηACtBD − ηBDtAC (1.24)

We are able to obtain group elements by exponentiating elements of the algebra.

1.2.2 De Sitter spacetime in terms of quaternionic matrices

To perform exponentiation, we will use a representation of 5-dimensional Minkowski

spacetime using Clifford algebra. To a vector χ we assign the quaternionic matrix

γAχ
A denoted /χ.

/χ := χAγA χA ∈ R γA ∈Mat2×2 (H) (1.25)

The γ matrices satisfy an anticommutation relations

{γA, γB} = 2ηABI2×2 γA, γB ∈Mat2×2 (H) (1.26)

We define ”conjugated” γ matrices as

γ̃A = γ0γAγ0 (1.27)

4



Indices on γ matrices are raised and lowered with ηAB. In this thesis, we will use

an explicit representation in which γ matrices are [2]

γ0 =

(
1 0

0 −1

)

γ1 =

(
0 i

i 0

)

γ2 =

(
0 j

j 0

)

γ3 =

(
0 k

k 0

)

γ4 =

(
0 1

−1 0

)



(1.28)

The squared length of χ is in this formulation is given as

ηABχ
AχBI2×2 = /χ

†
/̃χ (1.29)

and the coordinates χA are given by

χA =
1

2
trH
(
γ̃A/χ

)
(1.30)

where 1

trHA :=
1

2
tr
(
A+ A†

)
(1.31)

The symmetry group acts on these matrices by conjugation

/χ′ = gχg−1 (1.32)

Coordinates in this formulation are therefore transformed as

χ′
A

=
1

2
trH
(
γ̃AgχBγBg

−1
)

(1.33)

Let’s find out which transformations leave the norm of a vector invariant.

First, we take a look at the squared length of the transformed vector, which is

equivalent to (
g/χg

−1
)†
γ0g/χg

−1γ0 (1.34)

1A† = Ā>, where Ā is quaternionic conjugate and > denotes transpose. We have ī = −i,
j̄ = −j and k̄ = ij = j̄ ī = ji = −k .

5



Let’s assume that

g†γ0g = γ0 (1.35)

We obtain (
g†
)−1

/χ
†γ0/χg

−1γ0 (1.36)

Using the expression for the norm of a vector we substitute ηABχ
AχBγ0 = /χ†γ0/χ

and we have

ηABχ
AχB

(
g†
)−1

γ0g
−1γ0 (1.37)

From our assumption 1.35 we find out that

g† = γ0g
−1γ0 (1.38)

has to hold. Substituting this into our calculation gives us the squared length

ηABχ
AχB, the same squared length as before the transformation. The group 1.35

is called the pseudohyperunitary group and is denoted by Sp(1, 1) or U(1, 1,H). In

this group, infinitesimal transformations X have to fulfill

X† = −γ0Xγ0 (1.39)

Explicitly, these matrices are

X =

(
k1 x

x̄ k2

)
k̄1 = −k1 k̄2 = −k2 k1, k2, x ∈ H (1.40)

This is again a 10-dimensional real vector space. By the choice of a suitable basis,

we are able to obtain the same Lie bracket as in the SO+ (1, 4) formulation and

therefore these algebras are isomorphic. This algebra is, however, much easier to

exponentiate and therefore we are able to parametrize our symmetry group.

1.2.3 Cartan decomposition of Spin(1,4) group

Now let us parametrize Sp(1, 1) using the Cartan decomposition. An introduction

to various decompositions of Lie groups can be found in [3]. To perform the Cartan

decomposition of a Lie group, we have to find the corresponding Cartan pair. We

apply the Cartan involution

Θ (g) =
(
g†
)−1

(1.41)

6



which will help us to identify the maximal compact subgroup K, which is invariant

under this involution. Using the equation of the group and the invariance under the

involution we find out that this subgroup consists of matrices with unit quaternions

on the diagonal.

k = diag (k1, k2) |k1| = |k2| = 1 k1, k2 ∈ H (1.42)

We can easily recognize the group

K = SU(2)× SU(2) = Spin(4) (1.43)

as the double cover of the rotational group in the 4-dimensional Euclidean space.

The next step is to induce an action of this involution on the Lie algebra and

identify subspaces with eigenvalues 1 and −1 denoted k and p respectively. The

action of this involution on the algebra is

ϑ (X) = −X† (1.44)

k corresponds to the diagonal imaginary matrices, whereas p consists of Hermitian

quaternion 2× 2 matrices with zeros on the diagonal.

Finally, any group element g ∈ Sp(1, 1) can be expressed as keX , where k ∈ K
and X ∈ p. In our case, X is

X =

(
0 x

x̄ 0

)
x ∈ H (1.45)

aand therefore eX is

ep 3 eX =

(
cosh |x|

2
x
|x| sinh |x|

2
x̄
|x| sinh |x|

2
cosh |x|

2

)
x ∈ H (1.46)

1.2.4 Isomorphism between real and quaternionic formula-

tion

We want to find a homomorphism between groups the Sp(1, 1) and SO+(1, 4), that

is a function g → Λ(g). We can do this by comparing the transformation laws for

slashed and non-slashed quantities. Non-slashed vector transforms as 1.10, whereas

vectors in quaternionic formulation are transformed by 1.33. The following equation

has to hold.

Λ (g)A Bχ
B =

1

2
trH
(
γ̃AgχBγBg

−1
)

(1.47)

7



From this equation we can directly read off the relation between the elements of

Sp(1, 1) and SO+(1, 4)

Λ (g)A B =
1

2
trH
(
γ̃AgγBg

−1
)

(1.48)

Notice that g and −g give the same image in SO+(1, 4). The group Sp(1, 1) is

therefore a double cover of the de Sitter group, called Spin group and denoted

Spin(1, 4). This group is very important if we want to work with particles with

half-integer spins - the fermions. In figure 1.1 we can see the action of a de Sitterian

boost on our coordinate system with two of the spatial coordinates suppressed.

1.3 Construction of invariant metric on dS(1,3)

At the beginning of this chapter we defined the de Sitter spacetime as a hypersurface

in the ambient Minkowski spacetime. However, there exists a more fundamental

definition which allows us to define the de Sitter spacetime without EFE. It is

a basic example of a homogeneous space. This space is defined as a quotient of

the transitive symmetry group with respect to its subgroup, which leaves some

point invariant, called the little group. If the little group fulfills some additional

requirements [3], the homogeneous space becomes the symmetric space. Symmetric

spaces are generalizations of flat Euclidean (or Minkowski, depending on signature

of metric) space. We would like to the find metric, which is invariant under actions

of the symmetry group on this space. In this section I follow Appendix A of [4].

A simple real Lie group G is naturally provided with a Killing metric. This

metric is obtained from the Killing form on the Lie algebra l, defined

〈 , 〉 : l× l→ R, (A,B) 7→ 〈A,B〉 = Tr [(adA) (adB)] (1.49)

where A → adA = [A, ·] is the adjoint representation. This bi-linear form is non-

degenerate iff G is semi-simple.

Now we use left translations on a Lie group generated by multiplication to pull-

back the Killing form the tangent space of identity to the tangent space at an

arbitrary point. A left translation is a diffeomorphism

Lg : G→ G, h 7→ Lg (h) = gh (1.50)

Using this map, we can define a scalar product in arbitrary group element g by

ds2 = 〈 , 〉g : TgG× TgG→ R as 〈 , 〉g = L∗g−1 〈 , 〉e (1.51)

8



Fig. 1.1: Effects of boost on coordinate system 1.3
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Now let us compute this pullback explicitly. Let ϕ (χ) be differentiable local

coordinatization of G:

ϕ : Rn ⊃ U → G (1.52)

An infinitesimal displacement dχ in U determines an infinitesimal displacement

dg = dϕ (χ) is TgG, where g = ϕ (χ). Using a left translation, we can push-forward

such a displacement to TeG by

Lg−1∗dg = g−1dg = ϕ (χ)−1 dϕχ (1.53)

It gives us a metric induced from the Killing metric.

ds2 = 〈dg, dg〉g =
〈
ϕ (χ)−1 dϕ (χ) , ϕ (χ)−1 dϕ (χ)

〉
(1.54)

If our group G is simple, an application of Schur’s lemma tells us, that we can

use any faithful representation instead of the adjoint representation. The resulting

metric differs only by a multiplicative constant. To find a metric on dS(1, 3), we

need to identify it with sub-manifold of the de Sitter group. Let us denote element

of the restricted de Sitter group as Λ. Point in de Sitter spacetime embedded in the

restricted de Sitter group is denoted as x.

A vector in de Sitter spacetime embedded in Minkowski spacetime transforms

under the de Sitter transformation as

χ′ = Λ χ (1.55)

If we consider it as an element of the group, it transform under the most natural

action of the group on itself - the adjoint action

x′ = ΛxΛ−1 (1.56)

Such actions correspond to isometries of the Killing metric. This fact is shown by

simple calculation

x′
−1

dx =
(
ΛxΛ−1

)−1
d
(
ΛxΛ−1

)
= Λx−1dxΛ−1 (1.57)

And using the cyclic property of the trace we have

Tr
[(
x′
−1

dx′
)(

x′
−1

dx′
)]

= Tr
[(

Λx−1dxΛ−1
) (

Λx−1dxΛ−1
)]

=

= Tr
[(
x−1dx

) (
x−1dx

)] (1.58)

dS(1, 3) is identified with a sub-manifold x(χ) of SO(1, 4) which transforms as

x′ = ΛxΛ−1 under the transformation χ′ = Λχ. x can be thought of as rank two

10



tensor with one covariant and one contravariant index. The most general tensor of

this type constructed from the vector χ is

xAB = αδAB + βχAχB (1.59)

This tensor belongs to SO(1, 4) iff

ηAB = xCAx
D
BηCD (1.60)

This gives us α = ±1 and β = 2α
`2

. The condition det x = 1 forces us to take the

minus sign. Therefore we have

xAB = −δAB −
2

`2
χAχB (1.61)

We can note that x2 = I , so x = x−1 and xdx+ dxx = 0. Then

Tr
(
x−1dxx−1dx

)
= Tr

(
xdxx−1dx

)
= −Tr (dxdx) (1.62)

Thus we find

ds2 = − 4

`2
Tr
[
d
(
χAχC

)
d
(
χCχB

)]
=

8

`2
ηABdχAdχB|χ2=−`2 (1.63)

because

d
(
χCχC

)
= d

(
`2
)

= 0 (1.64)

After dropping an unimportant constant 8/`2 , we see that the invariant metric on

dS(1, 3) is exactly the one inherited from the ambient Minkowski spacetime.

1.4 Killing vector fields as generators of symme-

tries

Killing vector fields are vector fields, along which the metric tensor is constant. They

are defined as solutions to a set of differential equations given by

£ξg = 0 (1.65)

If we express the Lie derivative in coordinates, we obtain the equation

∇(µξν) = 0 (1.66)

where ∇ is the Levi-Civita connection. These equations do not have solutions in

general. However, if we know the action of the isometry group of our manifold, we

11



can avoid solving this equation. We can push-forward left-invariant vector fields

on the isometry group G to our manifold and the resulting vector fields are Killing

vector fields. This approach is also used in the definition of generalized Killing vector

fields on manifold with arbitrary connection. In most cases, the algebra of Killing

vector fields is isomorphic to the Lie algebra g of G.

In our case, Killing vectors are obtained by a restriction of the action of SO(1, 4)

on the 5-dimensional Minkowski space M5. These are in fact pseudo-rotations given

by

tAB = ηCAχ
CPB − ηCBχCPA (1.67)

where PA = ∂A. We can pullback these vector fields to de Sitter space coordinatized

by 1.3. The resulting vector fields are

tµν = ηµσx
σPν − ηνσxσPµ (1.68)

tµ4 = `Pµ −
1

4`
Kµ (1.69)

Transformations generated by tµν correspond to Lorentz transformation of de Sitter

spacetime, whereas tµ4 are de Sitterian equivalents of translations. The second term,

Kµ, is a generator of proper conformal transformations

Kµ =
(
2ηµνx

νxρ − σ2δρµ
)
Pρ (1.70)

While they lost their commutativity, they retained the most important property of

translations - transitivity. The relation to ordinary translations is more obvious if

we introduce normalized transitive vector fields defined by

Πµ =
tµ4

`
= Pµ −

1

4`2
Kµ (1.71)

This can also be written as

Πµ = ξρµPρ (1.72)

where

ξµρ = δµρ −
1

4`2

(
2ηρνx

νxµ − σ2δµρ
)

(1.73)

We can notice, that these vector fields correspond to generators of translations in the

infinite pseudoradius limit. Therefore this is the direct generalization of Einstein’s

special relativity.
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2 KINEMATICS IN DS(1,3)

In this chapter I will derive a modification of variation suitable to use in de Sitter

spacetime. This modification follows from the homogeneity and isotropy of de Sitter

spacetime. I will use this modified variation to the find Euler-Lagrange equations

of a free particle. In this chapter I closely follow the article [5].

2.1 Variation of metric tensor

Variation of a quantity describes how the quantity changes when we move around

a little bit. Tensor fields can be viewed as fields of multilinear mappings, their

variation is therefore a little bit more complicated than for ordinary functions. For

example, variation of the metric tensor is given by

δgµν = g′µν (x′)− gµν (x) (2.1)

This can be rewritten as sum of a horizontal variation coming from a change of

argument

δagµν = gµν (x′)− gµν (x) (2.2)

and a vertical variation, which is given by the Lie derivative of the metric

δ0gµν = g′µν (x′)− gµν (x′) = £ξgµν (2.3)

We are interested in variations which arise if we are varying fields along transitive

Killing vector fields. First, let’s take a look at the vertical variation of a covector

field. We have

δ0
Πψµ ≡ (£Πψ)µ = −εαξγα∂γψµ − εα∂µξ γ

α ψγ (2.4)

where εα is an infinitesimal, x−independent vector. This expression can be written

as

δ0
Πψµ = −εαΠαψµ − εα (Σα) γ

µ ψγ (2.5)

with

(Σα) γ
µ = ∂µξ

γ
α (2.6)

This reminds us of a Einsteins special relativity, where these matrices are represen-

tations of the Lorentz algebra. In case of ordinary special relativity these matrices
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vanish because the generators of translations are constant. The interpretation of

these matrices in de Sitter relativity is not as obvious, because a simple calculation

will show us that Σα does not satisfy the commutation relation of de Sitter algebra.

To explore them deeper we take a look at the transformations of the metric that

they generate.

A horizontal variation of the metric is given by

δaΠgµν = εαΠαgµν (x) (2.7)

whereas the Lie derivative can be written as

δ0
Πgµν = −εαΠαgµν − εα (Σα) γ

µ gγν − εα (Σα) γ
ν gγµ (2.8)

This of course vanishes, because we are varying along Killing vector. The total

variation is therefore given by

δΠgµν = δaΠgµν + δ0
Πgµν = −εα (Σα) γ

µ gγν − εα (Σα) γ
ν gγµ (2.9)

We can substitute Σα from equation 2.6, which gives us the result of the variation

of the metric tensor

g′µν (x′) = ω2gµν (x) (2.10)

where [5]

ω2 := 1 +
εαx

α

`2
(2.11)

For the metric tensor, the Σα matrices generate infinitesimal conformal rescalings

with ω2 as conformal factor.

This variation should, however, vanish, because of the symmetry of de Sitter

spacetime. Such a transformation is just a redefinition of the origin of spacetime

and should not affect physics. If we define the conformally compensated vertical

variation as

δ̄0
Πψµ = (£Πψ)µ + εα (Σα) γ

µ ψγ (2.12)

we will obtain the vanishing variation. The second term in above definition is called

the conformal compensator. It seems it is more convenient to use this modification

variation in case of de Sitter spacetime. We can observe that we recover the original

variations in the large pseudoradius limit. These variations will be used to obtain

the conformally compensated geodesic equation, as well as conserved quantities.
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2.2 Motion of a free particle

We will use the principle of stationary proper time to obtain trajectories of a free

particle. We will use the unmodified vertical variation to show how the confor-

mal compensator appears after several algebraic manipulations. The proper time

functional is given by

S [Γ] = −mc
∫

Γ

√
gµνuµuνdλ (2.13)

where uµ = dxµ

dλ
denotes the derivative with respect to λ. This calculation would,

however, be very complicated and we can obtain equations of motions by minimizing

the related, non-square root functional which yields the same equations of motion.

This functional is given by

E [Γ] =
mc2

2

∫
Γ

gµνu
µuνdλ (2.14)

Its variation is

δE [Γ] = mc2

∫
Γ

[
1

2
δΠ (gµν)u

µdxµ + gµνu
µd (δΠ (xν))

]
(2.15)

By using the fact that differentiation commutes with variation, the variation of the

energy functional, up to a surface term which can be eliminated by fixed boundary

conditions, is

δE [Γ] = mc2

∫
Γ

[
1

2
gµν,γu

µuν − d

dλ
(gµγu

µ)

]
εαξγαdλ (2.16)

This form, however does not contain much information because it is not covariant.

To obtain a covariant form we will have to use some algebraic manipulations, which

will give us the desired result

δE [Γ] = mc2

∫
Γ

uγ
(
∇γu

β
)
ξρβερdλ (2.17)

This gives us geodesic equation

uγ
(
∇γu

β
)

= 0 (2.18)

If we rewrite this variation in terms of an anholonomic four-velocity

Uµ = ξµρu
ρ (2.19)

The conformal compensator will appear after several algebraic manipulations

δE [Γ] = mc2

∫
Γ

[
uγ∇γU

ρ − 1

2
uβuγ

(
∇βξ

ρ
γ +∇γξ

ρ
β

)]
ερdλ (2.20)
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We can write down the covariant derivative of ξ in local coordinate system

∇βξ
ρ
γ = ∂βξ

ρ
γ + Γρβαξ

α
γ − Γαβγξ

ρ
α = (Σα)β

ρ + Γρβαξ
α
γ − Γαβγξ

ρ
α (2.21)

It is obvious from 2.15 that terms containing Σ matrices correspond to conformal

compensators and should be subtracted in conformally compensated variation. Thus

we have finally obtained result

δ̄E [Γ] = mc2

∫
Γ

uγ
(
∇γU

ρ − uβ 2Γαβγxαx
ρ − Γραβxγx

α − Γραγxβx
α

4`2

)
ερdλ (2.22)

If we use the conformally compensated variation, trajectories of free particles are

given by equation

dUρ

dλ
+ ΓραγU

αuγ = uβuγ
2Γαβγxαx

ρ − Γραβxγx
α − Γραγxβx

α

4`2
(2.23)

This is equation of parallel transport of anholonomic four-velocity field along four-

velocity field and in flat limit it gives us geodesic equation as expected. However we

can feel that something is not right. The geodesic equation usually tells us that four-

velocity is being conserved along trajectory, but this equation does not yield any

conserved quantities. This is unacceptable and therefore we reject the conformally

compensated variation approach to the de Sitterian relativity. The original idea was

to find principle which allows us to modify the geodesic equation to the form

dUρ

dλ
+ ΓραγU

αuγ = 0 (2.24)

I tried to reproduce the results of the [5], however I have discovered that aforemen-

tioned article contains an error on page 8. They didn’t take into account additional

terms coming from covariant derivative, which led them to result which seemed plau-

sible, because it implied the conservation of the anholonomic four-velocity. However,

if we include these additional terms, the resulting equation does not yield any con-

served quantities, which is physically unacceptable. Kinematics in the de Sitter

spacetime is therefore governed by Einsteins original theory. If the equation 2.24

was the equation of motion of a free particle, apparent horizons would disappear

from de Sitter spacetime and it would lead to the solution of the initial value prob-

lem in inflationary cosmology. For discussion on initial value problem in cosmology

see [6].
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3 PHOTON PROPAGATION IN DS(1,3)

In this final chapter I will investigate the behavior of the electromagnetic waves in

the limit of geometrical optics. Propagation of light in a curved spacetime can be

transformed into propagation of light in a medium with continuous refractive index.

Our aim is to find the ”refractive index” for de Sitter spacetime. The refractive index

is, however, coordinate and observer dependent. We will consider an electromagnetic

field with small energy density and we neglect its gravitational effects for simplicity.

In this section, the Gaussian CGS unit system is used.

3.1 Electrodynamics in curved spacetime

In general spacetime, the Maxwell’s equations can be compactly written as

− [
√
−gF µν ],ν = 4π

c

√
−gJµ

F[µν,γ] = 0

}
(3.1)

where Jµ are sources and Fµν is the field strength tensor

Fµν = ∂µAν − ∂νAµ (3.2)

If we are interested in the coupling of the matter field to the gravity, we have to use

the EFE, Coupling of the field to the gravity is obtained through energy-momentum

tensor

T µν = − 2√
−g

δLm
δgµν

(3.3)

where Lm is the matter Lagrangian. The EFE in the presence of the matter fields

therefore are

Gµν =
8πG

c4
T µν (3.4)

We can note that the covariant divergence of left-hand side vanishes due to differ-

ential Bianchi identity. This implies that the covariant divergence of the right-hand

side of 3.4 should also vanish. This is in fact true and proof can be found in [7],

Appendix E. For an electromagnetic field we have energy-momentum tensor

T µν =
1

4πc

(
−F µγF ν

γ +
1

4
gµνF γρFγρ

)
+ gµνJρAρ (3.5)

This tensor is obtained from the Lagrangian density of an electromagnetic field

LEM =
√
−g
(
− 1

16π
FµνF

µν − AµJµ
)

(3.6)
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If we perform variation 3.3, the result is indeed 3.5. This tensor is therefore a suitable

source term in the EFE. We can note that the Maxwell’s equations 3.1 include the

determinant of the metric tensor g and this problem is quite involved in general.

However, we can consider small electromagnetic field F µν , whose gravitational effects

can be neglected. This leads to the separation of the Maxwell’s equations from

the EFE and leads to the problem of electromagnetic field on a fixed background

spacetime. This approximation is used in this chapter.

Now, let’s introduce electromagnetic 3-vectors

Ei := Fi0

Hi := 1
2

√
−gεijkF jk

Di :=
√
−gF 0i

Bi := 1
2
εijkFjk


(3.7)

Maxwell’s equations can be rewritten in terms of these vectors

−Di
,0 + εijkHk,j = 4π

c
ji

Bi
,0 + εijkEk,j = 0

Di
i = 4πρ

Bi
i = 0


(3.8)

where

ji :=
√
−gJ i

ρ :=
√
−g J0

c

}
(3.9)

The relations amongst E, D, H and B, called constitutive equations, are obtained

from [8]

√
−gF µν =

√
−ggµρgνσFρσ

Fµν = 1√
−ggµρgνσ

√
−gF ρσ

}
(3.10)

We define 3-dimensional metric used to lower and raise indices of 3-vectors as

eij = −gij +
gi0gj0
g00

(3.11)

Obtained constitutive equations are

Di = Ei + σijEj + εijkgjHk

Bi = H i + σijHj − εijkgjEk

}
(3.12)

where

σij := −
√
−g
g00

gij − δij

gi :=
gi0
g00

(3.13)
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Constitutive equations are usually additional information obtained either empirically

or theoretically. In this case, constitutive equation are of purely geometrical origin,

they encode information about four-dimensional metric. We can notice that due to

the diffeomorphism invariance, we can always choose such a frame of reference that

gi = 0 and no mixing of electric and magnetic fields occur. We can note, that in the

case of asymptotically flat spacetime gµν tends to ηµν at infinity. εij and gi vanish

in this case and the constitutive equations reduce to

Di = Ei

Bi = H i

}
(3.14)

Let’s also express the components of the energy-momentum tensor density

4πc
√
−gT0

0 =
1

2

(
DiEi +BiHi

)
+ 4π

(
J0A0 − cJ iAi

)
4πc
√
−gT0

i = εijkEjHk

4πc
√
−gTi0 = εijkD

jBk

4πc
√
−gTj i = −1

2
δj
i
(
DkEk +BkHk

)
+ 4πδj

i
(
J0A0 − cJkAk

)
+ EjD

i +HjB
i

(3.15)

3.2 Geometrical optics in de Sitter spacetime

If we want to apply the geometrical optics limit in flat spacetime, the following

condition has to hold

λ� ` (3.16)

where ` is the characteristic size of the system and λ is the wavelength. If these

conditions are fulfilled, any wave-optics quantity is given by the formula,

A = aeiφ (3.17)

where a is a slowly varying amplitude, which is a function of space and time coordi-

nates (first and higher order derivatives can be neglected), whereas φ is the eikonal,

an almost linear function of space and time coordinates (second and higher order

derivatives can be neglected). The following equations hold

φ,0 = ω

φ,i = −ki

}
(3.18)
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where ω is the angular frequency and ki is the wave vector. In this section, it is

convenient to use a different coordinate system [9]

x0 = ` log
χ0 + χ1

`

xi =
`χi+1

χ0 + χ1

(3.19)

In these coordinates, the line element has a very useful form

ds2 =
(
dx0
)2 − n2δijdx

idxj (3.20)

with

n := exp

(√
Λc

3
x0

)
(3.21)

We will assume the covariant Lorenz gauge1 of the electromagnetic four-potential

∇µA
µ = 0 (3.22)

The Maxwell’s equation in this gauge is [10]

�Aµ −Rµ
νA

ν = 0 (3.23)

where � is the covariant d’Alembert operator

� = gµν∇µ∇ν (3.24)

We can substitute the Ricci tensor of the de Sitter spacetime into Maxwell’s equation

�Aµ + ΛcA
µ = 0 (3.25)

The term involving the cosmological constant looks like a mass term. The Maxwell’s

equations in four dimension are however conformally invariant and de Sitter space-

time is conformally flat. The photons will therefore move on the lightcone, which im-

plies vanishing mass. This term therefore should not be considered as a background

dependent mass of the photon. For an extensive discussion about the curvature-

related mass term see [11].

Assuming a massless photon field in the geometrical optics limit 3.17, we are

looking for a four-potential

Aµ = aµ exp (ikνx
ν) (3.26)

1This gauge condition is named after a Danish physicist Ludvig Lorenz. In literature, it is often

misspelled as ”Lorentz” gauge, because it actually is Lorentz invariant. Hendrik Lorentz however

did not introduce this gauge condition.
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This leads us to the dispersion relation

ω (k) =
c

n

√
k2 + n2Λc (3.27)

Considering that

n
√

Λc ∼ `−1 (3.28)

and remembering that k ∼ λ−1, the condition 3.16 turns out to be

k � n
√

Λc (3.29)

In this domain, the dispersion relation has a very simple form

ω (k) =
c

n
k (3.30)

The velocity of propagation of electromagnetic waves is given by the group velocity

v :=
dω (k)

dk
=
c

n
(3.31)

We can note that the speed of light decreases with time, which leads to red shift

which is often observed in light coming from very distant objects. In the limit of

vanishing cosmological constant, we have n → 1 and the electromagnetic waves

propagate at the speed of light.
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4 CONCLUSION

In this thesis, I have studied the changes which are brought to kinematics and

electrodynamics when curvature is introduced. I have successfully studied and

parametrized the symmetry group of de Sitter spacetime and its action on a con-

formally flat coordinate system. In these coordinates, the action of the de Sitter

algebra is very similar to the action of the Poincaré algebra. The only difference

is that the transitive transformations contain an extra coordinate-dependent term

depending on the inverse square of the pseudoradius. This coordinate dependence

lures us to think that the notion of motion should be changed by addition of confor-

mal compensator. This modification however does not give the desired results and

I have to conclude, that the kinematics in de Sitter spacetime is ruled by Einsteins

theory. In the last chapter I have studied the connection between electrodynamics in

a curved spacetime and electrodynamics in a macroscopic material in flat spacetime.

Using this connection, I have found the ”refractive index” of de Sitter spacetime.
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