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Abstract. The `1-norm based tensor analysis (TPCA-L1)
is recently proposed for dimensionality reduction and fea-
ture extraction. However, a greedy strategy was utilized for
solving the `1-norm maximization problem, which makes it
prone to being stuck in local solutions. In this paper, we
propose a robust TPCA with non-greedy `1-norm maximiza-
tion (TPCA-L1 non-greedy), in which all projection direc-
tions are optimized simultaneously. Experiments on several
face databases demonstrate the effectiveness of the proposed
method.
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1. Introduction
Principal component analysis (PCA) is awidely used di-

mensionality reduction and feature extraction method due to
its simplicity and effectiveness [1–3]. In the domain of image
analysis, traditional PCA algorithms reshaped the original
two-demensional image into a one-dimensional long vector
and aimed to find the optimal projection directions in which
the reconstruction error was minimized. However, the intrin-
sic spatial structural information was damaged. 2DPCA [4]
was proposed to alleviate this problem, which can essen-
tially be seen as PCA in matrix forms. In order to capture
more spatial information, tensor analysis [5], [6] (also named
multilinear subspace analysis) was introduced into PCA, in
which an image can be treated as a second-order tensor and a
sequence of images as a third-order tensor. Tensorface [7] is
one of the earliest tensor analysis methods for face recogni-
tion. Themain idea of tensorface is high-order singular value
decomposition (HOSVD). Generalized low rank approxima-
tion (GLRAM) [8] was proposed to solve the problem of
low rank approximations of matrices, in which each image is
represented as a two-order tensor.

It is known that PCA and 2DPCA are prone to outliers
due to the utilization of `2-norm. By contrast, the `1-norm is
more robust to outliers than the `2-norm. In order to allevi-
ate the effect of outliers, some `1-norm based methods were

proposed, including L1-PCA [9], R1-PCA [10] and PCA-
L1 [11]. Among them, PCA-L1 is invariant to rotations and
also robust to outliers. Based on the work of Ye [8], Pang
proposes the TPCA-L1 algorithm using `1-norm instead of
Frobenius norm [12]. To solve the `1-norm maximization
problem, these algorithms use a greedy strategy whichmakes
them easy to being stuck in local solutions. In 2011, Nie
and Huang [13] propose a PCA with non-greedy `1-norm
maximization (PCA-L1 non-greedy), in which all projection
directions are optimized simultaneously without increasing
computational complexity. Then, Wang extends 2DPCA-
L1 to its non-greedy version (2DPCA-L1 non-greedy) [14].
In this paper, we propose a tensor principal component analy-
sis with non-greedy `1-normmaximization termed as TPCA-
L1 non-greedy. It has three major advantages: 1) It is robust
to outliers due to the utilization of `1-norm; 2) more spatial
structure information is preserved compared with PCA-L1;
3) all projection directions can be optimized simultaneously
and much better recognition accuracy can be obtained than
that of TPCA-L1 without increasing the computational cost.

The rest of this paper is organized as follows: In Sec. 2,
we give a brief review of the work of TPCA-L1 greedy algo-
rithm [12]. Then we propose the tensor principal component
analysis with non-greedy `1-norm maximization in Sec. 3.
The experimental results are reported and an analysis of the
experimental results is given in Sec. 4. Finally Sec. 5 con-
cludes the paper and points out the future work.

2. Brief Review of TPCA-L1
Let {X1, · · · , Xn } be a sequence of image matrices,

where n is the number of images. The size of the matrix
Xi is h × w, where h and w represent the image height and
width, respectively. In TPCA-L1 [12], an effective optimiza-
tion algorithm was proposed to find two r-dimensional pro-
jection matrices U and V that maximize the `1-norm based
dispersion, i.e.,

max
U,V

n∑
i=1




V
T XiU




1 , (1)

subject to UTU = Ir , VTV = Ir .
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The alternative projection optimization procedure can
be repeated until converges, which is proved in [8]. The
procedure of how to compute v while u is fixed and then
compute u while v is fixed is described in detail.

2.1 Compute v while u is Fixed
Beginning with r = 1, equation (1) can be rewritten as

max g(u, v) = max
u1,v1

n∑
i=1




v
T
1 Xiu1




1 , (2)

subject to uT u = 1, vT v = 1.

Define a polarity function pi (t) to solve the `1-norm
maximization, of which the value is either −1 or 1. The
value t in the polarity function indicates iteration number.
The polarity function pi (t) is defined as

pi (t) =
{

1, [v(t)]T (Xiu1) > 0,
−1, [v(t)]T (Xiu1) ≤ 0. (3)

So g(u, v) can be converted to

gu1 (v(t)) =
n∑
i=1

���[v(t)]T Xiu1
���

=

n∑
i=1

pi (t)[v(t)]T (Xiu1).

(4)

The projection vector v(t + 1) at the (t + 1)th iteration
is updated as

v(t + 1) =

n∑
i=1

pi (t)(Xiu1)








n∑
i=1

pi (t)(Xiu1)





2

. (5)

Let t = t + 1 and repeat (3) and (5), the iteration then runs
until converges.

2.2 Compute u while v is Fixed
In the section above, the iteration procedure calculates

the optimal vwhile u is fixed. After the optimal v is obtained,
the task becomes computing the optimal u that maximize

gv1 (u(t)) =
n∑
i=1

���v
T
1 Xiu(t)���

=

n∑
i=1

si (t)
[
vT1 Xi

]
u(t)

(6)

where the polarity function si (t) is defined as

si (t) =



1,
(
vT1 Xi

)
u(t) > 0.

−1,
(
vT1 Xi

)
u(t) ≤ 0.

(7)

The updating rule for u is

u(t + 1) =

n∑
i=1

si (t)
(
XT
i v1

)







n∑
i=1

si (t)
(
XT
i v1

)




2

. (8)

Then equations (7) and (8) should be repeated until the
iteration runs convergence.

2.3 Compute uk and vk Based on uk−1 and vk−1
Respectively

From (5) we can find that v1 is a linear combination of
Xiu (i = 1, · · · , n). To compute vk (k > 1), Xiu should be
updated as a whole

(Xiu) = (Xiu) − vk−1v
T
k−1(Xiu). (9)

Similarly, to calculate uk where k > 1, one has to update
vT Xi by (

vT Xi

)
=

(
vT Xi

)
−

(
vT Xi

)
uk−1u

T
k−1. (10)

The TPCA-L1 algorithm does not need to perform
eigendecomposition of covariance-like matrices. If the
covariance-likematrices are in a large size, the computational
cost of traditional tensor analysis algorithms will normally be
very large in most cases. However this algorithm optimizes
all projection directions sequentially, which makes it easy to
being stuck in local solutions.

3. TPCA with Non-Greedy `1-Norm
Maximization
In this section, a general `1-norm maximization prob-

lem is discussed at first, and then TPCA is extended to its non-
greedy version. The general `1-norm maximization problem
is formulated as follows:

max
v∈C

f (v) +
n∑
i=1

|gi (v) | (11)

which is assumed to have a upper bound. Without loss of
generality, f (·) and g(·) are two random functions. Equa-
tion (11) can be rewritten as

max
v∈C

f (v) +
n∑
i=1

pigi (v) (12)

where pi = sgn(gi (v)), and sgn(·) is a sign function defined
as sgn(x) = 1 if x > 1, sgn(x) = −1 if x < 1, and sgn(x) = 0
if x = 0. An effective algorithm to solve this general `1-norm
maximization problem has been detailed in [13], which is
summarized in Appendix: Algorithm 1.

In each iteration, pi is calculated by current vt , and
next solution vt+1 is updated with the current pi . The itera-
tive procedure is repeated until the algorithm converges. It
has been proved that Algorithm 1will monotonically increase
the objective function of (11) in each iteration, and usually
converge to a local solution [13].

Then, we will focus on how to extend the TPCA-L1
algorithm to its non-greedy version. The original problem of
TPCA-L1 is to minimize the reconstruction error as follows
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min
n∑
i=1




Xi − VYiU
T 


1 , (13)

subject to UTU = Ir , VTV = Ir , where

U = [u1, u2, · · · , ur ] ∈ Rw×r

and
V = [v1, v2, · · · , vr ] ∈ Rh×r

stand for two orthogonal projection matrices. The problem
is corresponding to the following equation:

max
n∑
i=1




V
T XiU




1 , (14)

subject to UTU = Ir , VTV = Ir .

In this paper, an alternative projection optimal algo-
rithm is proposed to solve the `1-norm maximization. When
U is fixed, one can compute V, then when V is fixed, com-
pute U . So we extend TPCA-L1 to its non-greedy version
from two sides. Here is the description of how to compute U
and V, respectively.

3.1 Compute V while U is Fixed
While U is fixed, the problem (1) can be rewritten as

argmax
n∑
i=1




V
T XiU




1 = argmax
n∑
i=1




V
TY1(i)


1

= argmax
n∑
i=1

r∑
j=1




V
T y1(i)

j



1

(15)

where the matrix Y1(i) = XiU , y1(i)
j represents the jth col-

umn vector of matrix Y1(i) . If define the training matrix
as Y =

[
y1(1)

1 , y1(1)
2 , · · · , y1(1)

r , y1(2)
1 , · · · , y1(n)

r

]
∈ Rh×nr ,

equation (15) can be converted to

argmax
n∑
i=1




V
T XiU




1 = argmax
n∑
i=1

r∑
j=1

(
p(i) ( j)

)T
VT y1(i)

j

= argmaxTr
(
VTM

)
(16)

where p(i) ( j) = sgn
(
VT y1(i)

j

)
, M = YPT ∈ Rh×r and

P = sgn
(
VTY

)
∈ Rr×nr . Suppose the singular value de-

composition (SVD) of M as M = LΛRT , where L ∈ Rh×h ,
Λ ∈ Rh×r , R ∈ Rr×r . Then one can get

Tr
(
VTM

)
= Tr

(
VT LΛRT

)
= Tr

(
ΛRTVT L

)
= Tr(ΛZ )

(17)

where Z = RTVT L ∈ Rr×h , λii and zii are the (i, i)th ele-
ment of matrices Λ and Z respectively. Note that ZZT = Ir ,
where Ir is r dimensional identity matrix, so zii ≤ 1. While
λii ≥ 0 for that λii is ith singular value of M . That is to say,

when Z = [Ir, 0], Tr
(
VTM

)
reaches the maximum. So the

optimal solution is

V = LZTRT = L[Ir, 0]RT . (18)

3.2 Compute U while V is Fixed
SimilarlywhileV is fixed, the problem (1) can be rewrit-

ten as

argmax
n∑
i=1




V
T XiU




1 = argmax
n∑
i=1






(
VT XiU

)T 



1

= argmax
n∑
i=1




U
T XT

i V



1

= argmax
n∑
i=1




U
TY2(i)


1

= argmax
n∑
i=1

r∑
j=1




U
T y2(i)

j



1

(19)

where the matrix Y2(i) = XT
i V , y2(i)

j represents the jth col-
umn vector of matrix Y2(i) . Similarly define the training
matrix as Y =

[
y2(1)

1 , y2(1)
2 , · · · , y2(1)

r , y2(2)
1 , · · · , y2(n)

r

]
∈

Rw×nr , equation (19) can be converted to

argmax
n∑
i=1




V
T XiU




1 = argmax
n∑
i=1

r∑
j=1

(
s(i) ( j)

)T
UT y2(i)

j

= argmaxTr
(
UTM

)
(20)

where s(i) ( j) = sgn
(
UT y2(i)

j

)
, M = YST ∈ Rw×r and

S = sgn
(
UTY

)
∈ Rr×nr . Suppose the SVD of M as

M = LΛRT , where L ∈ Rh×h , Λ ∈ Rh×r , R ∈ Rr×r .
Then we have

Tr
(
UTM

)
= Tr

(
UT LΛRT

)
= Tr

(
ΛRTUT L

)
= Tr(ΛZ )

(21)

where Z = RTUT L ∈ Rr×h , λii and zii are the (i, i)th el-
ement of matrices Λ and Z respectively. Similarly to the
method to compute V , the optimal solution of U can be
calculated:

U = LZTRT = L[Ir, 0]RT . (22)

The whole procedure is summarized in Appendix: Algo-
rithm 2.

4. Experimental Results
In this section, four public image databases are selected

for performance evaluation. The brief description of the four
databases is listed as following [6], [15]:
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(a) Yale Face Database (b) ORL Face Database

(c) FERET Face Database (d) USPS Handwritten Digits Database

Fig. 1. Sample images from the four databases used in the experiments.
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(a) Yale Face Database
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(b) ORL Face Database
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(c) FERET Face Database

0 4 8 12 16
0

24

48

72

96

120

feature number

ob
je

ct
iv

e

 

 

TPCA−L1 greedy
TPCA−L1 non−greedy

(d) USPS Handwritten Digits Database

Fig. 2. Objective values versus feature number obtained by TPCA-L1 greedy and TPCA-L1 non-greedy, respectively.
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(a) ORL images without outliers
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(b) Yale images without outliers
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(c) 20% of ORL images with outliers
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(d) 20% of Yale images with outliers
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(e) 40% of ORL images with outliers
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(f) 40% of Yale images with outliers

Fig. 3. Recognition accuracy versus feature number on the ORL and Yale databases obtained by TPCA-L1 greedy and TPCA-L1 non-greedy
respectively.
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1. Yale Face Database: The Yale Face Database1 consists
of 165 grayscale images of 15 individuals, and each
individual has 11 images. Each image is reshaped into
64 × 64 pixels in this experiment.

2. ORL Face Database: The ORL Face Database2 con-
sists of 400 facial images of 40 subjects. There are ten
different images of each of 40 distinct subjects. Simi-
larly, each image is reshaped into 64 × 64 pixels in this
experiment.

3. USPS Handwritten Digits Database: The USPS Hand-
written Digits Database3 is an image data set consisting
of 9298 handwritten digits of 0 through 9. The size of
each image is 16 × 16 pixels in this experiment.

4. FERET Face Database: The FERET Face Database4
consists of 1400 images belonging to 200 different in-
dividuals, each of which has 7 images. The size of each
image is 80 × 80 pixels in this experiment.

Some image samples of the four databases are shown in
Fig. 1. In this experiment, we demonstrate the effectiveness
of the proposed TPCA-L1 non-greedy algorithm compared
to the TCPA-L1 algorithm [12]. Four aforementioned image
databases are used to compare the objective values

objective =
1
n

n∑
i=1




V
T XiU




1 . (23)

Figure 2 shows the objective values versus feature num-
ber obtained by the TPCA-L1 greedy algorithm and the
TPCA-L1 non-greedy algorithm, from which we can get the
proposed algorithm obtains much higher objective values
than that of the TPCA-L1 greedy algorithm on all the four
image databases.

The classification is to evaluate the Euclidean distance
between the testing image and the training image [4]. Here
if define that X j ( j = 1, 2, · · · ,m) represent the training im-
ages, and Yi (i = 1, 2, · · · , n) represent the testing images,
the Euclidean distance is evaluated by the equation

d(Yi, X j ) = ‖Yi − X j ‖2. (24)

Given one testing sample Y ∈ L class, if d(Y, Xl ) =
min d(Y, X j ), the testing image Y ∈ L class. Then we select
two databases (ORL and Yale) to evaluate the proposed algo-
rithm and the TPCA-L1 greedy algorithm for classification.
The size of each image is 64 × 64 pixels in this experiment.
We randomly select 5 images for each person as training sam-
ples, and the remaining images for testing. Here, a varying
percentage of training images was corrupted by outliers. For
convenience, we use "a% of training images with outliers" to
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Fig. 4. Recognition accuracy versus the time cost for the Yale
database.

feature numbers 2 3 4 5

TPCA-L1 0.1607 0.3849 0.5642 0.5858
TPCA-L1 NG 0.1616 0.3844 0.5791 0.6022

Tab. 1. Recognition accuracy on Yale database.

denote that a% of the images in our training set are corrupted
by outliers. The percentage of training images with outliers
is 0, 20 and 40 respectively. Figure 3 shows the recognition
accuracy versus feature number obtained by the TPCA-L1
non-greedy algorithm and the TPCA-L1 greedy algorithm
on the two face databases. As can be seen in Fig. 3, the pro-
posed algorithm gets much better recognition accuracy than
that obtained by the TPCA-L1 greedy algorithm on the ORL
Face Database, especially when the feature number is large.
On the Yale Face Database, when some images are corrupted
by outliers, the proposed algorithm getsmuch higher recogni-
tion accuracy than that of the TPCA-L1 greedy algorithm.

As can be seen, the recognition accuracy decreases
badly while the number of features is increasing. Note that
high dimensional data is usually interrelated and has much
redundancy information. In the low dimensional space, re-
dundancy information is removed and the recognition accu-
racy is high. When the number of features increases, the
more information (including the noises and redundancy in-
formation) are obtained which can depress the recognition
accuracy.

Comparing the performances of the TPCA-L1 non-
greedy and the TPCA-L1, it can be seen from Tab. 1 that
the TPCA-L1 non-greedy performs better than the TPCA-L1
for small number features. The computational cost is decided
by iteration times, feature numbers, image numbers and im-
age size. However, image numbers and image size are fixed
for one database. So iteration times and feature numbers are
the main factors that decide the computational cost. Here we

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.uk.research.att.com/facedatabase.html
3http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
4http://www.nist.gov/itl/iad/ig/colorferet.cfm/
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use the time cost to represent the computational cost. Fig-
ure 4 shows the recognition accuracy versus the time cost
for TPCA-L1 non-greedy when the procedure runs 50 times.
From the results, it can be seen that the recognition accuracy
won’t keep increasing while the time cost increasing.

5. Conclusions
In this paper, a non-greedy `1-norm based TPCA has

been proposed, which is robust to outliers. By using ten-
sor representing the training images, the proposed algorithm
can exploit more spatial information of images, and thus gets
better performance. In addition, all projection directions are
optimized simultaneously with a non-greedy method. Exper-
imental results on the databases show that the TPCA-L1 non-
greedy algorithm performs better than the greedy method in
recognition accuracy and objective values.
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Appendix:

Algorithm 1: An efficient algorithm to solve a general `1-
norm maximization problem.

Initialize vt ∈ C, t = 1;
while not converge
1. For each i, compute pi t = sgn(gi (vt ));

2. vt+1 = argmax
v∈C

f (v) +
n∑
i=1

ptigi (v);

3. t = t + 1;
end while
Output: vt+1.

Algorithm 2: TPCA with non-greedy `1-norm maximiza-
tion.

Input: X ∈ Rh×w×n and feature number r .
Initialize U;
while not converge do

1. Fixed U , compute V
while not converge do
1). p(i) ( j) = sgn(VT y1(i)

j ), y1(i)
j is the j th column

vector of matrix Y1(i) = XiU;
2). Y = [y1(1)

1 , y1(1)
2 , · · · , y1(1)

r , y1(2)
1 , · · · , y1(n)

r ],
P = sgn(VTY ) and M = YPT ;

3). Suppose the SV D of M as M = LΛRT ,
V t1+1 = RZT LT = R[Ir, 0]LT ;

4). t1 = t1 + 1;
end while
2. Fixed V , compute U
while not converge do
1). s(i) ( j) = sgn(UT y2(i)

j ), y2(i)
j is the j th column

vector of matrix Y2(i) = XT
i V ;

2). Y = [y2(1)
1 , y2(1)

2 , · · · , y2(1)
r , y2(2)

1 , · · · , y2(n)
r ],

S = sgn(UTY ) and M = YST ;
3). Suppose the SV D of M as M = LΛRT ,
U t2+1 = RZT LT = R[Ir, 0]LT ;

4). t2 = t2 + 1;
end while

end while
Output: U and V .


