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ABSTRACT

In this thesis we study de Sitterian special relativity, which takes place in de Sitter
spacetime instead of Minkowski spacetime. We start with study of the symmetry group of
de Sitter spacetime. We try to use these results to develop kinematics in this spacetime.
We also review connection between electrodynamics on fixed background spacetime and
electrodynamics in macroscopic media in flat spacetime. We apply this on de Sitter
spacetime and find refractive index of associated macroscopic media.

KEYWORDS

de Sitter spacetime, kinematics, Lie groups, special relativity, electrodynamics , refractive
index

ABSTRAKT

V této praci se zabyvame de Sitterovou specidlni relativiou, kterd se odehrava v de Sit-
terové Casoprostoru namisto Minkowského Casoprostoru. Zaéindme studii grupy syme-
trie de Sitterova fasoprostoru. SnaZime se pouZit tyto poznatky k rozvinuti kine-
matiky v de Sitterové Casoprostoru. Dale p¥ezkoumdvdme spojeni mezi elektrody-
namikou na pevné zvoleném Casoprostoru a elektrodynamikou v makroskopickém médiu
v plochém &asoprostoru. Toto aplikujeme na de Sitteriiv ¢asoprostor a hleddme index
lomu sdruZeného média.
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Coordinates in 5-dimensional Minkowski spacetime
Vertical variation

Vertical variation with respect to &
Horizontal variation

Horizontal variation with respect to &
Pseudoradius

Totally antisymmetric tensor density, €103 = 1
Metric of Minkowski spacetime
Levi-Civita connection

Basis of Clifford algebra

O(1,4) transformation

Cosmological constant

Lie algebras

Matter lagrangian density

Covariant derivative

de Sitterian energy-momentum tensor
de Sitterian momentum

Generator of generalized translations
Lie derivative

Charge density

Spin matrices

Covariant d’Alembert operator
Cartan involution of Lie group

Cartan involution of Lie algebra

X



Four-potential

B Magnetic induction

Di Electric induction

E; Electric intensity

v Field strength tensor

G Einstein tensor

v Metric tensor

H; Magnetic intensity

JH Current four-vector

3t Electric current

K Proper conformal current

K, Generator of proper conformal transformations

k, Wave four-vector

n Refractive index

P, Generator of translations

R Scalar curvature

R, Riccei tensor

TH Energy-momentum tensor

x Coordinates on de Sitter spacetime
I will be using west coast metric (4, —, —, ...).

e 5-dimensional indices will be denoted by capital Latin letters A, B, ... and will

run from 0 to 4.

e 4-dimensional indices will be denoted by Greek letter v, 3, ... and will run from

0 to 3.

e 3-dimensional indices will be denoted by small Latin letters a,b,... and will

run from 1 to 3.



INTRODUCTION

Just like Newtonian mechanics was replaced by special relativity when the invariance
of the speed of light appeared in Maxwell’s equations, there exists a generalization
of special relativity which also admits a invariant length parameter. Such a length
parameter is for example the cosmological constant. In fact, an invariant length pa-
rameter is present in the special relativity as well, but it is easy to overlook, because
it is infinite. If we want this parameter to be finite, we must replace Minkowski
spacetime with de Sitter one. De Sitter spacetime is defined as a one sheeted hy-
perboloid embedded in 5-dimensional Minkowski spacetime and its invariant length
parameter is its pseudoradius. In this thesis we will discuss changes which arise when
we replace Minkowskian relativity with de Sitterian one. In the first chapter we will
construct de Sitter spacetime and its metric and talk about its symmetries and sym-
metry group. We will find the explicit form of an arbitrary de Sitter transformation
using the elegant isomorphism between quaternionic matrices and 5-dimensional
Minkowski spacetime. In the second chapter we will discuss the notion of tran-
sitivity in de Sitter spacetime, which is changed significantly, as compared to the
Minkowski spacetime. With this change comes also a change in the Euler-Lagrange
equations and the Noether currents. The change in the Euler-Lagrange equations
will modify every equation of motion obtained from the action principle, such as
the geodesic equation. Modified Noether currents lead to the different conservation
laws. We will observe that the correction term depends on the pseudoradius and we
are able to recover the ordinary special relativity in the infinite pseudoradius limit.
In the third chapter we will take a look at the propagation of electromagnetic waves.
We will use the fact, that we are able to convert the problem of the electromagnetic
wave propagation in a curved spacetime into propagation in a refractive media in
the Minkowski spacetime, which will lead to an interesting results. The propagation
speed of electromagnetic waves is actually different from the physical constant speed
of light.

X1



1 DESITTER SPACETIME AND ITS SYMME-
TRIES

The aim of this chapter is to present de Sitter spacetime and explore its geometrical
properties and symmetry group, which will help us to define kinematics in this

spacetime later on.

1.1 De Sitter hyperboloid

The de Sitter hyperboloid dS(1,3) is a hypersurface of 5-dimensional Minkowski

spacetime given by the equation

napxx? = -1 (1.1)

where [ is the pseudoradius, a length parameter invariant under de Sitter trans-
formations. Using basic differential geometry and the fact that de Sitter space is
maximally symmetric, we are able to relate this pseudoradius to the cosmological

constant using the Einstein field equations (EFE). The resulting relation is given by

3
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(1.2)

This allows us to inspect our theory in various limits, mainly in the flat limit, which
should lead to Einstein’s special relativity.

The biggest difference between Minkowski and de Sitter space is that de Sitter
space does not have a preferred coordinate system. The most important thing in
de Sitter special relativity is therefore choice the of a coordinate system, in which
we will be able to find similarities with Einstein’s special relativity. I will use the

coordinate system introduced in [1]. This coordinate system is given by

X = Qx)zH
A 2 (1.3)
=00 (14 2)
where
Q(z) ! (1.4)
r) = ——— :
1— o02/402
o? =, a"z" (1.5)
The induced metric in this coordinate system is
G = 2 (2)1,0 (1.6)



This coordinate patch is conformally equivalent to Minkowski spacetime and there-
fore we expect that kinematics in this coordinate system will have nice properties.
This later turns out to be true.

Rewriting the equation for de Sitter spacetime in form

2@t (x) =1 (L.7)

where y'* is a dimensionless coordinate we can see that for a infinite pseudoradius,

which corresponds to a vanishing cosmological constant, we obtain

14

=1 (1.8)

which defines 4-dimensional Minkowski hyperspace as expected.

1.2 Symmetry group of dS(1,3)

The symmetry group of de Sitter spacetime is a group, which sends a point from
de Sitter spacetime to another point in de Sitter spacetime. It clearly has to leave

equation invariant. In matrix notation, this equation is

X' nx =~ (1.9)

If we transform vectors by a linear transformation A, we the obtain vector
A
VA = Mpy® (1.10)
and we the get equation

(AX) "7 (Ax) = —¢2 (1.11)

This gives us an equation for matrices belonging to the symmetry group of de Sitter

spacetime
ATpA =7 (1.12)

This group is called de Sitter group and we will denote it O(1,4). Let’s take a look
at these matrices.

By taking the determinant of the equation we find out, that
det (A)? =1 (1.13)

When we take a look at the equation for the A%, we get

2

(M) = 1 (A%0)" 4 (A%)" + (%) + (A%) (1.14)



And therefore we can also choose the sign of A%. Transformations with negative
sign reverse the time flow. We can see that there is no continuous way to change
the determinant of the matrix from —1 and 1 and sign of A% from — to +. This
tells us that the de Sitter group has (at least) four connected components. However,
only one of these connected components is a subgroup, namely the one with positive
determinant and sign of A%. We will denote this subgroup SO™ (1,4). It is called
the restricted de Sitter group. The parametrization of this group would require
solving a set of 10 quadratic equations for 20 unknowns. We are not able to do it

directly, so we have to find smart way to do it.

1.2.1 De Sitter algebra

Let’s take a look on infinitesimal de Sitter transformations. These transformations

have the form
A=T+eX+0 (&) (1.15)

By inserting this into the equation for de Sitter group we find out, that X has to
satisfy the equation

X' = —nXxn! (1.16)

These transformations have one upper and one lower index. In indices, this

equation has the form
(XT), 7 = —nacX“pn"? (1.17)

These matrices form a 10-dimensional vector space denoted so (1,4), hence every
element of this space can be obtained as linear combination of basis elements. To
find this subspace, it is convenient to define a basis of the linear space of matrices.

This basis is given by
(ecP)" 5 = 6453 (1.18)
Multiplication is defined by
(ccPes™) " 5= (ec®) " ¢ (es") 5 =08 (ec™) " 5 (1.19)
Now we define matrices with lower indices as

(ecp)” B = 6" cnpE (1.20)



It is easy to see that in this case the result of a matrix multiplication is

€cpD€EF = NEDECF (1-21)

Using these relations, we find that the linear subspace is generated by antisymmetric

matrices with lower indices

lap = €aB — €pa (1.22)

On this space, we are able to define another operation, called Lie bracket or com-

mutator, defined as
(X, Y]=XY -YX X,Y €s0(1,4) (1.23)

By inserting this expression into the equation of our vector space we find out that
this indeed lies inside and therefore corresponds to some other infinitesimal transfor-
mation Z. This promotes the space of infinitesimal transformations to a Lie algebra.

An easy calculation for basis elements gives us the result

[tap,tcp] = Neotap + Naptse — Nactsp — Neptac (1.24)

We are able to obtain group elements by exponentiating elements of the algebra.

1.2.2 De Sitter spacetime in terms of quaternionic matrices

To perform exponentiation, we will use a representation of 5-dimensional Minkowski
spacetime using Clifford algebra. To a vector xy we assign the quaternionic matrix

Yax” denoted ¥.
Y=x"a  X'E€R  q4 € Matsy (H) (1.25)
The v matrices satisfy an anticommutation relations

{74,785} = 2naBlaxo Ya,7B € Matayo (H) (1.26)

We define ”conjugated” ~ matrices as

YA = Y0740 (1.27)



Indices on v matrices are raised and lowered with 72, In this thesis, we will use

an explicit representation in which v matrices are [2]
(1 0]
Yo = 0 —1
O
=0

é) (1.28)

Y2 =

V3=

(0 1
VY4 = 10
/

The squared length of x is in this formulation is given as

™ O . O
o o .
~_

napX X lawa = XY (1.29)

and the coordinates y“ are given by

I
x*t =St (71%) (1.30)
where [
trgA = %tr (A+ A (1.31)

The symmetry group acts on these matrices by conjugation

X' =gxg" (1.32)
Coordinates in this formulation are therefore transformed as

a1 - _
X" = St (F*axPysg7") (1.33)

Let’s find out which transformations leave the norm of a vector invariant.
First, we take a look at the squared length of the transformed vector, which is
equivalent to
iy _
(9%97") "v09%9 0 (1.34)

1At = AT, where A is quaternionic conjugate and T denotes transpose. We have i = —i,

j=—jandk =1ij = ji=ji = —k.



Let’s assume that

99 = (1.35)
We obtain
1 _
(9" XT%XQ "0 (1.36)

Using the expression for the norm of a vector we substitute napx4x%v = XWOX

and we have

—1 _
nasx" X7 (9") " %097 % (1.37)
From our assumption we find out that
9" =90 (1.38)

has to hold. Substituting this into our calculation gives us the squared length
napXx?Z, the same squared length as before the transformation. The group
is called the pseudohyperunitary group and is denoted by Sp(1,1) or U(1,1,H). In

this group, infinitesimal transformations X have to fulfill

X = =X (1.39)
Explicitly, these matrices are
X = (_1 x) ]%1 = —k ]%2 = —ko ki,ko,x € H (1.40)
T kg

This is again a 10-dimensional real vector space. By the choice of a suitable basis,
we are able to obtain the same Lie bracket as in the SO* (1,4) formulation and
therefore these algebras are isomorphic. This algebra is, however, much easier to

exponentiate and therefore we are able to parametrize our symmetry group.

1.2.3 Cartan decomposition of Spin(1,4) group

Now let us parametrize Sp(1, 1) using the Cartan decomposition. An introduction
to various decompositions of Lie groups can be found in [3]. To perform the Cartan
decomposition of a Lie group, we have to find the corresponding Cartan pair. We

apply the Cartan involution

0(g) = (4" (1.41)



which will help us to identify the maximal compact subgroup K, which is invariant
under this involution. Using the equation of the group and the invariance under the
involution we find out that this subgroup consists of matrices with unit quaternions

on the diagonal.
k = diag (k1, k2) |k1| = |ko| =1 ki, ke € H (1.42)
We can easily recognize the group
K =SU(2) x SU(2) = Spin(4) (1.43)

as the double cover of the rotational group in the 4-dimensional Euclidean space.

The next step is to induce an action of this involution on the Lie algebra and
identify subspaces with eigenvalues 1 and —1 denoted ¢ and p respectively. The
action of this involution on the algebra is

J(X)=—-XT (1.44)

¢ corresponds to the diagonal imaginary matrices, whereas p consists of Hermitian
quaternion 2 X 2 matrices with zeros on the diagonal.

Finally, any group element g € Sp(1,1) can be expressed as keX, where k € K
and X € p. In our case, X is

X = <2 g) v € H (1.45)

aand therefore e¥ is

cosh 2 = ginh 2l
et = ( 2 2] 2 reH (1.46)

Z ginh 12l cosh 2
|z| 2 2

1.2.4 Isomorphism between real and quaternionic formula-
tion

We want to find a homomorphism between groups the Sp(1,1) and SO*(1,4), that
is a function ¢ — A(g). We can do this by comparing the transformation laws for
slashed and non-slashed quantities. Non-slashed vector transforms as [1.10, whereas

vectors in quaternionic formulation are transformed by [1.33] The following equation
has to hold.

1 .
Ag)* pxP = Strn (79x p97") (1.47)



From this equation we can directly read off the relation between the elements of

Sp(1,1) and SO™(1,4)

1 - _
A (Q)AB = §tfH ('YAQ'VBQ 1) (1.48)

Notice that g and —g give the same image in SO (1,4). The group Sp(1,1) is
therefore a double cover of the de Sitter group, called Spin group and denoted
Spin(1,4). This group is very important if we want to work with particles with
half-integer spins - the fermions. In figure [I.1) we can see the action of a de Sitterian

boost on our coordinate system with two of the spatial coordinates suppressed.

1.3 Construction of invariant metric on dS(1,3)

At the beginning of this chapter we defined the de Sitter spacetime as a hypersurface
in the ambient Minkowski spacetime. However, there exists a more fundamental
definition which allows us to define the de Sitter spacetime without EFE. It is
a basic example of a homogeneous space. This space is defined as a quotient of
the transitive symmetry group with respect to its subgroup, which leaves some
point invariant, called the little group. If the little group fulfills some additional
requirements [3], the homogeneous space becomes the symmetric space. Symmetric
spaces are generalizations of flat Euclidean (or Minkowski, depending on signature
of metric) space. We would like to the find metric, which is invariant under actions
of the symmetry group on this space. In this section I follow Appendix A of [4].

A simple real Lie group G is naturally provided with a Killing metric. This

metric is obtained from the Killing form on the Lie algebra [, defined

(,):IxI—=>R, (A B)— (A B) =Tr[(adA) (adB)] (1.49)

where A — adA = [A, ] is the adjoint representation. This bi-linear form is non-
degenerate iff G is semi-simple.

Now we use left translations on a Lie group generated by multiplication to pull-
back the Killing form the tangent space of identity to the tangent space at an

arbitrary point. A left translation is a diffeomorphism
Ly:G— G ,h— L, (h)=gh (1.50)
Using this map, we can define a scalar product in arbitrary group element g by

(1.51)

e

d52:(,>g:TngTgG—>Ras (,)g=Lya ()
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Fig. 1.1: Effects of boost on coordinate system



Now let us compute this pullback explicitly. Let ¢ (x) be differentiable local

coordinatization of G:
e:R"DOU =G (1.52)

An infinitesimal displacement dy in U determines an infinitesimal displacement
dg = dy (x) is T,G, where g = ¢ (). Using a left translation, we can push-forward
such a displacement to T,.G by

Ly-1.dg =g 'dg = ¢ (x) " dpx (1.53)

It gives us a metric induced from the Killing metric.

ds® = (dg,dg), = (¢ ()" de (x) . ()" de (X)) (1.54)

If our group G is simple, an application of Schur’s lemma tells us, that we can
use any faithful representation instead of the adjoint representation. The resulting
metric differs only by a multiplicative constant. To find a metric on dS(1,3), we
need to identify it with sub-manifold of the de Sitter group. Let us denote element
of the restricted de Sitter group as A. Point in de Sitter spacetime embedded in the
restricted de Sitter group is denoted as x.

A vector in de Sitter spacetime embedded in Minkowski spacetime transforms

under the de Sitter transformation as
X' = Ax (1.55)

If we consider it as an element of the group, it transform under the most natural

action of the group on itself - the adjoint action
' = AzA™? (1.56)

Such actions correspond to isometries of the Killing metric. This fact is shown by

simple calculation
e = (AJJA*I)_l d (AzA™") = Az da AT (1.57)

And using the cyclic property of the trace we have

Tr [(x’_ldx'> <x’_1dx')] =Tr [(Az7'dzA™") (Az~'dzA™Y)] =

(1.58)
=Tr [($_1d$> (x_ldx)}

dS(1,3) is identified with a sub-manifold z(x) of SO(1,4) which transforms as

2’ = AzA~! under the transformation y' = Ay. z can be thought of as rank two

10



tensor with one covariant and one contravariant index. The most general tensor of

this type constructed from the vector y is
a'p =ad's + Bx s (1.59)

This tensor belongs to SO(1,4) iff

nas = 42" gnep (1.60)

2c

This gives us a = 1 and 8 = 7. The condition detz = 1 forces us to take the

minus sign. Therefore we have

2
i = —04p — g—QXAXB (1.61)

We can note that 22 =1, so z = 27! and zdz + dzax = 0. Then

Tr (z~'dzz~'dz) = Tr (zdza™'dz) = —Tr (dzdz) (1.62)
Thus we find
4 8
ds? = —E—ZTr [d(XAXc) d(XCXB)} = K—QT]ABdXAdXB|X2:,p (1.63)
because
d(x“xc) =d(?) =0 (1.64)

After dropping an unimportant constant 8/¢*, we see that the invariant metric on

dS(1,3) is exactly the one inherited from the ambient Minkowski spacetime.

1.4 Killing vector fields as generators of symme-

tries

Killing vector fields are vector fields, along which the metric tensor is constant. They

are defined as solutions to a set of differential equations given by
Leg=0 (1.65)
If we express the Lie derivative in coordinates, we obtain the equation
V@ =0 (1.66)

where V is the Levi-Civita connection. These equations do not have solutions in

general. However, if we know the action of the isometry group of our manifold, we

11



can avoid solving this equation. We can push-forward left-invariant vector fields
on the isometry group G to our manifold and the resulting vector fields are Killing
vector fields. This approach is also used in the definition of generalized Killing vector
fields on manifold with arbitrary connection. In most cases, the algebra of Killing
vector fields is isomorphic to the Lie algebra g of G.

In our case, Killing vectors are obtained by a restriction of the action of SO(1,4)
on the 5-dimensional Minkowski space M. These are in fact pseudo-rotations given
by

tap = ncax® Ps — nesx© Pa (1.67)

where Py = d4. We can pullback these vector fields to de Sitter space coordinatized
by [I.3] The resulting vector fields are

tw = mwg;UPV — nVUxUP# (168)
1
t#4 = EPM - @KH (169)

Transformations generated by ¢,, correspond to Lorentz transformation of de Sitter
spacetime, whereas t,4 are de Sitterian equivalents of translations. The second term,
K

u, 1s a generator of proper conformal transformations

K, = (2nua"z" — 02(5z) P, (1.70)

While they lost their commutativity, they retained the most important property of
translations - transitivity. The relation to ordinary translations is more obvious if

we introduce normalized transitive vector fields defined by

t 1

I, = %4 ST (1.71)
This can also be written as
I, = &P, (1.72)
where
g = 0 — o (2 — 0%3) (173

We can notice, that these vector fields correspond to generators of translations in the
infinite pseudoradius limit. Therefore this is the direct generalization of Einstein’s

special relativity.
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2 KINEMATICS IN DS(1,3)

In this chapter I will derive a modification of variation suitable to use in de Sitter
spacetime. This modification follows from the homogeneity and isotropy of de Sitter
spacetime. I will use this modified variation to the find Euler-Lagrange equations

of a free particle. In this chapter I closely follow the article [5].

2.1 Variation of metric tensor

Variation of a quantity describes how the quantity changes when we move around
a little bit. Tensor fields can be viewed as fields of multilinear mappings, their
variation is therefore a little bit more complicated than for ordinary functions. For

example, variation of the metric tensor is given by

5guu = g:w ([L',) — Guv ("L‘) (2'1)

This can be rewritten as sum of a horizontal variation coming from a change of

argument
0“Guv = G (2') = Gy () (2.2)
and a vertical variation, which is given by the Lie derivative of the metric
509W = g:w (z') — Guv (2) = LeGuw (2.3)

We are interested in variations which arise if we are varying fields along transitive
Killing vector fields. First, let’s take a look at the vertical variation of a covector

field. We have

5101¢u = (£Hw)u = —605357% — € ufa’yqﬂ’y (2'4)

where €“ is an infinitesimal, x—independent vector. This expression can be written

as
5%77% = —e"Ilath, — € (EQ)J (U (2.5)
with

(Ea),ﬁ = aﬂga’y (2.6)

This reminds us of a Einsteins special relativity, where these matrices are represen-

tations of the Lorentz algebra. In case of ordinary special relativity these matrices

13



vanish because the generators of translations are constant. The interpretation of
these matrices in de Sitter relativity is not as obvious, because a simple calculation
will show us that Y, does not satisfy the commutation relation of de Sitter algebra.
To explore them deeper we take a look at the transformations of the metric that
they generate.

A horizontal variation of the metric is given by

g = €119, () (2.7)
whereas the Lie derivative can be written as

(67

g = =€ Magu — € (2a),” 9w — € (2a),” 971 (2.8)

This of course vanishes, because we are varying along Killing vector. The total

variation is therefore given by

O = 0w + 51()Ig/w = —¢" (EG)J G — € (Za),” Gyu (2.9)

We can substitute X, from equation [2.6] which gives us the result of the variation

of the metric tensor

I (@) = WGy (2) (2.10)
where [5]
€T
Wwi=14 7~ (2.11)

For the metric tensor, the ¥, matrices generate infinitesimal conformal rescalings
with w? as conformal factor.

This variation should, however, vanish, because of the symmetry of de Sitter
spacetime. Such a transformation is just a redefinition of the origin of spacetime
and should not affect physics. If we define the conformally compensated vertical

variation as

oty = (£0v), + € (), ¥y (2.12)

we will obtain the vanishing variation. The second term in above definition is called
the conformal compensator. It seems it is more convenient to use this modification
variation in case of de Sitter spacetime. We can observe that we recover the original
variations in the large pseudoradius limit. These variations will be used to obtain

the conformally compensated geodesic equation, as well as conserved quantities.

14



2.2 Motion of a free particle

We will use the principle of stationary proper time to obtain trajectories of a free
particle. We will use the unmodified vertical variation to show how the confor-
mal compensator appears after several algebraic manipulations. The proper time

functional is given by

Sl = —mc/F VG urdA (2.13)

where u# = % denotes the derivative with respect to A. This calculation would,
however, be very complicated and we can obtain equations of motions by minimizing
the related, non-square root functional which yields the same equations of motion.

This functional is given by

2
El] = ﬁ/guyu”u”d/\ (2.14)
2 Jr
Its variation is
1
JET] = ch/F [5511 (gu) uda” + gutd (0n (x”))} (2.15)

By using the fact that differentiation commutes with variation, the variation of the
energy functional, up to a surface term which can be eliminated by fixed boundary

conditions, is

SE[T] = mc? /

r

1 ,d .
kgumu”u 0 (g,wu“)} €“€ldA (2.16)

This form, however does not contain much information because it is not covariant.
To obtain a covariant form we will have to use some algebraic manipulations, which

will give us the desired result

SF [I'] = mc? / u? (Vou”) Ehe,dX (2.17)

r
This gives us geodesic equation
u' (Vyu?) =0 (2.18)
If we rewrite this variation in terms of an anholonomic four-velocity
Ut =¢&hu? (2.19)

The conformal compensator will appear after several algebraic manipulations

SE ] = mc? /

1
{u”’VWUp - §u6u7 (V€L + V£5) | €pd (2.20)
r
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We can write down the covariant derivative of £ in local coordinate system

Vﬁgs = 8[3{5 + Fpﬁa&fj - Faﬁ’ygg = (Za)g P+ Fpﬁaég - Fa,@'ygg (221)

It is obvious from that terms containing > matrices correspond to conformal
compensators and should be subtracted in conformally compensated variation. Thus

we have finally obtained result

_ o0y g0z — DPppr a® — [P aa®
SE ] = me / w (vap—uﬂ br%a? ol xhid: i )epd/\ (2.22)
r

402

If we use the conformally compensated variation, trajectories of free particles are

given by equation

dur
— + ljmeo‘u7 = P

dA

2% wox? — I'P gy a® — I'P o wgr®

. (2.23)

This is equation of parallel transport of anholonomic four-velocity field along four-
velocity field and in flat limit it gives us geodesic equation as expected. However we
can feel that something is not right. The geodesic equation usually tells us that four-
velocity is being conserved along trajectory, but this equation does not yield any
conserved quantities. This is unacceptable and therefore we reject the conformally
compensated variation approach to the de Sitterian relativity. The original idea was

to find principle which allows us to modify the geodesic equation to the form

dU®
o T Ut =0 (2.24)

I tried to reproduce the results of the [5], however I have discovered that aforemen-
tioned article contains an error on page 8. They didn’t take into account additional
terms coming from covariant derivative, which led them to result which seemed plau-
sible, because it implied the conservation of the anholonomic four-velocity. However,
if we include these additional terms, the resulting equation does not yield any con-
served quantities, which is physically unacceptable. Kinematics in the de Sitter
spacetime is therefore governed by Einsteins original theory. If the equation
was the equation of motion of a free particle, apparent horizons would disappear
from de Sitter spacetime and it would lead to the solution of the initial value prob-
lem in inflationary cosmology. For discussion on initial value problem in cosmology
see [6].
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3 PHOTON PROPAGATION IN DS(1,3)

In this final chapter I will investigate the behavior of the electromagnetic waves in
the limit of geometrical optics. Propagation of light in a curved spacetime can be
transformed into propagation of light in a medium with continuous refractive index.
Our aim is to find the "refractive index” for de Sitter spacetime. The refractive index
is, however, coordinate and observer dependent. We will consider an electromagnetic
field with small energy density and we neglect its gravitational effects for simplicity.

In this section, the Gaussian CGS unit system is used.

3.1 Electrodynamics in curved spacetime

In general spacetime, the Maxwell’s equations can be compactly written as

NN LN
’ (3.1)
vy =0
where J# are sources and F),, is the field strength tensor
F,,=0,A,—0,A, (3.2)

If we are interested in the coupling of the matter field to the gravity, we have to use
the EFE, Coupling of the field to the gravity is obtained through energy-momentum
tensor

2 0L,
V909

where £, is the matter Lagrangian. The EFE in the presence of the matter fields

T = (3.3)

therefore are

&G
~ T

e T (3.4)

C

We can note that the covariant divergence of left-hand side vanishes due to differ-
ential Bianchi identity. This implies that the covariant divergence of the right-hand
side of should also vanish. This is in fact true and proof can be found in [7],

Appendix E. For an electromagnetic field we have energy-momentum tensor

1 1
™= — (_FwF% + 19“”F””3Fw) +g"JPA, (3.5)

- 4re

This tensor is obtained from the Lagrangian density of an electromagnetic field

1
Lem =+V—g (_EFWFW - AMJM) (3-6)
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If we perform variation[3.3] the result is indeed [3.5] This tensor is therefore a suitable
source term in the EFE. We can note that the Maxwell’s equations [3.1] include the
determinant of the metric tensor g and this problem is quite involved in general.
However, we can consider small electromagnetic field F'*, whose gravitational effects
can be neglected. This leads to the separation of the Maxwell’s equations from
the EFE and leads to the problem of electromagnetic field on a fixed background
spacetime. This approximation is used in this chapter.

Now, let’s introduce electromagnetic 3-vectors

E; = Fp
H; = 1/=geij F*
ARG (3.7)
D' = /—gF"
Bi = %Eiijjk )
Maxwell’s equations can be rewritten in terms of these vectors
—Dig+ eiijk,j _ 4T7rjz“
B'o+€ijpbl; =0 (3.8)
D¢, =A4mp
Bii =0 )
where
o= /—gJ"
! gﬁ} (3.9)
p =9

The relations amongst £, D, H and B, called constitutive equations, are obtained
from [§]

V=gF" = \/—gg" 9" F,,
" (3.10)

1
Fu = V—g9up9vov —gF??
We define 3-dimensional metric used to lower and raise indices of 3-vectors as
gi0gjo0

€ij = —9ij + . (3.11)

Obtained constitutive equations are

D! =FE'+0VE; +¢*gH
| e (3.12)
B* =H'+0"H; — e”kngk
where
v Y
Oij = —~—Gij — 0ij
Yoo (3.13)
. Gio
9i = —
9oo
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Constitutive equations are usually additional information obtained either empirically
or theoretically. In this case, constitutive equation are of purely geometrical origin,
they encode information about four-dimensional metric. We can notice that due to
the diffeomorphism invariance, we can always choose such a frame of reference that
g; = 0 and no mixing of electric and magnetic fields occur. We can note, that in the
case of asymptotically flat spacetime g,, tends to 7,, at infinity. €; and g; vanish

in this case and the constitutive equations reduce to
Di — Ez
, . (3.14)
B'L — HZ
Let’s also express the components of the energy-momentum tensor density
1 ) ) )
Are/—gTy° = 5 (DZEi + BZHZ-) + 47 (JOAO — cJ’Ai)
drer/—gTy' = 7" E; H,
47rc\/—gT,~0 = eijijBk
) 1. . ) .
dme/=gTy' = =50 (D*Ey, + B*H,) + 4r6;' (J°A° — ¢J*Ay) + E;D' + H; B’
(3.15)

3.2 Geometrical optics in de Sitter spacetime

If we want to apply the geometrical optics limit in flat spacetime, the following

condition has to hold
ALY (3.16)

where ¢ is the characteristic size of the system and A\ is the wavelength. If these

conditions are fulfilled, any wave-optics quantity is given by the formula,
A = ae™ (3.17)

where a is a slowly varying amplitude, which is a function of space and time coordi-
nates (first and higher order derivatives can be neglected), whereas ¢ is the eikonal,
an almost linear function of space and time coordinates (second and higher order

derivatives can be neglected). The following equations hold

ZO Zik} (3.18)
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where w is the angular frequency and k; is the wave vector. In this section, it is

convenient to use a different coordinate system [9)

04 41
2% = (log XX —; X
. 3.19)
; gXH—l (
=0
X" tX

In these coordinates, the line element has a very useful form

ds? = (daco)2 — n?6;;da'da? (3.20)

n = exp (@mo) (3.21)

We will assume the covariant Lorenz gaugeﬂ of the electromagnetic four-potential

with

VA" =0 (3.22)
The Maxwell’s equation in this gauge is [10]
OA* — RF,AY =0 (3.23)
where [ is the covariant d’Alembert operator
O=g"V,V, (3.24)
We can substitute the Ricci tensor of the de Sitter spacetime into Maxwell’s equation
OA* + A A" =0 (3.25)

The term involving the cosmological constant looks like a mass term. The Maxwell’s
equations in four dimension are however conformally invariant and de Sitter space-
time is conformally flat. The photons will therefore move on the lightcone, which im-
plies vanishing mass. This term therefore should not be considered as a background
dependent mass of the photon. For an extensive discussion about the curvature-
related mass term see [11].

Assuming a massless photon field in the geometrical optics limit [3.17, we are
looking for a four-potential

A, = a,exp (ik,2") (3.26)

IThis gauge condition is named after a Danish physicist Ludvig Lorenz. In literature, it is often
misspelled as ”Lorentz” gauge, because it actually is Lorentz invariant. Hendrik Lorentz however

did not introduce this gauge condition.
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This leads us to the dispersion relation

w (k) = 2\/1@ + n2A, (3.27)

Considering that

ny/A, ~ 07" (3.28)

and remembering that & ~ A\, the condition turns out to be

k> n\/ A, (3.29)

In this domain, the dispersion relation has a very simple form

w(k) =k (3.30)

n
The velocity of propagation of electromagnetic waves is given by the group velocity

el

1
— 3.31
dk n ( )

We can note that the speed of light decreases with time, which leads to red shift
which is often observed in light coming from very distant objects. In the limit of
vanishing cosmological constant, we have n — 1 and the electromagnetic waves
propagate at the speed of light.
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4 CONCLUSION

In this thesis, I have studied the changes which are brought to kinematics and
electrodynamics when curvature is introduced. I have successfully studied and
parametrized the symmetry group of de Sitter spacetime and its action on a con-
formally flat coordinate system. In these coordinates, the action of the de Sitter
algebra is very similar to the action of the Poincaré algebra. The only difference
is that the transitive transformations contain an extra coordinate-dependent term
depending on the inverse square of the pseudoradius. This coordinate dependence
lures us to think that the notion of motion should be changed by addition of confor-
mal compensator. This modification however does not give the desired results and
I have to conclude, that the kinematics in de Sitter spacetime is ruled by Einsteins
theory. In the last chapter I have studied the connection between electrodynamics in
a curved spacetime and electrodynamics in a macroscopic material in flat spacetime.

Using this connection, I have found the "refractive index” of de Sitter spacetime.
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