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4 Abstract

A method of testing triplesconsisting of samples of
three independent groups such that no two samples of
the same group are tested at the same time, no
sample is tested with another one more than once and
after eachtest one sample of the triple is included in

(he Jollowing triple is presented.
/
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Introduction

When we test n-tuples of samples and each sample -

is to be tested more than once, it may be quite time-saving
to keep after each test one of the samples in the testing
environment and replace only the other ones. For instance,
in cases when replacing a sample after the test takes long
time because of necessity to clean the testing equlpment or
for another similar reason.

We present a method of testing triples consisting of
samples of three independent groups such that no two
samples of the same group are tested at the same time and
no sample is tested with another one more than once. The
number of samples of each group is constant.

The method is based on decompositions of
group-divisible designs, namely 3-transversal designs, into
isomorphic cycles.

A group divisible design k-GDD(n,r) is a triple
(1G.B ) where I is a set of elements; G is a partition of V"
into » subsets G1,Ga,...,G, of the same cardnality n
called groups and B is a collection of subsets of V' of
cardinality k called blocks such that |G, N B| < 1for any
group G; € G and any block Be B and for any two
elements x,y from distinct groups there is exactly one block
containing both x and y. A transversal design k-TD(n) is a
group divisible design k-GDD(n,k), i.e., |[GinB|=1 for
any group G; € G and any block B € B. A factor E; of a
k-GDD(n,r) is a triple (V,G,D;) where D is a subset of B.

A decomposition of a k-GDD(n,r) is an m-tuple of factors
E =(V,G,Dy), =1,2,.. , m such that D;nD;=0 and

u1 D;=B. Two factors E; and E; are isomorphic (denoted
e

E;=E;) if there exists a one-to-one mapping ¢;of " onto
itself such that D’ = {$;(x1), §;(x2), ..., ;(xx)} € D; if and
only if D={xi,x2,...,xs}€ D;. A decomposition is
isomorphic if E; = E; for every pair 1 <i<j<m. A path of
length q, P,, is a sequence xo — By ~x1-B2—...—Bg—xy4

of elements and blocks such that for each i =1,2,...,q the
elements x;_; and x; belong to the block /3; and no block
and no element appears more than once. Since each pair of
elements in a k&-GDD belongs to at most one block, the
path is uniquely determined by the elements and we

usually use the simpler notation Pg=xo—x1—...—%q. A
cycle  of  length ¢q, C,, is a ~ sequence
xo—By—xy—By—x3—...—Bg~x4 (or simply XgX =X, )

of elements and blocks such that xo = x4, for each i=1,2,...
,q the elements x;_; and x; belong to the block B; and no
block or element appears more than once.

One can see now that if we want to test triples of
samples that belong to three different groups and each
sample in the triple has to belong to another group, we can
use a 3-TD(n) as a model. If we want to replace after each
test just two of the samples, it is quite natural to search for
"strings" like paths or cycles that are long enough to
satisfy our requirements for multiple testing.

Hartman [2], Das and Rosa [1], and Phelps [3]
studied decompositions of designs into two factors. We
study decompositions of GDD's into smallest connected
factors.

1. Smallest connected factors

It is not difficult toobserve that the smallest
connected factor is acyclic. If a 3-TD(n) has such a factor
E@ with s blocks (i.e., triples consisting of one element of
each group), it is obvious, at it contains 2s+/ elements and
therefore the number of elements of the 3-TD(n), 3n, must
be equal to 2s+/. Hence s= 3’—"]- and » must be an odd

. number. So we can state the followmg, simple observation.

Proposition 1

A 3-TD(n) has a connected acyclic factor only if n is
odd.

Let us suppose now that » is odd, say 2m+/.Then
the number of blocks of the factor E®is

=2l ﬂz’"—;lf—l— =3m + 1. Since the number of blocks
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of the 3-TD@2m+1) is (2m+1)?, the 3-TD2m+1) is
decomposable into connected acyclic factors only if
3m +1| (2m + 1)* . Suppose it is the case. Then there is a
positive number & such that (2m + D2 =k(3m+1). We can
write k=tm+1, where 0<t<Q. Then we have
dm*+4m+1 = (tm+1D)GBm+1) = 3tm>+({t+3)m+1,
which yields 4(m+ 1) =3tm +t+3. Hence dm -3tm =1t-1
and m= 41:—;; Since m is a non-negative integer andthe
fraction is negative for allt2 1, we are left with r=1,
which yields m = 0. Then n =1 and the following holds.

Proposition 2

No 3-TD(n) with n>1 is decomposable into
connected acyclic factors.

Let us consider now connected factors of
3-TD(2m+1)'s with 3m+2 blocks. The 3-TD(3) of the
additive group Zz with groups Gi;={0y,1:,2:},
Gg = {02, 12, 22} and G3 = {03, 13,23} and blocks (01,02
,03), (01,12,13),(04,22,23),(11,02,13), (11,12,23),(14,
22,03),(21,02,23), (21, 12,03), (21,22, 13) has a connected
factor E(s) with 3m + 2 blocks, eg., (01,02,03),(01, 15, 13),
(14,02,13), (21,02,23),(21,22, 13). The factor E(s) con-
tains two cycles: 0; — (01,02,03)—02—(11,02,13)~13
—~(01,12,13)= 0y and 21-(21,02,23)—02—(11,02,13)
—13-(21,22,13) =21, and is therefore not the "simplest
possible”, i.e., unicyclic. A necessary condition for
decomposability into unicyclic factors follows.

Lemma 3

If a 3-TD(n) is decomposable into unicyclic factors,
then 1 = 0(mod 6).

Proof. Let E(5 be a unicyclic factor with s blocks. The
shortest cycle, C;consists of 3 blocks that contain together
6 elements. Since every other block contributes 2 to the
number of elements, we have s= 3,7" Therefore n must be
even. On the other hand, the number of blocks of the factor
must divide the number of blocks of the 3-TD(n), i.e.,
3% | n?. This yields 3 | n and hence n = 0(mod 6).

We show further that for every n = O(mod 6)there is
a decomposable 3-TD(n). We even show that the factors

" can be mutually isomorphic. But first we state the

following.
Corollary 4

If a 3-TD(n) is decomposable into connected factors
of size t, then t23%. The equality can hold only if
n = 0(mod 6).

2. Constructions

Now we present constructions of 3-TD's that are

isodecomposable into unicyclic factors, namely cycles. We -

start with the case n = 6(mod 12).

Construction 5

n=6(mod 12). Let n=12m+ 6. First we construct a Latin
square A of order 6m+3 as follows. The first row is
1,3m+3,2,3m+4,3,....3m+1,6m+3,3m+2. An entry
in i-th row and j-th column, a*/, is then equal to o'/,
Then we construct a Latin square C of order 12m+6 with
entries c¥=a¥ for 1<ij<6m+3, c¥=a"%3 for
6m+4<i<12m+6,1<j<6m+3,c¥=a%3 for 1<i
<6m+3,6m+4<j<12m+6, and c'/ = qtom-36m3 for
6m+4<i,j<12m+6.

Figure 1

The triples of the 3-TD(12m + 6) are then (i1,j2,¢3)
. One can notice that the Latin square C is a multiplication
array of a commutative half-idempotent quasigroup. An
example of the Latin square C is shown in Figure 1. Since
the third element of a triple is determined uniquely, we
usually write just (i1,/2,¢3).

The factor [y contains the blocks (iy,i2,¢3) for
i=1,2,...,12m+ 6, the block (1,,(12m+ 6)2,¢3) and the

" blocks (3, (f+6m+2)2,¢c3) for j=2,3,...,6m+3. Then

Ey isthe cycle 11 —(11,12,13)— 13— ((6m +4)1,(6m+4)2
J13)=(6m+4); ~(21,(6m+4)2,¢3) 21 ~(21,22,23) — 23—
eIy — (i1,d2,i3)—i3—((6m+3+1i)1,(6m+3+1)2,i3)

~(O6m+3+i)2—(((+1)1,(6m+3+i)2,03) -G+ 1)1 —((i+1

1,0+ D2, + D)3)—(+ D3~ ... = ((12m + 6)1, (12m + 6)2,
(6m +3)3)— (12m+6)2 — (11, (12m + 6)2,¢3) — 1, .

The factor E; is deter- mined by the isomorphism
Y1 Eg— Er with wyi(x)=x,y1(2) =+ 6m+3),,
Wi (z3) =(z+6m+3);.

E» is determined by i : Eo — E;, where (1)) = (6m
+3)2,W2(21) = 12,\'1!2(31) =2s,..., Wz((6m+ M)=(6m+2
)2, W2 ((6m + 4)1) = (12m + 6)2, Y2((6m + 5)1) = (6m + 4)a,
W2((6m +0)1) =(0m + S)2, ..., W2((12m + 6) ) =(12m + 5
)2, W2(12) =21, W2(22) =31, W2(32) = 41, ..., W2((6m1 + 3)2
=11, W2((6m + 4)2) = (6m + 5)1 ,y2((6m + 5)2) = (6m + 6),
- W2((12m + 6)2) = (6m + 4)1, W2(23) = 23
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E4 is determined by w4 : Eo — E4, where wy4(l1)=4,,
Wa(21) =51, Wa(31) = 61,...,Wa((6m+3)1) = 31, ya((6m+
) =(6m+T)1Ya((6m+5)1) = (6m+8)1, ..., ya((12m+ 6
)1) = (6m+6)1, Wa(y2) = y2, Wa(l3) = Bm+4)3, Ya(23) =
Bm+5)3,...,Wa((6m+3)3) = (3m + 3)3, Ya((6m+4)3) =
Om + T)3, Wa((6bm + 5)3) = (OMm + 8)3, ..., Wa((12m+6)3) =
(9m + 6)3.

In general, a factor E; ,where , t=4u+2v+w,1<¢t
<12m+5=n-1is determined by an isomorphism
¢ Eo > E,;, which is defined as the composition

O =yioysoyy, with y) =id.

Figure 2

For n=6, the underlying factor U(E,) is shown in
Figure 2 and the arrays corresponding to all factors are
shown in Figure 3.
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Figure 3

In the case n=0(mod 12) we construct a Latin
square  corresponding to a  non-commutative
half-idempotent quasigroup.

- Construction 6 n= 0(mod 12). Let n=12m. First
we construct an array B of order 6m. The main diagonal is
defined by b =i,i=1,2,...,6m. The entries b, where
i-j=0(mod2) are defined as follows. Let
2/ =i—j(mod 6m), then b* = b¥ + ] To define the entries

b, where i —j = 1(mod 2), we define bP4 as the number of

the set {1,2,...,6m} such that b4 EI;M(mod 6m). Then
bY=b 9+ 6m,ie,bPre {6m+1,6m+2, ..., 12m}.

Then we construct a Latin square D of order 12m
with entries d¥=»5% for 1<i,j<6m, d"=pbSmifor
om+1<i<12m,1<j<6m, d¥=5b"%" for 1<i<6m,
6m+1<j<12m, and d¥ =b"m/om for 6m+1<i,j<
12m. The triples of the 3-TD(12m) are then (i),/2,d5). We
again write usually just (i1,/2,d3) instead of (i1,j2,d7).

The factor FEgcontains the blocks (iy,iz,i3) for
i=1,2,...,12m, the block (11,(12m);,d3) and the blocks
G1,G—=146m)2,(j— 1+ 06m);) forj=2,3,...,6m. Then [,

is the cycle 1, —(11,12,13)— 13— ((6m+ 1)y, (6m + 1),
13) = (6m +1)2 — (21, (6m + 1)2,(6m + 1)3) ~ 21~ (21,22, 25)
=23~ ... ~i1=(i1,iz2,i3)— i3~ ((6m+i)1, (6m+i)a,i3)—(
6m+1)2 — ((1+ 1)1, (6m + )2, (6m +i)3)—(i + 1)1 ~ ((i + D)1,
G+ D2, i+ D)~ G+ Ds—...—  ((12m)1, (12m)2.(6m)3)~
(12m)2—(11,(12m)2,(12m)3)-—11.

The other factors are defined similarly as in the case
n=6(mod 12). The factor E, is determined by the
isomorphism 1 : Eo — E; with yi(x1)=x1, y10n)=(v
+6m)2, Y1(z3) = (z+ 6m)3 '

Ey is determined by w»:Eo— E;, where
y2(11) = (6m)2, W2(21) = 12, W2(31) = 22,..., y2((6m)) =
(6m—1)2, W2((6m + 1)1) = (12m)2, Y2((6m + 2)1) =(6m + 1
)2,\U2((6m+3)1) =(6m+2),, w2 ((12m)1) =(12m = 1),
(12m = 1)2,y2(12) = 21, ¥2(22) =31, y2(32) =4, ..., yw2((
6m)2) =11, Wa((6m+ 1)2) =(6m+2)1, y2((6m+2)2)=
(6m+3)1,...,W2((12m)2) = (6m + 1)1, Wa(z3) = 23.

E,s is determined by w4:FEo—>FE4, where
Wa(11) =41,¥4(21) =51, Wa(31) =6y,..., Wa((6m))=3,
Ya((6m+1)1) = (m+4)1, Ya((6bm+2)))= (6m+5),...,
Ya((12m)1) =(6m +3)1, Wa(y2) = y2, Wa(l3) = (9m + 2)3,
\|I4(23) = (2m + 3)3, .‘.,W4((6m)3) = (9m+ 1)3, \;14((6m +1
)3) = (6m)3,\y4((6m+ 2)3) = 13, vy \V4((12m)3) = (6m -1
)3.

In general, a factor £;, where t =4u+2v+w,1 <1<
12m—1=n-1is again determined by the isomorphism
¢s: Lo — E,, which is defined as the composition

¢r=yioy; oyy, with ) =id.

Since we proved that for every n=0(mnod 6) there
exists a 3-TD(n) which is isodecomposable into cycles, the
complete characterization of 7's that are isodecomposable
into -unicyclic factors follows immediately from the
constructions and Lemma 3. :

Theorem 7. A transversal design with group size n
and block size 3 isodecomposable into unicyclic factors
exists if and only if n = O(mod 6). Moreover, for each such
n there exists a 3-TD(n) isodecomposable into cycles.
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3. Conclusion

It is an easy observation that in each cycle half of
the elements of each group appear in one block and the
other half in two blocks. Thus, having a transversal design
decomposed into cycles, we can now combine two cycles to
have each sample tested twice. Similarly, we can combine
more cycles if we réquire another even nuber of tests for
each sample. If we combine an odd number of cycles; then
clearly half of the samples will be tested once more than
the others.

Other desompositions of group divisible designs can
indeed be constructed to satisfy specific needs of testing of
several samples belonging to more than two different
groups. Several methods for testing samples of one or t
groups are already known. :

The author believes that there are "real Ilife"
problems of similar kinds and hopes to receive a request to
solve any specific problem on testing of m-tuples of
samples. He also believes that a proper method will then be
found.
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