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1. INTRODUCTION

1. Introduction

Theory of homogenization was developed for modeling media with a �ne period-
ical structure. In a physical setting, homogenization means replacing a hetero-
geneous material by an equivalent homogeneous one, in mathematical setting it
means approximating equations with highly oscillating coe�cients by equations
with constant ones.
The mathematical approach consists of considering a sequence of problems

with a material with a more and more re�ned structure. Hence, we get a se-
quence of solutions. The principal question is: How does the sequence behave?
Does the limit, the so called homogenized solution, exists? If so, how can it
be characterized? This approach was �rst introduced by J.B. Keller (1973) and
developed by I. Babu²ka (1975). More about the homogenization can be found
in the monograph [BLP78] or in the textbook [CD99].
Other problems for which a similar approach can be used are problems de-

�ned on periodically perforated domains. Let Ω be a domain in RN and let it
be periodically perforated by holes. We shall construct a sequence of domains
with an increasing number of holes and decreasing their volume. Again, we are
interested in a behavior of the limit solution.
When we try to �nd the homogenized solution several di�culties occur. Some

of them are common for both the case with and without holes. The following
problem can illustrate the typical situation in the setting with no holes.
For ε = 1, 1/2,

1/3, . . . , let us assume a sequence of solutions {uε} to a problem
{ −∇ · (Aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
(1)

where Aε(x) = A
(
x
ε

)
and A(y) is a Y -periodic function satisfying 0 < α ≤

≤ A(y) ≤ β.
Weak formulation of this problem is:




Find uε ∈ H1
0(Ω) such that

∫

Ω
Aε(x)∇uε(x) · ∇v(x) dx =

∫

Ω
f(x) v(x) dx, ∀v ∈ H1

0(Ω).
(2)

For Aε ∈ L∞(Ω), the domain Ω with a �good" boundary and f ∈ L2(Ω),
the unique weak solution uε exists and satis�es ‖uε‖H1

0 (Ω) ≤ C. Since the se-

quence {uε} is bounded in H1
0(Ω), it contains a weakly converging subsequence

of gradients {∇uε}.
When we are tending to the limit, it turns out that the left-hand side of (2)

contains a product of two weakly converging sequences, {Aε} and {∇uε}. In
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this case it is not possible to reach to the limit directly, since a limit of product
need not to be a product of limits two weakly converging sequences.
In the past, several approaches to overcome this problem were developed.

• Multiple-scale method is summarized in monograph by A. Bensoussan, J. L.
Lions and G. Papanicolaou [BLP78]. The method uses the asymptotic ex-
pansion of the solution uε to �nd the homogenized one.

• Local energy method (called also the oscillating test function method) was
introduced by L. Tartar [Tar97] in the years 1977 and 1978. The method is
based on a special choice of oscillating test functions in the weak formulation
of the problem.

• Two-scale convergence method introduced by G. Nguetseng [Ngu89] in 1989
and developed by G. Allaire [All92] in 1992. In this method a new type
of convergence is de�ned. The limit of two-scale convergent sequence has
two variables, the second one describes local behavior. This method requires
introducing a special space for test functions.

• Periodic unfolding method is an alternative approach to the two-scale con-
vergence. It was introduced by J. Casado-Díaz [CD00] in 2000 and D. Cior -
nescu, A. Damlamian and G. Griso [CDG02], L. Nechvátal [Nec04] and J.
Franc· [Fra10]. It removes problems with the choice of space for test func-
tions, therefore it is more natural. A comprehensive survey of the application
of this method to the problems in domains with holes is described by Cior -
nescu, Damlamian, Donato, Griso and Zaki [Cio+12].

Let us turn our attention back to the problems de�ned on the domain with
holes. In this case, one more problem arises. Let Ω∗ε denotes a periodically
perforated domain with period ε Y . For ε↘ 0 the period is smaller and smaller
and the domain is perforated by more and �ner holes.
A model situation looks as follows: For ε = 1, 1/2,

1/3, . . . , let us assume a
sequence {uε}, where uε is a solution of the problem

{ −∆uε = f in Ω∗ε,

uε = 0 on ∂Ω∗ε.
(3)

A weak formulation of the problem (3) is:




Find uε ∈ H1
0(Ω∗ε) such that

∫

Ω∗
ε

∇uε(x) · ∇vε(x) dx =

∫

Ω∗
ε

f(x) vε(x) dx, ∀vε ∈ H1
0(Ω∗ε).

(4)

The problem is that each solution uε of problem (4) is de�ned on a di�er-
ent domain Ω∗ε. Hence, it is not clear in which sense the convergence of the
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1. INTRODUCTION

sequence {uε} can be understood. Even if there existed some u0 for which
‖uε − u0‖H1

0 (Ω∗
ε) → 0, as ε ↘ 0, one could not speak about �convergence" (in

a strong or weak sense) of the sequence {uε}.
Several methods to avoid this issue have been developed over time:

• Quite an intuitive approach is a construction of an uniformly bounded ex-
tension operator Pε from H1

0(Ω∗ε) to H1
0(Ω). Then, we can transform our

problem of �nding a �limit" of {uε} by another one: Find a limit of the
sequence {Pε(uε)} in the �xed space H1

0(Ω).

This approach has a limitation. The existence of operator Pε depends on
the boundary conditions of the problem (in the case that they are more
complicated than in our model example) and also on the shape of the holes
(for example they should have a su�ciently smooth boundary and should
not intersect the boundary of Ω).

• Another approach is to use an unfolding operator to transform functions uε,
resp. ∇uε de�ned on Ω∗ε to the �xed domain Ω× Y .

As we shall see the periodic unfolding method is the technique which solves
both problems mentioned above. This is the reason why the method is so suitable
for problems de�ned on perforated domains.

Goal and contribution of the thesis

Let Ω be a bounded set, and Y a reference cell in RN . The unfolding operator
Tε maps a function in Lp(Ω) to a function in Lp(Ω× Y ).
The main disadvantage of an unfolding operator introduced in [CD00] and

[CDG02] is that it does not conserve integrals. It means that in general for
u ∈ L∞(Ω) ∫

Ω

u(x) dx 6= 1

|Y |

∫∫

Ω×Y

Tε(u)(x, y) dx dy. (5)

It can be shown that the left-hand side of (5), for u ≥ 0, is always grater or equal
than its right-hand side. The equality holds only in limit, i.e. for ε→ 0.
This issue was removed by rede�ning this operator. The operator was improved

by J. Franc· and N.Svanstedt in [FS12]. This change simpli�es the proofs and
removes several di�culties and necessity of introducing �unfolding criterion for
integrals" (see e.g. [CDG08]).
This thesis aims to prove properties of this improved unfolding operator,

mainly the convergence for the sequence of gradients and applying an analogical
approach to perforated domains. Finally, we apply this new operator to �nd
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a homogenized solution of the special family of the problems with an integral
boundary condition and we present some numerical results.
The thesis intents to be self-contained work suitable as the �rst reading for

engineers and applied mathematicians.

Related works

Homogenization on a periodically perforated domain for miscellaneous bound-
ary value problems was treated by numerous authors. Let us mention some
milestones in this area.
The Laplace equation with a homogeneous Dirichlet condition in the domain

where the holes are regularly distributed and the size of the holes decreases
when the number of the holes increases was studied by Murat and Cior nescu
[MC97]. They showed that even in this problem an interesting behavior of the
limit solution occurs.
In this problem three di�erent situations were identi�ed. The �rst situation

is when the size of holes decreases too quickly - quicker than the size of the cell
period. Then uε converges to the solution of the Dirichlet problem in Ω. The
second situation is when the size of holes decreases too slowly. Then uε converges
to the zero function. Between these two cases there is one when the size of holes
is critical, in that case an additional zero order term appears in the right-hand
side of the limit equation.
In [MC97] there are quite strict assumptions on the distribution and shape of

the holes. This limitation has been removed by Dal Maso and Garroni [MG94].
This break through made possible the solving the general case of homogeneous
Dirichlet problems without any geometrical assumptions.
A problem with homogeneous Neumann boundary condition with some geo-

metrical assumptions on holes was studied by Hruslov [Hru79].
Some assumptions on the size and shape of holes which are admissible for a

periodic homogenization with Neumann boundary condition are given by Dam-
lamian and Donato [DD02].
Classical situation is when the holes are distributed periodically and the ra-

tio of material volume to the period volume is constant. This situation with a
di�erent type of boundary conditions has been described in numerous papers.
Laplace equation with homogeneous mixed (Dirichlet and Neumann) bound-
ary conditions was studied by Cardone, D'Apice and Maio [CDM02], elliptic
equations with linear Robin resp. with non-linear conditions were studied by
Cior nescu, Donato and Zaki in [CDZ06] resp. in [CDZ07], elliptic equations
with non-homogeneous mixed boundary conditions were studied by Esposito,
D'Apice and Gaudiello [EDG02].
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2. PERIODIC UNFOLDING ON PERFORATED DOMAINS

A problem on domains with holes which are distributed periodically and their
size is diminishing with respect to the period (the so called small holes) was stud-
ied by Murat and Cior nescu in [MC97] (homogeneous Dirichlet boundary con-
ditions), and also by Conca and Donato in [CD88] (non-homogeneous Neumann
boundary condition), by Cior nescu and Ould Hammouda in [COH08] (elliptic
equations with a non-homogeneous mixed boundary conditions), by Ould Ham-
mouda in [OH11] (elliptic equations with non-homogeneous Neumann boundary).
A non-periodical behavior of the holes has been studied by Nguetseng in

[Ngu04].

2. Periodic unfolding on perforated domains

2.1. Domain with holes

Let Ω be a bounded domain in RN with Lipschitz boundary ∂Ω. Let the reference
cell Y in RN be N -dimensional interval de�ned by

Y = 〈0, l1)× 〈0, l2)× · · · × 〈0, lN), (6)

where l1, . . . , lN are �xed positive numbers.
Space RN can be written as a union of the disjoint cells Yk = Y + k, which

are the cell Y shifted by vectors k, i.e.

RN =
⋃

k∈K
(Y + k), K =

{
k ∈ RN | k = (ξ1 l1, ξ2 l2, . . . , ξN lN), ξ ∈ ZN

}

Let T ⊂ Y be an open bounded set with a smooth boundary. This set rep-
resents reference holes in Y . The part of the reference cell Y occupied by a
material is denoted by Y ∗, i.e. Y ∗ = Y \ T .
Furthermore, we consider so called scales E = {εk}, de�ned as followes:

De�nition 2.1 (Scale). A descending sequence E = {εk}∞k=0 of positive num-
bers, such that εk ↘ 0 as k →∞, is called the scale.

In the following, as it is usual in the homogenization, all sequences will be
denoted by the subscript εk, for example {aεk}, or very often even only by the
subscript ε, for example {aε}.
Now, we de�ne ε-scaled system of the cells

Y ∗kε = ε(Y ∗ + k), k ∈ K.
Similarly we de�ne scaled system of the holes. Let us introduce function r,

which determines how fast the shrinking of holes is. Let r be a positive increasing
function, such that limε→0 r(ε) = 0.
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Then the set T k
ε is de�ned as a translates and scaled image of T , so

T k
ε = r(ε)(T + k), k ∈ K.

It is necessary to choose the function r in such a way that ensures that the
holes are always inside the cells, i.e. r(ε)T ⊂ ε Y ∀ε.
Furthermore, we suppose that, if the set T consists of more connected disjoint

sets then these sets remain disjoint for all ε.
We can distinguish three typical kinds of behaviors of the holes. For that

reason let us denote by θε the ratio of the volume of material in cell and the
volume of cell, i.e.

θε =
|εY − r(ε)T |
|εY | .

The case when r(ε) = ε is very classical, the ratio θε is constant for all ε . The

case when r(ε)
ε → 0 as ε → 0 is called small holes. In such case the volume of

holes goes to zero quicker than the volume of material in the cell, i.e. θε → 1 as
ε → 0. In the last case θε → 0, which means that the shrinking of the holes is
slower than the shrinking of the cells. An example of these three cases is on the
Figure 1.
Let Ω∗ε denote the part of Ω occupied by material. It is de�ned as Ω without

holes T k
ε , i.e.

Ω∗ε = Ω \ Tε, where Tε =
⋃

k∈K
T k
ε . (7)

Furthermore we denote by T i
int, ε, i = 1, . . . ,m(ε), the �interior holes", they are

such sets T k
ε which are completely inside Ω and do not intersect the boundary

∂Ω, i.e. T k
ε ⊂ Ω. Their union is denoted by Tint, ε,

Tint, ε =

m(ε)⋃

i=1

T i
int, ε.

Let the sets T k
ε which intersect the boundary be denoted by Text, ε, i.e. Text, ε =(

Tε \ Tint, ε

)
∩ Ω, and ∂extΩ

∗
ε denote the exterior boundary of Ω∗ε, i.e. ∂extΩ

∗
ε =

∂Ω∗ε \ ∂Tint, ε.

2.2. Unfolding operator T ∗ε in perforated domains

First of all we de�ne splitting of each point in RN in two parts. The idea is
analogical to the following one: each real number x can be uniquely split to the
integer part [x] and the fractional part {x} ∈ (0, 1). Since the disjoint cells Yk
cover whole RN , for each point x ∈ RN it holds x = [x]Y + {x}Y , where [x]Y
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2. PERIODIC UNFOLDING ON PERFORATED DOMAINS

denotes the shift of the cell Yk containing x, and {x}Y stands for the relative
position of x with respect to the cell Yk, i.e. [x]Y ∈ K and x − [x]Y belongs to
Y . Set {x}Y = x− [x]Y .
Using ε-scaled system of the cells Y k

ε , the domain Ω can be split into two parts:

Ω̂ε and Λε, and the domain Ω∗ε into Ω̂∗ε and Λ∗ε, see Figure 3. The set Ω̂ε contains
cells Y k

ε lying inside Ω, while the set Λε is a strip on the boundary composed of
cells Y k

ε intersecting the boundary ∂Ω. More precisely:

Ξε =
{
k ∈ RN s.t. Y k

ε ⊂ Ω
}
, Ω̂ε =

( ⋃
k∈Ξε

Y k
ε

)
∩ Ω, Λε = Ω \ Ω̂ε,

Ω̂∗ε = Ω̂ε \ Tint, ε and Λ∗ε = Ω∗ε \ Ω̂∗ε,

(8)

ε = 1 ε = 1
2 ε = 1

3

r(ε) = ε

r(ε) = ε2

r(ε) = 2ε− ε2

Figure 1: Example of three di�erent behaviors of the holes depending on the
choice of function r. A case on the middle line belongs to the cases called small
holes.
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Ω

Ω

T k
ε

T i

int, ε

Ω∗
ε

∂extΩ
∗
ε

∂T int
ε

Y ∗

Y

T

Figure 2: Periodically perforated domain. Upper: domain Ω and the reference
cell; lower left: inner holes T i

int, ε; lower right: part of Ω occupied by material
Ω∗ε (marked by cyan), with its exterior boundary ∂extΩ

∗
ε and interior boundary

∂Tint, ε.

Figure 3: Domains Λ∗ε (light) and Ω̂∗ε (dark).

Now, we de�ne the unfolding operator for perforated domains. In sequel, we
cover the case where the ratio of the volume of material to the volume of cell is
constant for all ε, i.e. the function r(ε) = ε.
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2. PERIODIC UNFOLDING ON PERFORATED DOMAINS

Y

x

y

u(x)

u(ε
[
x
ε

]
Y

+ εy)

0

Ω

Ω∗
ε

Λ∗
ε Λ∗

εΩ̂∗
ε

u(ε
[
x
ε

]
Y

+ εy)

0

εY ∗

T ∗
ε

u(x)

Text, ε

Λ∗
ε Ω̂ε Λ∗

ε Text, ε

Figure 4: Example of the unfolding of a function u(x) de�ned on a periodically
perforated domain Ω∗ε.

De�nition 2.2 (Unfolding operator for perforated domains). An operator T ∗ε
maps a function u : Ω∗ε → R to T ∗ε (u) : Ω× Y → R, and is de�ned as follows:

T ∗ε (u)(x, y) =




u
(
ε
[
x
ε

]
Y

+ εy
)

for (x, y) ∈ Ω̂ε × Y ∗,
u(x) for (x, y) ∈ Λ∗ε × Y,
0 otherwise.

(9)

For u de�ned on Ω∗ε we denote its extension by zero into Ω by ũ. The same
notation will be used for functions de�ned on Ω × Y ∗ extended by zero into
Ω× Y .
Theorem 2.3 (Properties of the unfolding operator for perforated domain). Let
T ∗ε be the unfolding operator for perforated domains de�ned by (9). Then for all
ε ∈ E we have:

(i) The operator T ∗ε is multiplicative, i.e. for all u, v : Ω∗ε → R we have

T ∗ε (u v) = T ∗ε (u) T ∗ε (v).

(ii) The unfolding operator T ∗ε is linear.
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(iii) The unfolding operator T ∗ε conserves the integral, i.e. for all u ∈ L1(Ω∗ε)
one has ∫∫

Ω×Y

T ∗ε (u)(x, y) dx dy = |Y |
∫

Ω∗
ε

u(x) dx.

(iv) The unfolding operator T ∗ε conserves the norm in the sense that for every

u ∈ Lp(Ω∗ε), p ∈ 〈1,∞), it holds ‖T ∗ε (u)‖Lp(Ω×Y ) = |Y | 1p ‖u‖Lp(Ω∗
ε).

Thus T ∗ε is bounded and its norm satis�es ‖T ∗ε ‖L(Lp(Ω∗
ε),Lp(Ω×Y )) = |Y | 1p .

(v) T ∗ε is continuous operator for Lp(Ω∗ε) to Lp(Ω× Y ), where p ∈ 〈1,∞).

Using the unfolding operator, we de�ne two-scale convergence.

De�nition 2.4 (Two-scale convergence for perforated domains). Let {uε} be a
sequence in Lp(Ω∗ε) and u0 ∈ Lp(Ω× Y ), p ∈ 〈1,∞).
A sequence {uε} two-scale strongly (resp. weakly) converges to u0 in Lp(Ω)

with respect to the scale E if the sequence {T ∗ε (uε)} converges to u0 strongly
(resp. weakly) in Lp(Ω× Y ).

The following theorem describes relations among convergences.

Theorem 2.5. Let {uε} be a sequence in Lp(Ω∗ε) and u0 ∈ Lp(Ω × Y ), p ∈
〈1,∞). Then

(i) Any constant sequence {u} ∈ Lp(Ω) strongly two-scale converges to

u0(x, y) =

{
u(x) [x, y] ∈ Ω× Y ∗,
0 otherwise.

(ii) Any sequence {uε} ∈ Lp(Ω∗ε) two-scale converging (strongly or weakly) in
Lp(Ω) is bounded in Lp(Ω∗ε).

(iii) If {uε} strongly two-scale converges to u0 in Lp(Ω), then it weakly two-scale
converges to the same limit.

(iv) For p ∈ (1,∞), if {uε} weakly two-scale converges to u0 in Lp(Ω), then
its extension by zero converges weakly to u∗(x) = 1

|Y |
∫
Y ∗ u0(x, y) dy =

|Y ∗|
|Y |MY ∗(u0)(x) in Lp(Ω).

2.3. Unfolding operator T ∗ε and gradients

Consider a function u ∈ W 1,p(Ω∗ε). It is straightforward that
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3. APPLICATION - TORSION PROBLEM

T ∗ε (∇u) =





1
ε∇yT ∗ε (u) on Ω̂ε × Y ∗,
∇u = ∇T ∗ε (u) on Λ∗ε × Y,
0 otherwise.

(10)

Now we will state the main result about the convergence of an unfolded se-
quence of gradients {T ∗ε (∇uε)}.
Theorem 2.6. Let a sequence {uε} be bounded in W 1,p(Ω∗ε), for p ∈ (1,∞).
Then, there exists a subsequence (still denoted {uε}) and functions u0 ∈ W 1,p(Ω)
and u∗0 ∈ Lp(Ω;W 1,p

per
(Y )) such that

(i) T ∗ε (uε) ⇀ u weakly in Lp
(
Ω;W 1,p(Y )

)
, where

u(x, y) =

{
u0(x) [x, y] ∈ Ω× Y ∗,
0 otherwise.

(ii) T ∗ε (∇uε) ⇀ ∇u0 +∇yu
∗
0 weakly in [Lp(Ω× Y )]N .

Moreover,MY (u∗0) = 0 and u∗0 = −yc · ∇u0 on Ω× T.

3. Application - Torsion problem

Study of elastic torsion of a bar leads to a problem described in [FNJ12; FR15].
Here, a more general problem is studied and the case of elastic torsion is obtained
as an application.
Let us start with a de�nition:

De�nition 3.1. Let α, β ∈ R, such that 0 < α < β. We say that a matrix
function A(x) =

(
aεij(x)

)
∈ [L∞(Ω)]N×N belongs to a setM(α, β,Ω) if and only

if
(i) (A(x)λ, λ) ≥ α|λ|2, (ellipticity),
(ii) |A(x)λ| ≤ β|λ|, (boundedness).

(11)

∀λ ∈ RN , a.e. in Ω.

Now we can state a boundary problem:

−∇ · (Aε∇uε) = f in Ω∗ε,

uε = 0 on ∂extΩ
∗
ε,

uε = const. on ∂T i
int, ε; i = 1, . . . ,m(ε),∫

∂T i
int, ε

Aε(x)
∂uε
∂n

(x) dx =

∫

T i
int, ε

f(x) dx




(12)
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where Ω∗ε, ∂extΩ
∗
ε, T

i
int, ε, etc. are de�ned in the beginning of the Section 2.1, f ∈

L2(Ω), Aε(x) =
(
aεij(x)

)
i,j=1...N

is a matrix function from the set M(α, β,Ω∗ε), n

is the outward-pointing unite normal (i.e. on the inner boundary, n is directed
inward the holes), m(ε) denotes number of interior holes.
For f(x) = −2 and N = 2 we get a torsion problem derived in [FR15].
Let us introduce the linear space

Sε(Ω) =
{
v ∈ H1

0(Ω); v = 0 in Text, ε, v = const. in T i
int, ε, i = 1, . . . ,m(ε)

}
.

(13)
with the norm ‖v‖Sε(Ω) = ‖∇v‖[L2(Ω∗

ε)]
N .

Weak formulation of the problem (12):




Find uε ∈ Sε(Ω) such that
∫

Ω∗
ε

Aε(x)∇uε(x) · ∇v(x) dx =

∫

Ω

f(x) v(x) dx, ∀v ∈ Sε(Ω). (14)

Homogenized solution of the problem above is described by to following theo-
rem:

Theorem 3.2. Let uε be the solution of the problem (14). Assume that

T ∗ε (Aε) → A a.e. in Ω× Y (15)

for a matrix A = A(x, y) such that A = (aij)i,j=1...N ∈M(α, β,Ω× Y ).

Then, there exists u0 ∈ H1
0(Ω) and u∗0 ∈ L2(Ω, H1

per(Y )) such that

‖uε − u0‖L2(Ω∗
ε) → 0,

T ∗ε (uε) ⇀ u weakly in L2(Ω, H1(Y )), where

u(x, y) =

{
u0(x) [x, y] ∈ Ω× Y ∗,
0 otherwise.

T ∗ε (∇uε) ⇀ ∇u0 +∇yu
∗
0 weakly in

[
L2(Ω× Y )

]N
, where

MY (u∗0) = 0 and u∗0 = −yc · ∇u0 on Ω× T.

(16)
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4. NUMERICAL EXAMPLES

The pair (u0, u
∗
0) is the unique solution of the problem:





Find u0 ∈ H1
0(Ω) and u∗0 ∈ L2(Ω, H1

per(Y )) such that

1

|Y |

∫∫

Ω×Y ∗

A(x, y) [∇u0(x) +∇yu
∗
0(x, y)] · [∇Ψ(x) +∇yΦ(x, y)] dx dy =

∫

Ω

f(x) Ψ(x) dx,

∀Ψ ∈ H1
0(Ω),

∀Φ ∈ L2(Ω, H1
per(Y )), such that Φ + yc · ∇Ψ is constant in y on Ω× T.

(17)

4. Numerical examples

We present numerical example for dimension N = 2.
Let x = (x1, x2) ∈ Ω and y = (y1, y2) ∈ Y , where Ω is a simple domain in R2

and Y = 〈0, l1)× 〈0, l2), l1, l2 are real positive numbers. Vector function yc has
the form yc = ( yc1, y

c
2 ). Furthermore, let us suppose that A is a function only

in variable y, i.e. A(x, y) = A(y).
We would like to solve the problem, derived in the Theorem 3.2:




Find u0 ∈ H1
0(Ω) and u∗0 ∈ L2(Ω, H1

per(Y )) such that

1

|Y |

∫∫

Ω×Y ∗

A(y) [∇u0(x) +∇yu
∗
0(x, y)] · [∇Ψ(x) +∇yΦ(x, y)] dx dy =

=

∫

Ω

f(x) Ψ(x) dx,

∀Φ ∈ L2(Ω, H1
per(Y )),

∀Ψ ∈ H1
0(Ω), s. t. Φ + yc · ∇Ψ is const. in y on Ω× T,

MY (u∗0) = 0,

u∗0 = −yc · ∇u0 on Ω× T.

(18)

We shall look for u0, u
∗
0 in two steps. At �rst, we will compute auxiliary

functions denoted χ̂1, χ̂2 and subsequently, using them, we will �nd homogenized
solutions u0, u

∗
0.

17



Let us choose Ψ(x) ≡ 0 as a test function in (18). We suggest function u∗0 in
the form

u∗0(x, y) = −χ̂1(y)
∂u0

∂x1
(x)− χ̂2(y)

∂u0

∂x2
(x).

Then, (18) takes the form
∫∫

Ω×Y ∗

A

[
∂u0

∂x1

∂Φ

∂y1
+
∂u0

∂x2

∂Φ

∂y2

]
dx dy =

=

∫∫

Ω×Y ∗

A

[
∂χ̂1

∂y1

∂u0

∂x1

∂Φ

∂y1
+
∂χ̂2

∂y1

∂u0

∂x2

∂Φ

∂y1
+
∂χ̂1

∂y2

∂u0

∂x1

∂Φ

∂y2
+
∂χ̂2

∂y2

∂u0

∂x2

∂Φ

∂y2

]
dx dy.

From this we see that the problem (18) is ful�lled when the auxiliary function
χ̂i, i = 1, 2, satis�es
∫

Y ∗

A
∂Φ

∂yi
dy =

∫

Y ∗

A∇χ̂i·∇Φ dy, ∀Φ ∈ L2(Ω, H1
per(Y )), s. t. Φ is const. in y on T.

Rewriting this, we derive the following problem




Find χ̂i ∈ H1
per(Y ) such that

∫

Y ∗

A∇(χ̂i − yi) · ∇Φ dy = 0,

∀ Φ ∈ L2(Ω, H1
per(Y )), s. t. Φ is constant in y on T,

MY (χ̂i) = 0, χ̂i = −yci on T.

(19)

Now, let us choose as a test function in (18) a function Φ(x, y) = −ϕ1(y) yc ·
Ψ(x), where Ψ ∈ D(Ω), ϕ is Y -periodic function and ϕ1|Y ∈ D(Y ), ϕ1 ≡ 1 on
T .
Then, (18) takes the form

1

|Y |

∫∫

Ω×Y ∗

A

[
∇u0 +∇y

(
−χ̂1

∂u0

∂x1
− χ̂2

∂u0

∂x2

)]
· [∇Ψ−∇y(ϕ1 y

c ·Ψ)] dx dy =

=

∫

Ω

f Ψ dx. (20)

Simple computations yield the problem




Find u0 ∈ H1
0(Ω) such that

|Y ∗|
|Y |

∫

Ω

A∇u0 · ∇Ψ dx dy =

∫

Ω

f Ψ dx, ∀Ψ ∈ H1
0(Ω).

(21)
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4. NUMERICAL EXAMPLES

Where matrix A is given by A = (aij)i,j=1,2

a11 =

∫

Y ∗

A

[(
1− ∂χ̂1

∂y1

)(
1− ∂(yc1 ϕ1)

∂y1

)
+
∂χ̂1

∂y2

∂(yc1 ϕ1)

∂y2

]
dy, (22)

a12 = −
∫

Y ∗

A

[(
1− ∂χ̂1

∂y1

)
∂(yc2 ϕ1)

∂y1
+
∂χ̂1

∂y2

(
1− ∂(yc2 ϕ1)

∂y2

)]
dy, (23)

a21 = −
∫

Y ∗

A

[(
1− ∂χ̂2

∂y2

)
∂(yc1 ϕ1)

∂y2
+
∂χ̂2

∂y1

(
1− ∂(yc1 ϕ1)

∂y1

)]
dy, (24)

a22 =

∫

Y ∗

A

[(
1− ∂χ̂2

∂y2

)(
1− ∂(yc2 ϕ1)

∂y2

)
+
∂χ̂2

∂y1

∂(yc2 ϕ1)

∂y1

]
dy. (25)

In the sequel, we present results of homogenization of the torsion problem
derived in [FR15]. We assume Ω = (0, 1)×(0, 1), reference cell Y = 〈0, 1)×〈0, 1),
reference hole T =

(
1
4 ,

3
4

)
×
(

1
4 ,

3
4

)
. Torsion problem is obtained for A(y) = 1,

f(x) = −2.
According to the behavior of the holes, we distinguish three cases. They were

described in Section 2.1.

• First, let us present results for r(ε) = ε, as for this case the Theorem 3.2 and
all results in this chapter were derived. The sequence of domains is shown
on the upper line on Figure 1. In the �rst step, by solving problem (19) we
get two auxiliary functions χ̂1 (on Figure 5) and χ̂2.

In the second step the problem (21) is solved to obtain the homogenized
solution. A comparison of functions uε and homogenized solution u0 is on
Figure 7. Graph of function u1/4 is on Figure 6.

In the following two cases we only present numerical results without any theo-
retical result.

• For r(ε) = ε2 (so called small holes), the results are on Figure 8. The
sequence of domains is on the middle line on Figure 1.

• For r(ε) = ε(2− ε), the results are on Figure 9. The sequence of domains is
on the lower line on Figure 1.

The numerical results are obtained by �nite element method implemented in
MATLAB.
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Figure 5: Auxiliary function χ̂1.

5. Conclusion

In problems which are set on perforated domains Ω∗ε, where the shape and distri-
bution of holes depends on the parameter ε, it may be di�cult to de�ne conver-
gence for the sequence of solutions {uε}. There exist some approaches to solve
this di�culty but their usage is usually limited. Limiting factors are usually the
shape of the perforations or boundary conditions on inner boundaries.
The two-scale convergence, the approach presented in this thesis, is based on

periodic unfolding operator for perforated domains T ∗ε . This method is suitable
for periodically distributed holes. The unfolded sequence {T ∗ε (uε)} is de�ned on
�xed domains which removes di�culties with the convergence.
This technique was applied to the problem describing torsion of the bar (and

its more general version). We derived a homogenized equation de�ned on a
simply connected domain (without holes). We also presented numerical aspect
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5. CONCLUSION

Figure 6: Graph of function u1/4.

of solving such a homogenized problem and in the last section there are some
numerical examples.
Moreover, we proved some interesting properties which make it suitable for

more general situations than that presented here. Unfolding operator T ∗ε , used
in this thesis, is slightly di�erent than the one used in e.g. [CD00], [CDG02].
This change in de�nition allowed us to prove some properties in a more elegant
way.
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5. CONCLUSION
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Figure 8: Diagonal cuts of functions uε, for ε = 1/3,
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1/7, and solu-
tion u0 of torsion problem on domain without holes (simply connected domain),
the behavior of holes is described by r(ε) = ε2.
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Abstract

The numerical solving of mathematical models describing the mechanical be-
havior of materials with a �ne structure (composite materials, �nely perforated
materials etc.) usually requires huge computational performance. Hence in nu-
merical modeling the original material is replaced by an equivalent homogeneous
one.
In this work a two-scale convergence based on a periodical unfolding operator
is used to �nd the homogenized material. The operator was for the �rst time
used by J. Casado-Díaz. In this Ph.D. thesis, the operator is de�ned in a slightly
di�erent way which allows us to prove some of its new properties. The unfolding
operator for functions de�ned on a perforated domain is de�ned analogically and
its properties are proved. Finally, this operator is used to �nd the homogenized
solution of a special family of problems with an integral boundary condition;
some numerical results are presented.
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