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ABSTRACT

The present thesis deals with planar weakly delayed linear discrete systems

x(k+1) = Ax(k) + zn:lel(k —my)

=1

where k € ZF = {0,1,...,00}, my,ma,...,m, are constant integer delays, 0 <
my <my < ---<my, A B ..., B" are constant 2 X 2 matrices and z: Z*, — R*.
The characteristic equations of weakly delayed systems are identical with those of the
same systems but without delayed terms. In this case, after several steps, the space
of solutions with a given starting dimension 2(m,, 4+ 1) is pasted into a space with a
dimension less than the starting one. In a sense, this situation is analogous to one known
in the theory of linear differential systems with constant coefficients and special delays
when the initially infinite dimensional space of solutions on the initial interval turns (after
several steps) into a finite dimensional set of solutions. For every possible case, explicit
general solutions are constructed and, finally, results on the dimensionality of the space
of solutions are obtained. The stability of solutions is investigated as well.

KEYWORDS

discrete equation, linear systems of difference equations, weakly delayed system, planar
system, dimension of the space of solutions, conditional stability



ABSTRAKT

Dizertacni prace se zabyva slabé zpozdénymi linedrnimi rovinnymi systémemy s konstat-
nimi koeficienty tvaru

z(k+1) = Ax(k) + zn: Blay(k —my)

=1
kde k € Z¥ = {0,1,...,00}, my,ma,...,m, jsou konstatni cela ¢isla, 0 < m; <
my < -+ < my, A, B',...,B" jsou konstantni 2 x 2 matice a z: Z*, — R? je

hledané feseni. Charakteristickd rovnice téchto systémi je identicka s charakteristickou
rovnici systému, ktery neobsahuje zpozdéné Cleny. V takovém pripadé se pocatecni di-
menze prostoru feSeni 2(m,, + 1) méni po nékolika krocich na mensi. V jistém smyslu
je tato situace analogickd podobnému jevu v teorii linedrnich diferencidlnich systémii
s konstantnimi koeficienty a specidlnim zpozdénim, kdy plvodné nekonecné rozmérny
prostor feSeni (na pocateénim intervalu) prejde po nékolika krocich do koneéného pros-
toru feseni. V praci je pro kazdy mozny pripad kombinace korenii charakteristické rovnice
konstruovano obecné feseni daného systému a jsou formulovany vysledky o dimenzi pros-
toru reseni. Také je zkoumana stabilita reseni.

KLICOVA SLOVA
diskrétni rovnice, linedrni systémy diferencnich rovnic, slabé zpozdény systém, rovinny
systém, dimenze prostoru feseni, podminéna stabilita
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CHAPTER 1. INTRODUCTION

1 INTRODUCTION

As most of the time measurements involving variables are discrete, the observed
evolution phenomena can be expressed naturally in terms of difference equations
and, thus, such equations are important mathematical models in their own right.
Difference equations have an important role in the study of discretization methods
for differential equations, too. The theory of difference equations is much richer than
the corresponding theory of differential equations. For example, a simple difference
equation obtained from a first-order differential equation may involve phenomena
that can only occur for higher-order differential equations. Thus, the theory of dif-
ference equations is interesting by itself and, therefore, likely to take on greater

importance in the near future.

The application of the theory of difference equations is rapidly increasing in various
fields such as numerical analysis, control theory, finite mathematics, and computer

science.

The fundamentals of the theory of difference equations are well described for example
in books by S. Elaydi [19], by I. Gyéri, G. Ladas [21], by V. L. Koci¢, G. Ladas [27]
and by R. P. Agarwal, M. Bohner, S. R. Grace, D. O’Regan [1].
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1.1 Current State

The difference equations have recently been an object of intensive research. Mono-

graphs summarizing some outcomes were mentioned above.

Every month, numerous new papers are published on the qualitative theory of differ-
ence equations. Some interesting results have been published on the representations
of solutions of linear discrete systems with delay, e.g., [13], 14, |25], on the existence
of positive solutions of discrete equations, e.g., |2 3, |4, |5, [29], on the oscillation of
solutions of discrete equations, e.g., [23, [30, |31], on the stability of solutions of dis-
crete systems, e.g., [0, |16} 22, 26, [28] and on the asymptotic properties of solutions
of the discrete equations and systems such as |7, [8, |11} 12, 17, 18, |20} |39].

1.2 Aims of the thesis

The thesis is concened with planar systems of weakly delayed equations

x(k+1) = Az(k) +>_ B'ay(k — my) (1.1)

=1
where my, mo,...,m, are constant integer delays, 0 < m; < mg < --- < my,
ke Zy, A B',..,B" are constant 2 x 2 matrices, A = (a;;), B' = (b};), 1,5 = 1,2,
[ =1,2,...,n and z: 2%, — R2. In the thesis, we construct general solutions

of such systems. Further, we show that, after several steps, the dimension of the
space of all solutions is reduced to a less-dimensional space. Moreover, we discuss

the stability of the system.

Methodically, we follow the paper [15] where a planar weakly delayed linear
discrete system

z(k+1) = Az(k) + Bz (k — m), (1.2)

is considered with m > 0 being a fixed integer, k € Z3°, A = (a;j), B = (b;;) constant
2 x 2 matrices, and z: Z*°, — R?. A general solution of is constructed and
results on the dimensionality of the space of solutions are derived.

Some of the results obtained are published in [9, [10]. In [9], a system ([I1.1))
with n = 2 is considered. The results published in [10] concern system and
generalize the results published in [15].
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1.3 Preliminary notions and properties

We use the following notation: for integers s, ¢, s < ¢, we define Z¢ := {s,s +
1,...,q} where s = —c0 or ¢ = 0o are admitted, too. Throughout this dissertation,
using notation Z?, we always assume s < ¢. In the thesis, we deal with the discrete
planar systems (|1.1))

n

z(k+1) = Az(k) + > Blay(k — my)

=1

where mq, mso,...,m, are constant integer delays, 0 < m; < mg < --- < My,

k €7y, A B, ..., B" are constant 2 x 2 matrices, A = (a;;), B = (bﬁj), i,j=1,2,
l=1,2,...,nand z: Z%,, — R2. Throughout the dissertation, we assume that

B'#£6 (1.3)

where | = 1,2,...,n and © is 2 x 2 zero matrix. Together with equation (|1.1]), we

consider an initial (Cauchy) problem

z(k) = o(k) (1.4)
where k = —m,,, —m,, +1,...,0 with ¢: ngn — R2. The ezistence and uniqueness

of the solution of the initial problem (1.1]), (1.4) on Z>,, is obvious. We recall that
the solution x: 2>, — R? of (L.1)), (1.4)) is defined as an infinite sequence

{z(=my) = o(=my), 2(=m, + 1) = (=m, +1),...,

z(0) = p(0),2(1),2(2),...,z(k),...}

such that, for any k € Z°, equality holds.

The space of all initial data (1.4) with ¢: Z°  ~— R? is obviously 2(m, + 1)-
dimensional. Below, we describe the fact that, among the systems , there are
such systems that their space of solutions, being initially 2(m,, + 1)-dimensional, on
a reduced interval turns into a space having a dimension less than 2(m,, + 1). The
problem under consideration (pasting property of solutions) is exactly formulated
in Part 1.4.

1.4 Weakly delayed systems

We consider the system (1.1]) and look for a solution having the form z(k) = EAF
where k € Z%, , A = const with A # 0 and § = (&,&)" is a nonzero constant

vector. The usual procedure leads to a characteristic equation

D := det (A +3 A Bl - )J) =0 (1.5)

=1

10
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where [ is the unit 2 x 2 matrix. Together with (1.1]), we consider a system with

the terms containing delays omitted

z(k+1) = Az(k) (1.6)
and its characteristic equation

det (A — A\I) = 0. (1.7)

Definition 1.4.1. The system (L.1)) is called a weakly delayed system if the char-

acteristic equations (L.5)), (1.7)) corresponding to systems (1.1)) and (1.6) are equal,
i.e. if, for every A € C\ {0},

D = det <A +3 A B - )J) = det (A — \I). (1.8)
=1

We consider a linear transformation
z(k) = Sy(k) (1.9)

with a nonsingular 2 x 2 matrix §. Then, the discrete system for y is
y(k +1) = Asy(k) + > _ Bsy(k —my) (1.10)
=1

with As = S7'AS, B = S7'B!S where | = 1,2,...,n. We show that a sys-
tem’s property of being one weakly delayed is preserved by every nonsingular linear

transformation.

Lemma 1.4.2. If the system (1.1)) is a weakly delayed system, then its arbitrary lin-

ear nonsingular transformation (1.9)) again leads to a weakly delayed system (|1.10]).

Proof. Tt is easy to show that
det (AS +Y ATMBS — )J) = det (As — \)
=1
holds since

det (AS +> AT™MBE — )J)

=1
= det (As + A\ By + A" BE + -+ A ™ BE — M)

— det (5-1AS LA™STIBIS £ NSRS 4
Ty s L )\8*1[‘5’)
— det [3*1 (A L ANTMBL N2 B2 L \Tmepn M) s}

11
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— detSdet (A L ATMBl A Tm2p2 g e /\]) detS
— det (A LAT™MpBl L A2 B2 L e /\I)

= det (A +> A mB - )J) ,

=1

det (As — AI) = det (ST'AS = AST'1S)
= det [S7 (A= \I) S]
= detS™'det (A — M) detS
= det (A — \I)

and the equality

det (A +>Y A™B - )J) =det (A — M),

=1

i.e. the equality (1.8 is assumed.

1.5 Necessary and sufficient conditions determin-

ing weakly delayed systems

In the below theorem, we give conditions, in terms of determinants, indicating

whether a system is weakly delayed.

Theorem 1.5.1. System (1.1 is a weakly delayed system if and only if the following

3n 4+ n(n —1)/2 conditions hold simultaneously:

bln + bl22 =0,
by bho|
1 1| 0,
by by
air aip| | by, by _0
bl21 bl22 21 (22 7
bhy by bii iy —0
by bbo| Dby by
where l,bv=1,2,....,n and v > [.

12

(1.11)

(1.12)

(1.13)

(1.14)
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Proof. We start with computing determinant D defined by (|1.5)). We get

D=

b

Dy D,
Ds Dy

where
Dy =ai1 + b AT A BN A DT = ),
Dy =a1a + bjsA ™™ 4 b] A2 4o £ BT
Dy =ag; + by A™™ + b3 A2 e B AT
Dy =22 + bypg A ™™ A b AT A 4 D AT —

Expanding the determinant on the right-hand side along summands of the first

column, we get:

D anl ais + bb)\_ml + 19%2)\—"12 o AT
ap1 Aoz + DI AT H DIATT2 e g AT — )

)\ 1 6%1 a2 + bb)\ 1 -+ b%Z)‘ m2 e b%)\—mn
%1 22 652)‘ " b%Q)‘ 24+ b22)\ Mn A\

+ )\—mg b%1 12 + b}QA_ml + b%2)\—m2 + -+ b?Q)\_m"

b%l a2 + béz)\_ml + b%Q)\—mz e AT — )

+ ..

Lym bh a1g + DI AT 4 D2 AT o P AT
b Ao+ DI AT A DI 4 DI AT — )

A -1 a1z + bb)\_ml + b%Q)\—m2 4 DR AT

0 a9 + 552)\7’"’1 + b%g)\*mz S ng)\*mn 1\ ’

Expanding each of the above determinants along summands of the second column,

we have
1 2
ailr @12 . lai1 b _lap; b
D = L\ 12 4T 52
A Q22 as; by, as; b3,
Cm @11 DT a;p 0
o AT g
az by, Qg1 —

13
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—m 11 @12 —m bh 5%2 —m bh b%2
+ A 1[{)1 " + A 1b1 bl + A le 2
21 @22 21 U9 21 U9
4. +)\—mn %1 b?Q b%l 0 ‘|
551 b b§1 1
2 1 2 2
—m 11 @12 oy |01 b2 s |01 b2
AT b A 1b2 b} A 2b2 b2
21 (22 21 U9 21 U2
4eeaa )\*Tnn b%l b12 b%l O
bgl bay b%l —1
+ ..
n bl bn b2
e 21 aiz LA ?l’Ll 12 Lo 1111 ;2
by, ag by, by by, b3
4eeed Afmn ?1 b?Q b?l 0
by 05, by —1
1 2
T -1 ags 4 b? 4\me 1 b;z
e b7y 1 0
0 b3 0o -1
After simplification, we get
- A
D= an Q12
a1 agy — A
— NN by 4 b)) — ANTEEN(BE 4+ 03,) o — AT TN(BE + D5,)
Lo | [0 e b1y by Lo | [ bi, b,
by byy| a2 ax b3 D3| a2 ax
RIS Y B LT LT
by, byl |aar as

14
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=+ Afmlfmg b%l b%Q + b%l b%Z et Afmlfmn b%l b%Q + bqlll b?Q
b2, b2 bl bl by, bl b, bl
| [921 922 21 U2z | [ |921 D22 21 V22| |
4 )\—mg—mg, b%l b%2 4 bilgl 6?2 S )\—mg—mn b%l b%Z 4 b?l brll2
b3, b3 b2, b2 b2, bl b2, b2
| [921 922 21 U2z | | |921 D22 21 U2z |
4+t )\—mn_1—mn b?l_l b?Q_l b?l b?2
by 05, byt byt
bl bl b2, b? b, b
—2m 11 12 —2m 11 12 —2my, |11 12
R Y N B - N R PR
21 22 21 22 21 22

Now we see that, for (1.8) to hold, i.e.,

a;; — A a2

D = det <A+Zz\_mlBl - /\I> =det (A — ) =

1=1 azr  az — A
conditions ((1.11)—(1.14]) are both necessary and sufficient.
O
Lemma 1.5.2. Conditions (L.11)—(1.14) are equivalent to
tr B' = det B' = 0, (1.15)
det(A + B') = det A, (1.16)
det(B' 4+ B") = 0, (1.17)

where [,v=1,2,....n and v > [.

Proof. 1. We show that assumptions ((1.11))—(1.14)) imply (1.15)—(1.17]). It is obvious
that condition ([1.15)) is equivalent to (1.11]), (1.12)). Now we consider

[ !
a1 + bll a12 + b12

det (A + B') =
( ) ag1 + by agy + by

Expanding the determinant on the right-hand side along summands of the first
column and then expanding each of the determinants along summands of the second

column, we have

[ l

i !
by, ags + by,

det(A + BY) an an + b

[
21 A929 + b22

15
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[ l
bll blZ

l [
b21 b22

! !
_lan arp| e by |byy aiz

(1.18)

Q21 A22

l 1
21 b22 b21 22

= [due to (1.12)) and (1.13))] = det A.

Now we consider

by + by bl + by,

det (B' + BY) = .
( ) bl + by, Dby + b,

Expanding the determinant on the right-hand side along summands of the first
column and then expanding each of the determinants along summands of the second

column, we have

blll bl12 + b11)2
bl21 bl22 + ng

b1111 bllZ + b11]2

det(B' + B*) =
by, by + b5y

l l
bll b12

l l
b21 b22

l v
bll bl?

[ v
b21 622

v l
bll b12

v [
le b22

v v
bll blZ

v v
b21 b22

(1.19)

= [due to (L12), (LI4)] = 0.

II. Now we prove that assumptions (1.15)—(1.17) imply (1.11) and ((1.14). Due to
equivalence (1.11)—(1.12) with (1.15)), it remains to be shown that (1.15)—(1.17))
imply (L13) and (I.14).

If (1.16]) holds, then, from computations (|1.18]), we see that

l l
bll b12
l l
b21 b22

l l
ai b12 b11 a12

Y

I
by, ag

and because of (1.15)) we get (1.13)).
Finally, we show that (1.15)) and (1.17)) implies (1.14). From (1.19)), (using (1.15])),

we get

I
a1 by

1 v
bll b12

l v
b21 b22

v 1
bll b12

det(B' + BY) =
bgl bl22

=0,

i.e., (1.14]) holds.

16
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1.6 Problem under consideration

The aim of this thesis is to give explicit formulas for the solutions of weakly delayed
systems. This is done in Chapter 2. Moreover, we show (in Chapter 3) that, after
several steps, the dimension of the space of all solutions, being initially equal to
the dimension 2(m, + 1) of the space of initial data generated by discrete
functions ¢, is reduced to a dimension less than the initial one on an interval of the
form Z$° with s > 0. In other words, we will show that the 2(m,, + 1)-dimensional
space of all solutions of is pasted to a less-dimensional space of solutions on
Z°. This problem is solved directly by explicitly computing the corresponding
solutions of the Cauchy problems with each of the cases arising being considered.
The underlying idea for such investigation is simple. If is a weakly delayed
system, then the corresponding characteristic equation has only two eigenvalues
instead of 2(m,, + 1) eigenvalues in the case of systems with non-weak delays. This
explains why the dimension of the space of solutions becomes less than the initial
one. The final results (Theorems - below) provide the dimension of the
space of solutions. Our results (published in [9] and [10]) generalize the results
in [15]. Paper [9] considers the system with n = 2 and, in [10], a general
case is treated. From explicit formulas we deduce (in Chapter 4) stability and
so-called conditional stability of the system ({1.1J).

1.7 Auxiliary formula

For the reader’s convenience, we recall one explicit formula (see e.g. [19]) for the
solutions of linear scalar discrete non-delayed equations used in this thesis. We
consider initial - value problem for the first order linear discrete nonhomogeneous
equation

w(k+1) = aw(k) +g(k), w(ko) =wo, keZp;

with a € C and g: Zg; — C. Then, it is easy to verify that unique solution of this
problem is
k—1
wk) =ad" w4+ Y d"glr), keZY,,. (1.20)
r=ko
Throughout this thesis, we adopt the customary notation for the sum: 3>¢_,., F(i) =
0 where ¢ is an integer, ¢ is a positive integer and “ F " denotes the function consid-
ered independently of whether it is defined for indicated arguments or not.
Note that the formula (1.20) is many times used in recent literature to analyze
asymptotic properties of solutions of various classes of difference equations, including

nonlinear equations. We refer, e.g., to [32]— [38] and to relevant references therein.

17



CHAPTER 2. GENERAL SOLUTION

2 GENERAL SOLUTION

In this chapter we derive general solution of weakly delayed system (L.1]). If
holds, then equations and have only two (and the same) roots simultane-
ously. In order to prove the properties of the family of solutions of formulated
in Introduction, we will discuss each combination of roots, i.e., the cases of two real
and distinct roots, a pair of complex conjugate roots, and, finally, a double real root.

Although computations in Parts [I.4] and were performed under assumption

A # 0, results of this part remain valid also if one or both roots of characteristic

equation (|1.7) are zero.

2.1 Jordan forms of the matrix A and correspond-

ing solutions of the problem ([1.1)), (1.4

It is known that, for every matrix A, there exists a nonsingular matrix S transform-

ing it to the corresponding Jordan matrix form A. This means that
A= S"1AS,

where A has the following four possible forms (denoted below as Aj, Ag, A3, Ay),
depending on the roots of the characteristic equation ([1.7)), i.e. on the roots of

2\ — (@11 + a22) X + (ar1a92 — ajpas) = 0. (2.1)

If (2.1]) has two real distinct roots A, Ag, then

A0
(00, o

if the roots are complex conjugate, i.e. A\j o = p £ iq with ¢ # 0, then
A= P 1 (2.3)
-q P

and, finally, in the case of one double real root A\; 2 = A, we have either

or

18



CHAPTER 2. GENERAL SOLUTION

The transformation y(k) = S~'z(k) transforms (1.1]) into a system
y(k+1) = Ay(k) + > B'y(k —my), k € ZZ (2.6)
=1
with B* = S~!B!S, B* = (bf]l), l=1,...,nand i,j = 1,2. Together with ({2.6)),
we consider an initial problem

y(k) = ¢"(k), (2.7)

k ez, with ¢*:Z%,  — R?* where ¢*(k) = S7'p(k) is the initial function
corresponding to the initial function ¢ in (L.4).

Below, we consider all four possible cases (2.2)—(2.5]) separately.

We define

Oy (k) = (0,01(k)",  @a(k) = (3(k), 00", keZl, . (2.8)

Assuming that (1.1]) is a weakly delayed system, by Lemma [1.4.2} the system ([2.6)
is weakly delayed system again.

2.1.1 The case (2.2)) of two real distinct roots

In this case, we have A = A; and A¥ = diag(\}, \5). The necessary and sufficient

conditions (|1.11))-(1.14) for (2.6) turn into

byl + b5, = 0, (2.9)
bIll le2 *[ 7%l *l 7%l
b*l b*l = b11b22 - b12621 = 07 (210)
21 22
A 0 b*l b*l
21 22 2
biy bib| | |bii b

— 0. (2.12)

*V *U
621 b22

Since A\; # \g, equations (2.9), ([2.11)) yield b7 = b, = 0. Then, from (2.10]), we

get biLbsl = 0, so that either by = 0 or b, = 0. In view of assumptions B! # O,

*[ *[
b21 b22

[ =1,2,...,n we conclude that only the following cases I, II are possible
I) bt =b3b =03L =0, b1, #0,1=1,2,...,n,
I) b2 =03 =b1h, =0, 050 #0,1=1,2,...,n.

In Theorem 1.5 below are both cases I, II analyzed.

19



CHAPTER 2. GENERAL SOLUTION

Theorem 2.1.1. Let (1.1 be a weakly delayed system and equation ([2.1) has two
real distinct roots A1, \o. If the case I) hold, then the solution of the initial prob-

lem (L.1), (1.4) is x(k) = Sy(k), k € Z=,, where y(k) has the form

o*(k) if keZ®, ,

k—1 [ n
A (0) + X M7 | b a(r ml)] if kezmM,

k—1 [ n
Mo 0+ TN 8 gt - )
r=0 _l:s+1
+ 58 -
=1 r=0
y(k) = - (2.13)
—|-Q)2(O) E )\Ilclr)\g—ml]
r=m;+1
if kezZritt s=1,2,...,n—1,

n my
M0+ £ |8 2l -

r=

k—1 1 _
By (0) > AT i ke Ze L,

r=m;+1

If the case II) is true, then the solution of initial problem (|1.1), is x(k) =
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Sy(k), k € 2%, where y(k) has the form
(k) if keZ’, |

k-1 n
Mo+ S5 S m)| i kezp

k% =l ior| &
Afp*(0) + 2 A3 l;;rlbmq)l(?" —my)
+Zb;’1[2 N1 d (r — my)
r=0
y(k) = .
+®0,(0) X X;mu’;—l—r]

r=m;+1
. msy1+1 .
if keZ, ' ,s=12...,n—1,

(2.14)

Mo+ £ | 8o )

+®,(0) A;mu’;—l—r] if kelZy .,

r=m;+1

Proof. 1f the case 1) is true, then the transformed system (2.6) takes the form

yi(k+1) = My (k) + Z bibya(k — my), (2.15)
ya(k + 1) = Aoya(k), (2.16)
ke Zg,

and if the case II) holds, then (2.6)) takes the form

yi(k+1) = My (k), (2.17)
’yg(k’ + 1) = )\ng —f- Z b21y1 ]{3 ml (218)
ke Zy.

We investigate only the initial problem (2.15)), (2.16]), (2.7)) since the initial prob-

lem (2.17)), (2.18]), (2.7) can be examined in a similar way:.
From (2.16), (2.7), we get

o5 (k) if ke ng )
y2(k7) = {

(2.19)
Neps(0) if ke Z2.
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Then ([2.15)) becomes

My (k) + E b12902(k —my)
if keZy"
Ay (k) +b*1>‘k "5 (0) + Z leSOQ(k my)

if kezm,,,

2
A (k) + 22 bibde "o U+Z%%%ﬂw

lf k € Zm2+17

yi(k+1) = (2.20)

Ay (k) + E b*l )\k "3(0) + Z b12802(k my)

l=s5+1
if kEZgzﬁ,s:S,é},...,n—l,

wa>+zwukm%m>

it keZy ..

First, we solve this equation for k € Zj". This means that we consider the problem
yi(k+1) =My (k) + Z bibos(k —my), ke Zi®

y1(0) = #7(0).

With the aid of formula ((1.20]), we get

y1(k) = 1(,01 )+ Z /\k 1=r [Z 612<p2 ml)], ke Z’f““. (2.21)

Now we solve equation ([2.20)) for k& € Z"? ., with initial data deduced from (2.21]),

mi+

i.e., we consider the problem.
yl(k‘ + 1) = Alyl(k) + bﬁ)\g_ml ( ) + Z bT2S02(k - ml), k€ Z%f+1>
nlms 1) = X i(0) + 8 g [z i - )|
Applying formula we get(for k € Zﬁfié)
ya(k) =X Dy (my + 1)

k-1
+ Z )"1{714 le)‘gml ©5(0) + Z blz‘PQ r— ml)]

r=mi+1
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s S [Easio ]
=1

k—1

+ Z /\k - leg)‘T " y( +Zb12902 )]

r=mi+1

1901 +Z)‘k - ”[Z b?z%%( ml)}
=1

k—1

+ > AT [bg)‘gml% +Zbl2902 )1
r=mi+1
1%01 +Z)‘k . T[Zb’fﬁ%( ml)]
1=2
k—1
lz AT (r —ma) 4+ 3(0) > A’f—l—u;—mll. (2.22)
r=mi+1

Now we solve equation (2.20) for k € Z,;? | with initial data deduced from
i.e., we consider the problem.

yi(k+1) = (k) + Z bTZQAk "p3(0) + Z bivs(k —mu), k € Zi .,

yalma + 1) = AP01(0) + ZAW[MM ml>]

ma
+bi3 [20 A5 (r —ma) +95(0) X Xf”‘”ASmI] :

r=mi+1
Applying formula (T.20) yields (for k € Z3t})

y(k) =X~y (ms +1)

- 2
+ Z A’f_l_r lz leQ)‘giml )+ Z b12902 ]
=1

r=mso-+1

=y [ATZ’“@T(O) AT [Z bives(r mz)]
r=0 =2
[Z A2 o3 (r —ma) +5(0) Y /\T”/\QMH

r=mi+1

b S0+ 3 sl — )

r=mo-+1 =1

1%01 )+ Z )\k o [Z b12902 )]

mi m2
Ty [Z N — ) £ 3(0) S A’f”Aw]

r=0 r=mj+1

b S0+ 3 st — )

r=mo+1
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g0 +zﬁ1ﬂz%% )

my k—1
+ﬁ42ﬂ“”%ﬁ—mﬂ%£@ 5 w*mym]
r=0

r=mi-+1
ma k—1
+ 073 lz A5 (r —ma) +93(0) Y A’f‘l"“AQ‘mQ] : (2.23)
r=0 r=mso-+1

From (2.21)), (2.22) and (2.23)) we deduce that expected form of the solution of

the initial problem for £ € Z,,* ., with initial data derived from the solution of

previous equation for k € Z;,*"} | is

(k) =\ (0 +Zﬁ1ﬂz%%<nﬂ (2.24)
l=s

k—1
+Z@4§M*T@w—wwww»§jgf“£ﬁl
T r=m;+

if kezmetl,.

We solve equation (2.20)) for k € Z,*% with initial data deduced from (2.24),

i.e., we consider the problem

yi(k+1) = yi(k) + Z bis A5~ 03(0) ‘l‘ Z b12‘P2(k3 —my), k € Lyt

ms+1-

yr(me +1) = AP u+zw”Pme mﬂ

*2“4§W“ﬁﬁ—wﬂww>i wwxww

r=m;+1

Applying formula ([1.20]) yields (for & € st+1+1)

ms+2

(k) =Xy (g + 1)

k—1
bSO S0+ 3 k- )

r=ms—+1 =1 l=s+1

/\k (ms+1) [Ams+l >k + Z )\ms—r [Z b12¢2 )‘|
+§pﬂszww—wﬂwm>z,ww£wu

r=0 r=m;+1

+§:WH@%MW*+zmm ﬂ

r=ms+1 =1 l=s+1

X0 +zﬂlﬂz%% )
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s—1 ms
+> b [Z AR5 (r — ) + 93(0) D A’f‘l‘rkg_ml]
=1 r

r=m;+1

k—1
YT 0+ 3 bt - )

r=ms+1 =1 l=s+1

1%01 ZAk - T[bESO; Z b12902 )]

l=s+1

T [Z N — ) 4 3(0) S A’f-lﬂs-m]

r=0 r=mi+1

Ly [Z N )+ 3(0) S A’f-l-us-m]

r=0 r=mao—+1
+...
*s I[ZAk1T¢2T—mS 1)_‘_902(0) Z )\klr)\T ms— 1‘|
rT=ms— 1+1
k—1 k—1
+ by l% 0) > /\’f_l_rkg_m] +035 l@’é(o) > /\'f_l_TAS_mQ]
r=ms+1 r=ms+1
+ ...
k—1 k—1
e [so;(m R R VIt DO TN
r=ms+1 r=ms+1 l=s+1
1%01 +Z)‘k . r[ Z bTQ@Q( ml)]
l=s+1
k—1
+Zb1* [ZA’“ ok (r —my) + 95(0) D A’f“xg‘ml]. (2.25)
=1 T r=m;+1

In the end we solve equation (2.20)) for k € Z;7 ., with initial data deduced
from ([2.25)), i.e., we consider the problem

yi(k+1) = My (k) + Zb’féx’f M5(0), k€ZL L,

yi(m, + 1) = A’f‘"“s@l( ) + Z ATy (r — my,)

+ Z biéli NPT os(r —my) + 03(0) Y AT"""AZW]'

r=m;+1

Applying formula (1.20) yields (for k € Z5 |,)

k—1
g (k) =Mty (my, +1) + oA Tle“{g)\’” mapg(())]

r=mn+1 =1
/\1 (mn+1) [AW7L+1 * + Z /\mn Tb){;g);( mn)
r=0

n—1
+ S o[ So e + ) 35 g
=1 r

r=m;+1
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+ Z A T[Zb*w ™ok ( )]

r=mn+1

)\1901 0) + Z Alf_l_rbyfgSO;( —my)

n—1 My,
+ > b [Z A5 (r — ) + 03(0) D A'T”AS‘””]
=1 r=

r=m;+1

k—1
.S A’f”[zbm—%;<o>]
r=mp+1 =1

1%01 Z)‘k - Tb?;@: )

3] [z N )+ 3(0) S A’f—lﬂg—m]
r=0

r=mi+1

Bt om0 S ]

r=mo+1
+...
*n 1[2 )\klr%r—mn 1)+¢2(0) Z )\klr)\r My — 1]
r=mp_1+1
k—1 k—1
+ 03 [90’5(0) > A'f_l_wé_mll + 073 [90’5(0) > A'f_l_TAS_mQ]
r=ms+1 r=ms+1
+ ...
k—1
+ b1y ls@’é(o) > A'f_l_rk’é_’”"]
r=mn-+1

=7 (0 Zb [Zkk s (r — my) + 30 Z AT AL ’"l]. (2.26)

r=m;+1
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Summing up all particular cases ([2.21))—(2.26]) we have

y1(k)

ei(k) if keZ?,, |
k., x k=l k—1—r n wl %
)‘1901(0) + ;0 Al 121 b12902(r - ml)
if kezmt,
k. x k=l k—1—r n *l, ok
ATe1(0) + 7;0 Al l; biops(r — my)
m1 k—1
vt 8 et - )+ 50) 'S ]
r= r=mi
if ke Znpts,
k, x k=l k—1—r n sl %
AT (0) + 7;0 Af 123 bios (r — my)

*1 st k—1—r, % * k=l k—1—7ry\r—my
+b75 z_:o)\l 5(r —my) +5(0) X A Ay

r=mi+1
*2 e k—1—r % * k=l k—1—7r\r—mso
+b13 Zo AT T3 (r — ma) + ¢5(0) Z+1 AL
r= r=ms

: m 2.2
if kezmtl, (2.27)

k—1 n
i)+ S| £ st — )
r=0 l=s+1
+§ﬁ4%w*”@v—m>
k=l k—1—ry\r—m
+p5(0) X AT AT

r=m;+1

: sp1+1
it keZyty,

n my
i)+ £ 85 2o m)
LS -

roi0) $ g

r=m;+1
it keze .,

Now, taking into account (2.8)), formula (2.13)) is a consequence of (2.19) and ([2.27]).
Formula (2.14)) can be proved in a similar way.

Finally, we note that both formulas (2.13)), (2.14)) remain valid for b, = b3\ = 0.
In this case, the transformed system (|1.1)) reduces to a system without delays. This

possibility is excluded by conditions (|I.3]).
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O
2.1.2 The case (2.3)) of two complex conjugate roots
The necessary and sufficient conditions (1.11)—(1.14]) take the forms (2.9), (2.10)),
E12) and
p q b*l b*l . . i} i}
- R p(b1l1 + b2l2) + Q(b1l2 - 52l1) =0 (2.28)
by b3 -q p
where [,v =1,2,... ., nand v > L.

The system of conditions (2.9), (2.10) and (2.28) gives bt = b3, (031)? = —(b7})?

and admits only one possibility, namely,
b = b = it = b = .
Consequently, B* = 0, B! = 6.
The initial problem , reduces to a problem without delay
z(k+1) = Ax(k),
z(k) =p(k), keZ’,,

and, obviously,
o(k) it keZ’

(k) = o (2.29)
AFp(0) if ke Z°,

From this discussion, the next theorem follows.
Theorem 2.1.2. There exists no weakly delayed system (1.1)) if A has the form (2.3)).

Finally, we note that the assumptions ((1.3)) alone exclude this case.

2.1.3 The case (2.4) of double real root

In this case we have A = A3 and AS = diag(\*, \¥). For (2.6)), the necessary and
sufficient conditions ([1.11)—(/1.14]) are reduced to (2.9)), (2.10]), (2.12) and

A0

*[ *(
b21 b22

*{ *[
bll b12

0 AT B 4 055) =0 (2.30)

where [ =1,2,...,n.
2
From (2.9), (210) and (230), we get bibb3i = — (b7})". From the condition (2.12)

we get

biibss — biab3 + b3obiy — 31615 = 0 (2.31)
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where [,v =1,2,...,n and v > [. Multiplying (2.31)) by b;Lb13, we have

bribisbiabis — (b5) 057015 + bisbiibisbis — by bi(bi5)* = 0. (2.32)
Substituting b1hby = — (bﬂ)z, bisbyy = — (b¥)? into ([2.32) and using (2.9) we
obtain

—brib77b5bys + (b1)° (b17)% — biibiibiskis + (b11)*(b5)* = 0. (2.33)

The equation ([2.33) can be written as
(Biabis — bisbib)? = 0
and
biabiy = bishis. (2.34)

We analyse the two possible cases: bibbst = 0 and bibbsl # 0.

For the case bibb3t = 0, we have from (2.9), that bt = b3, = 0 and b1, = 0
or byt = 0. For b¥, = 0 and b3} # 0, condition gives b79 = 0, where [,v =
1,2,...,n and v > . Then, from (2.9), for | = v, we get b7} = b5y = 0 and
b3y £ 0.

For b3t = 0 and b}, # 0, condition gives b3} = 0, where [,v =1,2,...,n and
v > [. Then, from (2.9), for [ = v, we get b{¥ = b33 = 0 and b}y # 0.

Now we discuss the case bibbs} # 0. From conditions (2.9), (2.10]), we have biLbsl =
2

_ (b’{ll) and bitbs, # 0. This yields b7 # 0, b5, # 0 and, from (2.34), we have

by # 0, b7 # 0. By conditions (2), (E10) for v =1, we get b3y # 0, b3; 0.

From the assumptions B! # O, we conclude that only the following cases I, II, III

are possible
I) by} = b3y = b3y = 0, by # 0,
II) b7} = b3, = bjy =0, b3) # O,
ITI) b5 # O,
where [ =1,2,...,n.
The case b’{lzb;ll = 0.

Theorem 2.1.3. Let (1.1 be a weakly delayed system, equation (2.1) has a two-fold
root Ao = X, bihbst = 0 and the matriz A has the form ([2.4). Then the solution of
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the initial problem (1)), (1.4) is x(k) = Sy(k), k € 2>, where in the case bi =0,
y(k) has the form

o*(k) if keZ®

—Mp,?

k—1 [ n
A (0) + X N1 | 2 Db a(r ml)] if kezmtt

k-1 [ n
N+ S| £ o)

+ 30 b [% N By (1 — )
=1 r=0
(k—1— ml))\k_l_mlq)Q(O)]

if keZimit s=1,2,...,n—1,

my

Mo+ | 8 Nt )

r=

(b —1— ml)xf—l—mqu(oﬂ if keZe .,

(2.35)

If bil, = 0 is true then the solution of initial problem (L.1)), (1.4) is x(k) = Sy(k),
k€ Z%,, where y(k) has the form

o*(k) if keZ®

—MmMnp?

k—1 [ n
A (0) + X N | S iy (r ml)] if kezmt

k—1 [
N (0) 15 i zz%aw—mﬂ
r=0 _l:s+1
+ f: bt [% A== (1 — )
=1 r=0
+(k—1-— ml))\k_l_mlq)l(O)]

if keZimi s=1,2,...,n—1

N0+ £ 80—

(b —1— ml))\k_l_mlq)l(O)] if keZs .,

30
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Proof. Case I) means that b, # 0. Then (2.6) turns into the system

yi(k+1) =y (k) + Zb12y2 (k—my), k € Z¥ (2.37)
Yok + 1) = Ay2(k), (2.38)
and, if b3} # 0, turns into the system
y1(k+1) = Ay (k), (2.39)
yo(k+ 1) = \ya(k Z bilyi(k —my), k € Zg° (2.40)

System (2.37)), (2.38]) can be solved in much the same way as the systems ([2.15]),

(2.16) if we put Ay = A2 = A, and the discussion of the system (2.39), ([2.40))
goes along the same lines as that of the system ([2.17] - ) with Ay = Ay = A\

Formulas and ( are consequences of - -

O

The case biLbs, # 0.

For k € Z°,, , we define

1 )2 1 T
010 = (01 ot + 32 i -5 ety + R am]) . e

Theorem 2.1.4. Let the system (1.1)) be a weakly delayed system, equation (2.1
admits two repeated roots Ao = X, bibbs, # 0 and the matriz A3 has the form (2.4).
Then the solution of the initial problem (1.1)), (1.4) is given by x(k) = Sy(k), k €
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7%, where y(k) has the form

o (k) if ke Z_m ,

k—1 rn
0) + > N0 (r — ml)] if kezmtt
r=0 Li=1

k—1 r n
0) + Z \F—i=r Z Of (r — ml)]
r=0 Li=s+1
CE[Eaaro-m
y(k) = =0 (2.42)
+(k—1-— ml))\k_l_m@f(())]

if kezZmitt s=1,2...,n—1,

)+ i [g N (r — )

=1

H(k—1- ml)Ak—l—m@;‘(O)] if keZe .,

Proof. In this case, all the entries of B* are nonzero and, from ([2.9)(2.10)) and ([2.30)),

we get
I
—(b11)?/b7; =i

where [ = 1,2,...,n. Then, the system (2.6 reduces to

yl(k’ + 1 )\yl —|— Z [bilyl k’ ml) + b12y2(k ml)] (243)

=1

Yok +1) = i:[

=1

*l
bll

1(k = my) + bjiya(k — ml)] (2.44)

where k € Z. Tt is easy to see (multiplying (2.44) by b1 /b1 and summing both
equations) that

*1 *1

b} b
yi(k+1)+ bl 2ya(k+1) = A [yl(k) + b—lf yQ(k)] . keZy. (2.45)
11
Equation ([2.45)) is a homogeneous equation with respect to the unknown expression

yi(k) + (b1/671) va(k).
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Then, using ((1.20]), we obtain

*1

b
Gilk) + g eR) i ke,

(k) + 22 () = e
A

With the aid of (2.46)), we rewrite the system ([2.43)), (2.44) as follows:

nk+1) =

F1p(0) + bl @2(0)1 if keZy.

n b*l .
() + 501 [t = ) + P -
if ke
*1\yk—m * bﬁ *
Ay1(k) + 01 AT 91(0) + byl —1%>(0)
bis
800 ot =)+ (e = )
if keZy,.,

b*l i
(k) + v [0+ 2300

*1

b *
# $50tt [t = )+ (S —

it keZ,’,,

s b*l .
(b + £ 2100 + s 0)
= 11
*1

n b .
+ 5 btk —my) + 2 (k- my)
l=s+1 b

if keZ,ih,s=34,....,n—1

b*l .
Ay (k) + zwukwlﬁm>+;%um]

if keZy .1,

33
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n (b1)? bis
AyQ(k) - Z b*l (k: ml) + b*l (IOQ(k ml)
= 12

if keZy"

unth) = S 00+ 12 500
O3 [+

I
@‘

bii
(1) l bl

Aya(k) — lil () [so (0)+ 22 5 <0>]

yo(k+1) =

s (03 [ . by
Mya (k) — 121 bl ©1(0) + bit ©5(0)
n b*l 2 b*l
_l_ - (()1112) [¢1(k my) + b*l gpQ(k —my)

S
if keZyt,s=3.4,...,n—1,

n (bTé)2 k—my * bT% *
Aya(k) = 20 == AT e1(0) + 5 93(0)
=1 by bi1

it kezy ..

= )

1k — ml)+b*1902(k my)

First, we solve this system for k£ € Zg"" and consider the problems

*1

it keZg"

*1

34

n bl
-+ 1) = 30+ 85080 )+ i = )|

b3
o R )
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With the aid of formula ([1.20]), we get

* = —1—r - * * b*l *
) = Xgi0) + 8 (3208 ot o) + st = ).
r=0

=1

kezmt (2.49)

k x e s G ] bis .
) = 230) = - (30 G it g 4 st = ),

k €zt (2.50)

Now we solve system (2.47), (2.48) for k € Z;;2,,, i.e., we consider the problem
(with initial data deduced from (2.49), (2.50))
*1

biz .
yi(k+1) = Ayi(k) + biAk—m [w’{(o) + bif 902(0)]

n b*l .
£, ot ) + P — )
if keZ,’,,

yi(ma + 1) = A™Hpi(0)

mi n b*l
# 8 vt it - mo + it — o) ),

i+ 1) = dnth) = S 00+ 12 500

- 8 O Lot = o + 2 30— )|

=2 by
if keZy?,,

y2(ma + 1) = A" Tp5(0)

m1 n b*l b*l
_EoAml_r<Z(b) [901( —mi) + 3 5(r mz)D-

=1 11
Formula (T.20) yields (for k € Z*T))

*1

— = —1— * — * b *
y1(k) % (m1+1)yl(m1 +1)+ Z AR1 T<b1i>\k e [901(0) + bg%((})l

r=mi+1
“ *( * bié *
+an @i (r ml)‘FleS%O"_ml)
1=2

N g 0) 3w (S it - m

=1
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bT% * = k—1—r *1\yk—mq * bi% *
+b*1902( my) + > A biiA ©1(0) + b*l%(o)

r=mi+1
o i
#3200 — )+ it = )
=2

* = —1—r = * * b*l *
I)\kgol(O) + Z AR <Z blll l‘Pl(T —my) + b’lﬁ ©5(r ml)])
r=0

=1

k—1 b*l
5 (e [0 + o)
11

r=mi+1

" i

#3208k it =+ it = o)
=2

i k—1 i n i i bl .
=Mt (0) + S0 AR (Zbﬁl [%(r—m) ey mﬂD
r=0

1=2
< k—1—rpx*1 * bT% *
+Z>\ biy |01 (r —ma) + b*1¢2(r—m1)
r=0

*1

* —1-m * b *
+(k—1- ml)bﬁ)\k o [901(()) + b’lj 902(0)]

* = —1—r . * * b*l *
~Ngi(0)+ 3 (S0 et = + ik )
r=0

=2

*1

* — —1—r * b *
+ bﬁ <§ : AR [801(7" - ) bif 902( ml)]
r=0

—1-m * b*l *
= 1= ) o)+ s ). 251
11
k _)\kf(m1+1) 1 )\k 1—r (bﬁ)z)\rfml *(0 bT% *(0
ya(k) = ya(ma + Z bl @1( )+b*1902( )
r=mi+1
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= k—1—r (bﬁ)2 r—mi * bT% *
- > A @)\ (0)+b*1902(0)

r=mi+1
n b*l 2 . b*l i}
e 3O ey 4 B2
=2 b12 b
k, _x e k—1—r = (lel)Q * bT% *
=\ 902(0) - Z A Z brl @1(7” —my) + W%‘b(?" - ml)
r=0 =1 Y12 11

= k—1—r (bT%)2 r—mi * bT% *
- 2 A R ORI

1
r=mi+1 b12

oy S e (4 (2 i
N30 = N (3 G it = + Pt - )

(bﬁ)2 - k—1—r * b?% *
- bT% Z )\ SOI (T - ml) b*l SDQ( ml)
r=0

1= )Xt [w;(m 4 bz wS(O)D (2.52)

11

Now we solve equations ([2.47] - 2.48)) for k € 7,3, i.e., we consider the problem
(with initial data deduced from (2.51)), (2.52))
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*1

2 b
k1) = Aga(k) + 2 oA l 1(0) + bifé@’z“(o)]

*1

n b * . m
+ 2 bt [90’{(16 =) + ek = mz)] if k€ Zp,

yi(ma + 1) = A"2¥ei(0)

ms n b*l
# 8 v (St et =m0+ 2

r=0
*1 ™ mo—r * b?% *
+bi1 Zo)\ : @1 (r —my) +T1902(7"_m1)
r= 11

b*l .
(s — ) AT [go’;m) bgmm]),

2 (b))? bis
palk 1) = dga(k) = 2 5= |#1(0) + 323 3(0)
=1 bi5 bil
b*l " b*l
_ l;g <leQ) [ 1<k - ml) b*l @2(/{3 ml)] if ke Z’m2+17

ya(mg + 1) = X2 Hp5(0)
ma n b*l 2 i} b*l .
— > AT Y ( 1*11) @1 (r —my) + b12802( —my)
r=0 1= by bil
b*l 2 /m1 . . b*l .
G (S ot = mo) + st = )
12 r=0

= v i) + 12 so;<o>] )

Applying formula (1.20) yields (for k € Z%gié)

*1

b
yi (k) =Xy, (my + 1) + Z A T(Zb*’)f mll 0)+b}jgo;(0)]

r=mso-+1
= *[ * b;% *
"’an ©1(r —my) + b*1902( —my)
1=3
S g ) 4 3 (S il -
=2

bis .
+b*1 902< l)
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*1

b
(S -+ -
mo—m1 * bi% *
Hmy = m)A™ (1(0) + 2 3(0)
11
s 2N b1
3D SR (0TS FURS 0]
r=mso-+1 =1

LY [mr )+ st = )
=3

i} i} b*l .
) + Z)‘k . r(zblll l%(r —my) + b}j%%(
1=2
1" ko1 bi
ot (ZA o et m) + ikt )|
r=0 11
k—1-my * bT% *
+(mg —my)A ©1(0) WQOQ(())
11
k—1—r *[ yr—my bi% *
+ Z A Zb A 0)+b*1302(0)
r=mao+1 11
- * * b;% *
+Zb11 @1 (r—my) + b*1<P2< —my)
1=3
T * * b*l *
=\t (0) + Z AL <Z by [‘Pl(r —my) + bg p3(r
1=3
o k—1—rzx2 * bT% *
+> A biy |@i(r —ma) + bl —rpa(r —ma)
r=0

i} mi i . b*l .
ot (35 it = ) + s - )|

r=0

e i} b*l .
+(m2 — m1)>\k ! ! [@1 (O) + b’lﬁ 902(())])
*1

* —1-m * b *
+ (k—1—my) (bﬁ)‘k o [‘Pl(o) + b§¢2(0>1

i} . . b*l .
b2\ Lmms [%(0) + bif %(@D
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i k—1 i n i . b*l .
=1 (0) + > ARt (E b} [901(7" —my) + bg ©5(r ml)D
r=0

=3
1 - k—1 ba‘j%
ot (324 it = ) + s - )
r=0

R L aa CIORE =t

§ ma 1, . b*l .
raiz( S ot = ma) + st = o)
—1-m * bi3 *
= 1= [10) 4 g0 ) (2.53)

k—1 2 b*l 2 b*l
MMﬂHmmmm+n—§:ﬁ+(Z(MXWﬂﬁ@+ﬁ@@]

b*l
r=ma+1 =1 12

*1

#3 CAE ot =+ st = o)

*l
bll

_)\k mo— 1[)\7712—1—1 * Z}\mg r(Z
r=0

l% r—my)
1=2

LU
b*l 902(T - ml)

_ (bill)z % A2 *( . ) + E *( - )
bl P\r =My Pl — 1y
12 \r—o0 11

> ol A ©1(0) + bl —203(0)

=3 12 11
K G 1 [ (01)? i
=XP@3(0) = D NN S T — my) 4 s (r — )
r=0 =2 bl? b
(bi%)Q “ k—1—r * T% *
T T ZA 801(7“—7”1) + b*l%(r —my)
12 r=0 11
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e § b*l .
(s — A ﬂ%@+ﬁ%@b

= k—1—r 2 lel r—m, * bT% *
- Z A (Z A : [901(0) + b*l ‘P2(0)]
r=mso-+1 =1
= (01)? i)
#32 GBE it = + P - )
=3 12 11
k _x = k—1—r = (lel)2 * bT% *
=A"p5(0) — Z A Z bl P1(r — ml) b*l @2( ml)
r=0 =3 Y12
mo i b*2 2 b*l i
_ Z A1 (()1112> [gpl(r —my) + bﬁ os(r mz)]
r=0
pr1y2 /mu U bl i
- (blfl) (Z A l%(r —ma) + 25 (r ml)]
12 r=0 11

I i b*l .
+(mg — ml))\k 1=m [801(0) + bg%(())D

(bi%)2 k—1—m1 * bT% *
— (k—1—my) il A ¢1(0) + b*lsoz(O)

b*2 2 b*l
e i)+ o))
12

§ k—1 - n b*l b*l §
:)\kSOQ(O) o Z )\k 1 <Z 11 [Spl r — ml) bi? (p2(7’ - ml)])

r=0 =3

(bﬁ)Q - )\k—l—r * b){% *
- b{% Z Lpl (r —m ) b*l SOQ( ml)

r=0

e , b*l .
= 1= m [0+ i)

(bi%)Q e k—1—r * bi% *
T Z)\ 901(7”_m2)+bT1%02(7‘_m2)
12 r=0 11
—1-m * b*l *
= 1= (o) + o). (2.54)
11

From ([2.51)—(2.54) we deduce that expected form of the solution of the initial
problem for k € Z;;° ., with initial data derived from the solution of previous

equation for k € Z,>~! | is

m2+
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i} k—1 i n . . b*l i}
) N0+ SN (S0t [t o) + 2t = )
r=0

l=s

s—1 my b*l
# 5Pt (v it = + st — |

=1 r=0
k—1—my * bT% *
(k=1 —=my)A 1(0) + bl =1 #5(0) (2.55)
if kezptl,,

(k’) _)\k *(0 _k_l)\k’—l—r & (b>1kl1)2 (0 bT% *
y1(k) =A"p5(0) ;) ZZ bib p1(r ml)"'b*ﬁpz( —my)

= (lel k—1—r bT% *
- Z leQ Z A Qol ) b*l @2( ml)

=1 r=0
k—1—my * bT% *
(k=1 —=my)A ©1(0) + il 7 %5(0) (2.56)
it kezmtl,

We solve equations (2.47), (2.48) for k € Z,*%", with initial data deduced from (2.55)
and ([2.56|) , i.e., we consider the problem

s b*l
yi(k+1) =y (k) + l; PN l‘PT (0) + bg 903(0)]
n 1 % bT% *
+ 2 b |ei(k —m) + 5 es(k —m)
l=s+1 b
if ke Zz?—:la
y1(ms 4+ 1) = Am=+1p1(0)

mes n b*l .
e U PR =)

s—1 my b*l .
+1216’IZ1<ZOX“S"" [wi(r—mzH Tes(r mz)}
= r= 11

b*l .
Hm—WW“WM® ﬁ%@b
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s b*l 2 i *1 i
vk +1) = Np(k) = 32 (5,{112) [sol(O) + bﬁ 2(0)]
n b*l)2 b*l
550 [ o)
if k € Z,°4,
ya(ms +1) = A 1p3(0)
o [ 2 (011)? . L

- Z AT lZs bl 1(7”_ml>+ﬁ902(7"_ml)

O (3 i
— lzl bl DO i (r —my) + b TP (r —my)

= r=0
*1
+(my — my) Ao [901‘(0) o s@S(O)D
Applying formula ([1.20]) yields (for & € Zﬁsz;l)
k—1 *1
) N, 1)+ 3 N (SR |0+ i)
r=ms+1 =1
SN i _
b3 o[- m) + st = mo)
l=s+1 .

:)\kfmsfl [AMSJASOT(

*1
12 %
b*l 902

o)

o)+ 3 (Yoo
r=0 l=s

@1 (r —my)

*1
# S (S =+ st - m)
r=0

*1
12 %

+(mg — my) AT [@T(U) + bl IP2

0]

)

*1
12 %
b*l (702

0]

k—1 s
RIS PR
r=ms+1 =1

. )
b3 0 et ) + )
l=s+1
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* = —1—r = * * b*l *
M\t (0) 4 Z P! <Z bl [cpl —my) + b%%(r — mﬁ])
r=0 l=s

* —1—7r * b*l *
+Zb111 (Z AR [901(T_ml) + bﬁ‘ﬁz( ml)]

r=0

e . b*l .
+(my — my) NI [801(()) + b’lﬁ %(0)1)

*1

k—1 i s o i b .
RO U = T0)

r=ms+1 =1

n . . b*l .
+§:Mpm—m>;%x ~m))

l=s+1

NGO+ S (30 b et + st )

l=s+1
*S - —1—r * b*l *
+ 077 Z AR [@1 (T —m ) bi? 902( ms)]
r=0
* - —1—r * b*l *
+ b} (Z A lg@l(r —m) + s (r - ml)l
r=0 11

b*l .
Hm—mMHWﬁ@@ ﬁ%@b

m2 b*l
#2320 it = ) + e )|
r=0

o =m0 1 0)+ 0]

+ ...

*1

*S— = —1l=r * b *
+ b7} 1(2 ARt l%(r_ms—l) bﬁ%( ms—l)]

r=0

N i} b*l .
+(ms — ms—l))\k e l%ﬁ(o) + bﬁ‘%(@])

*1

—1—m k E3 b *
+ (k=1 —my) (Ak Y l#ﬁ(o) + bng(m}

*1

—1—ma 1% * b *
AN [@1(0) + bg @2(0)]
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+...
b*l .
A 10+ 0
11

—1—mgsp*s * b*l *
+AM! oH [901(0)"‘ 5902(0)]>

11

~igi(0) + S (3 b it — ) + gt =)

l=s+1

m1 b*l
(S0 [t )+ st — )

r=0

—1—m * b*l *
+(k =1 —my) A [%(0) + bif%(O)D

mo b*l
oS0 [t =) + Pt ma)
r=0

s | s b .
+(k — 1 — mg) N1 [901(0) + bl?@z(O)D

+ ...

*1

*S— s —1—r * b *
i (3 A i) + gt = )

r=0

—1-m * b*l *
Hh%—mnﬁlsﬂ%@+ﬁ%@b

*S S —1-r * by *
(S ot = m 4 st - mo)
r=0

—1—m * b*l *
+<k —-1- ms))‘k ! ° [@1(0) + bi?¢2(0)1>

~Nigi(0) + 5 (3 b it — i + gt =)

l=s+1
> [ — k—1—r * bT% *
+an Z/\ @1 (r —my) + T1902(7’_ml>
=1 r=0 1
b*l .
(k=1 = m) A 01(0) + S 22405(0) (2.57)
b1
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(k,) _)\k—(ms—i—l) 1) — = )\k—l—r - (bi(ll)Q)\r—ml * 0 bf% * 0
Y2 - y2(m8+ ) Z Z % #1 ( )+ b*1‘:02( )

l
r=ms+1 =1 b12

n (b*l)Q i b*l . ]
+ 30 B Lot — ) + Bt mo
12 i

)\k ms—1 )\merl * )\ms r = (bfll)z [ * -
Z Z b*l QDl(T ml)
l=s 12 |

b*l .

+o it mz>])
s—1 b*l 2 /my . . b*l .

_ Z (b19{1l2) (Z A\ |ﬁ01 (r — ml) bﬁ g02(7’ — ml)]
=1 r=0

+(mg — my) AT [ if ©s O)D]

= k—1—r ¢ lel r—m * bT% *
- > A (Z bl A l[@l(o)"‘b*l%(o)]

r=ms+1 =1

: i
it = m + gt m)

l=s+1 bTZQ
k, _x o k—1—r = (lel)2 * bié *
=A 902(0)_2)‘ Z bl Sol(r_ml)+bT1<P2<7"_ml>
r=0 l S 12 11
= bill )\k 1—r * o T% *
Z Z @1 (r —my) + bl g P (r —my)
=1 r=0

= k—1—r ¢ (lel)Q r—my * bT% *
- Z A A ©1(0) + le‘Pz(O)
l

r=0 =s+1 11
b?i 2 o k—1—r bT% *
b*s Z A Sol 5) + b*l SDQ(T ms)
12 r=0 11
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bi% /\k 1—7r [ o Lﬁ * o
- O (S et = m) + 2y = m)
12 L

r=0

e [ i} b*l .
=N [10) 4 250
L 1

*1

(bT% k—1—r | * b12 *
Z)\ @1 (r —mg) + b*1<P2( — my)

. r § b*l .
F(my — mg)AFLm2 ¢1(0)+bif<ﬁ2(0)D

+ ...

(b*SI = k—1—r bil(; *
*s 1 Z A 901 msfl) b*l 902( msfl)

N . b*l .
+(mg — ms,l))\k 1=ma [901(0) + bif 902(())])

k—1—mq (bi%)Z * bT% *
= (b= 1= my) (X B o) + 22 0)
12 11
e (b*2)2 * prl .
e b*sfl 2 . b*l .
+)\k 1 s—1 ( bl*ls 1) [90 (0) bi @2(0)]

. b¥s 2 . b*l .
+)\k 1 s( 1*13) l%p (0) 61?902(0)])

12

k, _* = k—1—r = (bill)2 bT% *
=A 902(0) - Z A Z oy 901(7" - ml) + 71902(7" - ml)
I by, b1

r=0 =s+1
b*l 2 /ma L, . b*l .
_ (bl*ll) <Z k-1 [%(r —my) + b}j%( m1)1
12 r=0

b*l
—i—(/{? -1 7711)>\k_1_m1 [@T(O) + bﬁg&;(@)})

(bT%>2 o k—1—r * bT% *
T T2 Z)\ @1(r —ma) + b*l%( —ms)
12 r=0

+w—rwmﬂ*%ﬂﬁ@+%wmﬂ)
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+ ...

b*s 1 Ms—1 b*l .
(MR(ZA“Tpl mﬁ+5%(ﬂm4

12 11

e . b*l .
Hl= 1= )X [0+ )

*1

b*s , b .
O (S it = ma o+ it ma)|

x5
b12 r=0

i} b*l .
(k=1 — mg) Akt [%(0) + b*}i%(mb

k, _x = k—1—r = (bill> bT% *
=\"3(0) — Z A Z b{é @1(r—my) + W‘Pﬂr —my)

r=0 l=s+1
s b*l 2 /my 1 . b*l .
_ Z ( bl*ll) (Z /\k 1 |ﬁpl (r — ml) b}j P9 (7“ — ml)]
=1 12 r=0
—1-m * b*l *
11

In the end, we solve equations (2.47), (2.48) for k € Z7; ,, with initial data
deduced from (2.57) and (2.58]) , i.e., we consider the problem

*1

b
n(k+1) = (k) + zb*’A’f m lso’{(O)Jr b}jso;(O)] if ke i1,

*1

biz .
Y1 (i, + 1) = XL (0) + Z Amn=Tpin [gol( —my) + bﬁgoz(r — mn)l
11

n—1 my b*l .
+ X bﬂ(z T [w’{(r =)+ sl mﬂ]

=1 r=0

b*l .
~|—(mn — ml)Amniml [@T(O) bﬁ 902(0)‘| ) )
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*[\2

n b b*l
Ya(k+1) = Aya(k) — lZI (bl*ll) N [‘P*@) + bil 902(0)1 it k€ Zy, 11,
=1 019
Ya(my + 1) = X" 103(0)
b*n 2 b*l .
- z e Wi lwl( my) + bifsoz( mn)]
12
b*l my . b*l .
-y ! 1*11) YN ot (r —my) 4+ 20 (r —my)
=1 by \;2 bi1
o — )W [510) + Bs(0) ).

Applying formula (1.20) yields (for &k € Z55 |,)

r=mpn+1

b*l
yi (k) =Xt Do (my, +1) + Z Ae-1= ’“(Zb*l/\’" ml[ (0) + b1§<p;(0)D

b*l
:Ak—mn—l [)\mn—&-l + Z )\mn—rb*n l ( mn) 12 *( mn)]

b*l 902

r b*l
# S (S [t + it = )

1 P2
r=0 bl

o r , b*l .
= [ 100) + 520 )

k—1 o n o rm . b*l .
X (S o) + o)

r=mn-+1 =1
k 2 k-1 bi3
SNEGH(0) + SN et ) + i - )
r=0
Y bi3
s bil(zA -1 [wt(r )+ B mlﬂ
=1 r=0 11

i b*l .
+ (m, — ml))\k_l_ml [901(0) + bif @2(@])

b*l
B (e o ol
r=mmn+1
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i} Mp Cren i b*l .
=\t (0) + Z A [@1( —my) + lejQDQ(T - mn)]
r=0

*1

bis .
(Z AR [cpl r—mp) + bf}jgoz(r — m1)]
. . b*l .
Hm—m»“ﬂ%@+ﬁ%@b

mo b*l
+ b7 (Z AR [@T(T —my) + b’lj ©5(r m2)]

r=0
k—1—mao * b>(1<% *
Hm, = ma) N1 L (0) + R 0
+ ...

. Mp—1 . . prl .
+ b1t 1( Z AP l%ol(r_mnl) 63902( mnl)]

r=0

. . b*l .
=X [0+ )]

*1

—1—m * * b *
+(k—1—m,) <A’“ by [%(0) bii%(o)]
1

*1

—1—moy* b *
PN [1(0) + {30

+...

*1

—1-m *n— * b *
L "Tlhyy ! l@%(o) + bﬁ 902(0)1
11

—1l—mp p*n * bi3 *
4 AR "biy [901(0) + bﬁ@?«»])

miy b*l
i)+ (35 fettr =) + st = )
r=0

H= 1m0+ i)

ma b*l
pa2( S ot = ma) 4 it = o)
r=0
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b
= =m0 1 0) 4 i
11

bis .
+b*1 ()02( mn)

— b*l my .,
R 3

r=0

*1

—m * b *
= v i) + i

§ (S

*1

*1

o))

o)

b*l 2
( 1*11) P\l [@T

bis .
+ bTI?S%(T - ml)}

0+ 0

r=mpn+1 =1 b
_/\k (0 — )\kfl r(b?ll)
=\"05(0) — Z - ©1(r—my,) +
r=0
n—1 (bill)2 (ml [ b*l
_ Ab=1=m | 12

o1

*1

b *
kst m)

bt )

(0) +

*1
12 %
b*l (102

(2.59)
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e . b*l .
-HW—WWIIPWH@?mm

= k—1—r = (lel)Q r—my * bT% *
- > A > R OB T210)

r=mn+1 =1

o) = 32 B ot ) + s - )

r=0 12
b*l 2 mi . . b*l .
= TSR ket | e — )+ B2 — )
b3s = b1
e . b*l .
oy = ¥ [0+ (R0
b*Q 2 mo i, . b*l .
UV D o VS S PTG SR Py
bz \ & bl

(b*n 1) e k—1—r * b?% *
- b= 1 Z A 1 (r —mp_1) + b*1<P2< — Mp_1)

r=0

e i b*l .
+(m, — mn,l))\k 1=mn=1 l%(o) + bﬁ @2(@1)

(k=1 =m,) L |61(0) + 223(0)
12 11
e b*2 2 . b*l .
et B o)+ H o)
12 11
+..
. b*n—l 2 . b*l i
+)\k 1 n1<bl*1n 1) [¢ (0) bi?¢2(0)‘|
- prn 2 * b*l .
_)\k: * 0) — (b)ﬁ)2 — )\k—l—r * . bT% *
=\"05(0) b1l Z @1(r —mq) + b*1902( —my)
r=0
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b*l
+@—mew*%ﬂ¢@+£?mﬂ)

_ <bﬁ)2 %)\kflfr *<7“ - m )+ bﬁ *( )
bT% ~ ()01 2 b*l 902 — My

—1—m * b*l *
+(k =1 —my) NI [901(0> i st(U)D

+ ...

b*n 1 mnp—1 . b*l .
( *n 1) (Z )\k . |ﬁol mnfl) bi?(p2< mnl)‘|

e . b*l .
= 1m0+ 250

b*n Mp b*l .
(1)) (Z \E-1-7 [% —my) + bﬁ%(r—mn)]

12 r=0

ey | bis .
+(k =1 —m,,)\k-1=mn [%(0) bng(o)b

r=0

k _x = (lel)2 @ k—1—r * bT% *
=X"5(0) _Z bl Z)‘ gpl(r—ml)—i—ﬁg@(r—ml)

H= =m0+ 1)) 2.0

Summing up all particular cases (2.49)), (2.51)), (2.53)), (2.57) and (2.59)) we have
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pi(k) if keZ®, |

k—1 n b*l .
a0+ S (0t et = + st — )
if kezmt,

=2

k—1 n b*l .
i)+ 5 (8501t [et—m) + iRt — )
b*l .
+bﬁ(;:Ak1*[¢ﬁr—wnn b1 e 7nn]
b*l
HE= 1= N 1 0) + o)
if kezZmpt,
k, % LR U by
A 901(0)"';::0/\ l;,bn ©i(r —my) + 6*1902(7"_7”0
*1 s k—1—r * bT% *
+b71 Tz::())‘ ¢1(T_m1)+bT1@2<T_ml)
b*l
He= 1= ¥ o0+ i)
*1

12 %

m2
wy =) (BN et ) + st - )

b*l .
+w—1—mgﬁ*”mpﬁm+;%wmb

it kezZpits,

k—1 n b*l .
i) + 5 0 (52 ot et = mo + it - )|
s m; b*l
+ b X NI @i — ) + s (r — )
=1 r=0 b1
b*l .
+%—1—wmﬁlnnpﬂm+bﬁ%mﬂ)

. s 1
if keZnpiht

n my b*l .
i)+ £t 01 ot = ) + P - )

= 1= ¥t )+ o)

if keZy o
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and from cases (2.50)), (2.52)), (2.54), (2.58]) and (2.60) we conclude
os(k) if keZ®

—Mn?

k, . * ol k—1—r n (bill)Z | * bT% *
A5(0) = 2 A 2 | =) £ 5 es(r —m)
r=0 =1 by | bi
if kezmt,

n (011)* | bis

k—1
Mo (0) — 3 AR (5 SHE ot (e — my) 4+ 2bihes(r — my)
r=0 = by | b1
(bﬁ>2 — k—1—r * bT% *

T > oA @1 (r —my) + S e5(r —my)

12 r=0 11
b*l .
ﬂwﬂ—mnﬂmﬂﬂ@ ﬁ%@b

: +1
if kezmet

k—1 n b*l 2 b*l
Aep3(0) — 3 AT (lZ (b1,) [so’{(r —my) + b—,ﬁ@%(?‘ — mz)D

r=0 =3 b>{12
(bT%)Z a“ k—1—r * b?% *
T Z)\ 901(7’—7711)+b71§02(7’—m1)
12 \,r—0 11
b*l
+w—rwmv*%ﬂﬁ@+éywﬂ)

. (bi%)Q % )\k—l—r QO*(T . m2) + b;{%@*(’f’ - m2)
ya(k) = b\ 1 bit "

b*l .
+(k — 1 — mg)\r—1mm [%‘(0) + bﬁ%@)b

11
: 1
if keZmis,

k. * k=l k—1—r n (bfll)Q * bT% *
A 902(0) Z A Z %1 Sol(r_ml)+ *1902(r_ml)
=0 = b b
r= =s+1 V12 11
s, (b1)?
-

*[
=1 b12

b*l .
+(k — 1 —my) At lso’{(O) + bif@@z(U)D

11

*1

< —1—r * b *
(S0 fettr = m + st - )

r=0 11

. s 1
if kezZpiht

*1

ko« n (bﬁ)z A\ helr | by .
N5(0) — 32 DA ©1(r —my) + Te5(r —my)
—0

=1 bt bii

FE = =¥t )+ e 0)]

11

if keZe .,
(2.62)
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Formula (2.42)) is now a direct consequence of (2.61)), (2.62)) and ([2.41])).

2.1.4 The case (2.5)) of a double real root

If the matrix A has the form (| . the necessary and sufficient conditions ((1.11))—

- for (2.6 are reduced to - and

A1

* *[
b21 b22

x| *1
bll b12

0 A

Then (29), (210), and (2:63) give b3} = bsh = b3} = 0.

Theorem 2.1.5. Let (1.1 be a weakly delayed system, equation (2.1) has a double
root A\12 = X\ and the matriz A has the form ([2.5). Then b} = b3, = b5, = 0 and the

solution of the initial problem (L)), is x(k) = Sy(k), y(k) = (y1(k), y2(k))T
and

= \(b) 4 b3h) — b3t =0. (2.63)

pi(k) if keZl,

NG (0) RN g3(0) + 5 N r[z bibos(r ml>]

if kezmt

N (0) + BN 0) + 5 A[ 5 b mlﬂ

l=s5+1

+ib>{ [Z AL o (r — )
=1 (2.64)
+(k — 1 —my) ANe=17mp3(0 ]

. 1l
if keZyly, s= ,n—

i 0) + V-t 0) + £ | 8 gt -

+(k—1-— ml))\k_l_mlgoz(())]

if k€ Ly, o

ya(k) =

{ e3(k)  if keZ?, |
(2.65)

Aeg3(0) if ke Z.
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Proof. The system ([2.6)) can be written as

y1(k+1) = Ayp (k) + y2 (k) + 2512202 (k —my), (2.66)

Solving (2.67)), we get

ya(k) = (2.68)

os(k) if kezZ?, |
Nes(0) if ke Z5°.

Then ([2.66) turns into
Ay (k) + Ae3(0) + Zibﬁgb(k-ﬂn)
it keZy
Ay (k) + A@3(0) + b A ™5 (0) + Zibﬁqh(k-—7nﬂ
if keZy?,,
Ayi (k) + N p3(0) + Z DA 3(0) + Z bibes (k —my)
if keZy,,
n(k+1)= (2.69)
M (k) + Xg3(0) + 32 BN (0)
+ Z bibes (k —my)

l=s+1
if keZy 1, s=3,4,...,n—1,

M (k) + N3 (0) + 3 BN (0)

if keZz .

The equation ([2.69) can be solved in a way similar to that of equation ([2.20]) in the

proof of Theorem using ((1.20)).
First we solve the equation (2.69)) for & € Zgy". This means that we consider the

problem

{y1<k+1>xy1<k>+xf @3(0) + £ biboy(k —my) if ke Zg"
91(0) = SOT(O)-
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With the aid of formula ([1.20]), we get

k—1

() =N (0) + 3 A1 [X“ )+ >t —m)|
r=0

=N} (0) + kA" 105(0) + Z/\"“ - ’“[Z by (r ml)], k ezt (2.70)

Now we solve equation (2.69)) for k& € Z,,? | with initial data deduced from (2.70)),

i.e., we consider the problem

yi(k+1) = (k) + Xo5(0) + big A ™105(0) + Z bl (k —my),

ke Zml—l—la

yr(my+1) = )\mﬁl@I(O) + (m1 + 1)A™p3(0) + E A lz b12§02( ml)]-

Applying formula (T.20) we get(for k € Z'*13)

Zh(k) :Akf(m1+l)y1(m1 + 1)

E—1
+ Z At [)‘Q’O;(O) + b*l)‘r 3(0) + Z b12902 )1

r=mi+1

+y oA [Z biags(r ml)] )
r=0 =1
k1

r=mi+1
NG 0) + (ma + DN +2Ak“[zbim< mo]
=1

+ (k —m1 = 1A 5(0)

k—1
+ > A [b’{%ﬂ ™3(0) + Z b5 (r )]
r=mi+1
:)‘kSDT(O) + k)\k_l + Z ARt lz b12902 ]
mi
+ b5 [Z N or (r —my) + (b — 1 — ml))\klmlgpz((])] . (2.71)
r=0

Now we solve equation (2.69)) for k € Z,? | with initial data deduced from (2.71])),
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i.e., we consider the problem.
2
i+ 1) = Mn(k) + N5(0) + 5 BN (0) + 5 bibs( — )
keZys.,

ma
s+ 1) = X721 0) 4 (a4 DY3(0) + 85 e st = )|

r=0

] [z AP () + (g — ) A go;m)] .

Applying formula (T.20) yields (for k € Zt})

yi(k) =X Dy, (my 4 1)

k—1
+ > AR lx +Zb*l AT +me¢2 1

r=mso-+1

:)\k—mz—l ()\m2+1gpi(0) + (m2 + 1 )\ng02 + Z AT lz 612902 )‘|

a3t )+ m1>w2%;<o>])

k—1
4 Z )\kflfr [)\7‘ * + Z b41<l2/\7" ml * + Z bTQQOQ )]
r=mao+1
=X\*p1(0) 4 (mg + D)A105(0) + ZA’“ 1= "[Z b (r )1
my
o [Z Nt — ) + (s — m1>Ak-1-%;<o>H
r=0

+(k—1-— mg))\kflgoz(())

k—1 2
s A'f”[zzf;ax% +Zb’{2w2 >]

r=ma+1 =1

:)‘k%(o) + k)‘k_l Z After [Z b12902 ]

mi
O S gl = ) (-1 mm’f-l-mw;(oﬂ
r=0
[Z N (e —mg) + (k— 1 — mQ)Ak_l_mchZ(O)]. (2.72)

From (2.70), (2.71) and (2.72)) we deduce that expected form of the solution of
the initial problem for k& € Zy*  ,; with initial data derived from the solution of

previous equation for k € Z,°~ T ds
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1 (k) =\ (0) + kN3 +ZA’““[Z%% >] (2.73)

+ Z b Z N3 (r = my) + (k=1 - mz)Ak_l_mlwé(O)]

r=0
] s+1
if kezmtl,.

We solve equation (2.69)) for k € Z,*1, with initial data deduced from (2.73),

i.e., we consider the problem

ik + 1) = M (k) + Mp3(0) + 3 BENR3(0) + 32 Bigess(k — m),

=541
Ms4+1
ke Z, .

4 1) = VG0 + DX 0) + 5500 |8 i )

+ Z bt Z A" (r —my) + (ms — mz)Amsm%(O)l'

Applying formula (1.20)) yields (for k € Zﬁzf;l)

k—1 s
yr(k) =Ny (mg + 1)+ Y0 AT lATSOZ(O) + D bR 5(0)

r=ms+1 =1

+ Z bTQSOQ )]

l=s5+1

— \k—ms—1 (Amﬁlﬁ(o) + (ms + 1)A™5(0) + Z AT [Z Do (r )1

s—1
+2_ b5 [Z ATy (r = my) + (m — mz}Amsm@S(O)D
=1 r
k—1
by Ak—l—r[x RS SRSEURD o e ]

r=ms+1 =1 l=s5+1

=\"01(0) + (ms + A +ZA’“ - T[Zb*{a%( mz>]

+ Z bih [Z NI os (e — my) + (ms — my) AT ml%%(o)]

r=0

_i_(k,_l_ms))\kfl + Z Aklrlzb*lAr ml * )

r=ms+1

+ Z by (r )]

l=s5+1
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k—1
CNGH(0) £ ENI3(0) + SO ST b mz>]
r=0

l=s+1

£ YN b = m,)

r=0

[Z AT G5 (r = ma) + (my — m1>Ak—1—m1w;<0>]

0] 55— )+ (= X500
r=0
+ ...
mMs—1
57 32 N ) = ¥ 50

+(k—1-m,) P’f 1= i3 (0) + A3 0)

4. )\kz 1—-mg_ 1b*s 190*(0) )\k 1— msbi«;’p;(o)]

k—1
:Awmmk1¢;<0>+2Ak“[ S bihen(r mz>]
r=0

l=s+1

+ b [Z NTos(r —ma) 4+ (k= 1 —mq) A1 ml%(o)l

r=0
[Z A1 r<702 r— m2) + (k —1- mz))\klnw@;(())]

+ ...

ms—1
+bj l > N —ma) + (k=1 - msl)Aklm“@Z(O)l

r=0

s [Z N1 — mg) + (k=1 — ms»“mw;(m]

r=0

k—1
CNGH0) & ENI3(0) + SO ST b mo]
r=0

l=s+1

+ Z bl lz Nros (e —my) + (B — 1 — ml))\klmlgoz(O)] ) (2.74)

r=0

In the end, we solve equation (2.69) for £ € Z;7 ., with initial data deduced
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from ([2.74)), i.e., we consider the problem

yi(k+1) = Ay (k) + Np3(0) + Zb*l}‘k M3 (0) i ke Zy L,

1 (o + 1) = N G1(0) + (m + DA™ 03(0) + X N b5 (r —

n—1 my
- l; b [X_ﬁo AT oR (= my) + (M, — mz)Am"_ml‘PS(o)] -

Applying formula (1.20) yields (for k € Z3% |,)

k—1 n
yr(k) =AWy (my + 1)+ 3 AN R5(0) 4+ 3 BT 03(0)
r=mp+1 =1

=R (Am”“so“{(O) + (M + DA™ 3(0) + 3 A" b5 (r —
r=0

+ Z b, [Z AT — ) + (i, — mlW"m%(O)D

r=0

k—1 n
+ > [A%Z(O)Jrzb’{éx‘mlsﬁé(o)]

r=mn+1 =1

=\'91(0) + (mn + DA ZV b (r — ma)

v Z it lZ N5 (r — ) + (my, — mz)A’“‘l"”l@’é(O)l

k—1 n
FE= =m0+ 3 N S 0)
=1

r=mmn+1

=2\97(0) + kA" 5 (0) + ZV b33 (r — ma)

r=0

RSN ) + (¥ 0

FR S50 ma) (a5

Mn—1
*n ! [ Z /\k = T§02 A 1) + (mn - mn_l)Ak—l—mn1¢§(0)]

+<k—1—mn>[”“ 5 (0) + ATTTbE03(0)

12%¥2

+_.,+)\k717mn_1ba{1571¢;(0> )\k 1— mnb*n *(O)]
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= X1 (0) + BN 03(0)

mi
i) [Z AL — ) 4 (k= 1 — Ao so;m)]

r=0

[Z A1 "5 (r —mg) + (K —1— m2))‘k - m2902(0)]

b [ > TG ) 4 (k-1 mn_ln’f—l—m“so;(m]

+ 0% [Z NI (r = mi) + (k=1 mn)kk_l_m”w’é(o)]

r=0

n my
N1 (0) + BN3(0) + S0 [Z N1 — )

r=0

(k=1 —my)AF1- m’QOQ(O)] (2.75)
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Summing up all particular cases (2.70)—(2.75)), we get

oi(k) if keZ®

—Mmp?

k—1 [ n i
N1 (0) + kAF15(0) + Eo A=t g bibes (1 —my)
if kezyt

Mgi(0) + RN3(0) + 5 1 S it — )

13 g my)

(k—1— ml)Ak—l—mlgp;(o)] it kezmtl
NGO+ B 0) 4 5N | 8 i )|
+bh 720 AT — )
+(k —-1 — ml))\k_l_mlg@(O)]

(2.76)
+b12 Z)\k = (r — my)

+(k—-1- mg))\kl’m(p;(O)} if kezrt)

mao+2>

k—1
NGH0) + X 50) + 5 X 5 it - )

l=s5+1

S my
&8 )

ms+2

—I—(k -1 ml>)\’f—1—ng0;(0)] if ke 7 Ma+1tl

N1 (0) + RN (0) + 3 b [z N1 s — )

r=0

+(k—1-— ml),\’f—l—mlgo;(o)] if kelZy .,

Formulas ) and (| are consequences of - -
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3 DIMENSION OF THE SET OF SOLUTIONS

Since all the possible cases of the planar system with weak delay have been
analysed, we are ready to formulate results concerning the dimension of the space
of solutions of assuming that initial conditions are variable. Although
the case by} = bh, = b1, = b3l = 0 does not lead to a weakly delayed system and
is excluded by , for completeness of analysis we incorporate such possibility in
our analysis as well (such a case can be considered as a degenerated weakly delayed
system). Before formulation we remark that if an assumption in the following the-
orem is assumed to be valid for a fixed index | € {1,2,...,n}, it is easy to see that

it must be valid for all indices [ = 1,2,...,n.

Theorem 3.0.6. Let (1.1) be a weakly delayed system and (2.1) have both roots
different from zero and l € {1,2,...,n} be fized. Then the space of solutions, being

initially 2(m,, + 1)-dimensional, becomes on Zy, ., only
1) (my + 2)-dimensional if equation (2.1)) has
a) two real distinct roots and (bih)? + (b51)? > 0.

b) a double real root, bisbsi = 0 and (b5)? + (b)) > 0.

c) a double real root and bbby, # 0.
2) 2-dimensional if equation (2.1)) has

a) two real distinct roots and b, = b5l = 0.
b) a pair of complex conjugate roots.

c) a double real oot and bt = b5} = 0.

Proof. We will carefully go through all the theorems considered (Theorem
Theorem [2.1.5)) adding the case of a pair of complex conjugate roots and our con-

clusion will hold at least on Z;? |, (some of the statements hold on a larger interval).

a) Analysing the statement of Theorem (the case (2.2)) of two real distinct

roots), we obtain the following subcases:

al) If b3} = bsh = b5, = 0, b1y, # 0, then the dimension of the space of
solutions on Z;® o equals m,, + 2 since the last formula in (2.13)) uses

only m,, 4+ 2 arbitrary parameters

901‘(0)7 @;(_mn% ¢§(_mn + 1)7 R 90;(0)
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b)

a2) If b1 = b5l = b, = 0, b5, # 0, then the dimension of the space of
solutions on Z; ., equals m,, + 2 since the last formula in (2.14)) uses
only m,, + 2 arbitrary parameters

1 (=mp), @1 (=mp +1),...,07(0), 03(0).

a3) If b, = b5} = 0, then b}, = b3, = 0 and Theorem is not applicable.
The dimension of the space of solutions on Z;® ., equals 2 since the

solution is determined only by 2 arbitrary parameters
©1(0), 5(0).

This means that all the cases considered are covered by conclusions 1) a) and
2) a) of Theorem [3.0.6]

In the case (2.3) of two complex conjugate roots, we have b} = b, = bl =
by, = 0 (i.e. we deal not with a weakly delayed system, as noted above) and

the formula ([2.29)) uses only 2 arbitrary parameters

#1(0),¢5(0)

for every k € Z3°. This is covered by case 2) b) of Theorem (3.0.6

Analysing the statement of Theorem and Theorem [2.1.4] (the case (2.4)
of a double real root), we obtain the following subcases:

cl) If b3t =0, byl # 0, then the dimension of the space of solutions on Z .,
equals m,, + 2 since the last formula in (2.35)) uses only m,, 4+ 2 arbitrary

parameters
901‘(0)7 @;(_mN)7 90;(_mn + 1)7 R SDE(O)

c2) If by, =0, b3t # 0, then the dimension of the space of solutions on Z3 .,
equals m,, + 2 since the last formula in (2.36)) uses only m,, 4+ 2 arbitrary

parameters
wi(_mn)v @T(_mn + 1)> R 901((0)7 90;(0)

c3) If b}, = b3 = 0 (degenerated weakly delayed system), then the dimension
of the space of solutions on Z; |, equals 2 and solutions are determined

only by 2 arbitrary parameters

#1(0), ¥5(0).
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c4) If bihbst # 0, then the dimension of the space of solutions on Z .,

equals m,, + 2 since the last formula in (2.42)) uses only m,, + 2 arbitrary
parameters

C(—my),C(—=m, +1),...,C(0),¢7(0)

where
*1

* b *
Ok 5= |30k + 12 30 e 22,
The parameter ¢5(0) cannot be seen as independent since it depends on

the independent parameters ¢7}(0) and C(0).

All the cases considered are covered by conclusions 1)b), 1)c) and 2)c) of

Theorem B.0.6l

d) Analysing the statement of Theorem [2.1.5] (the case (2.5) of a double real
root), we obtain the following subcases:

d1)

d2)

If o7f = b3h = by = 0, b}, # 0, then the dimension of the space of
solutions on Z;’ |, equals m, + 2 since the last formula in (2.64) uses

only m,, + 2 arbitrary parameters

©1(0), @5(=mn), 5(—=mpn +1),..., 05(0)

and the last formula in (2.65) provides no new information.

If b3t = b3, = b5l = bt = 0 (degenerated weakly delayed system), then
the dimension of the space of solutions on Z;7 ., equals 2 since solutions

are deterined only by 2 arbitrary parameters

©1(0), ¢5(0).

Both cases are covered by conclusions 1) b) and 2)¢) of Theorem [3.0.6]

Since there are no cases other than the above cases a)-d), the proof is finished.

]

Theorem [3.0.6| can be formulated simply as

Theorem 3.0.7. Let (1.1) be a weakly delayed system and let (2.1) have both
roots different from zero. Then the space of solutions, being initially 2(m, + 1)-

. . . .
dimensional, is on 7, o only

1) (m, + 2)-dimensional if (b{5)* + (b3})? > 0.

2) 2-dimensional if bj, = b3} = 0.
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We omit the proofs of the following two theorems since, again, are much the same

as those of Theorems 2. 1. 1H2. 1.5l

Theorem 3.0.8. Let (1.1)) be a weakly delayed system and let (2.1) have a simple
root X = 0. Then the space of solutions, being initially 2(m,, + 1)-dimensional, is
either (my, 4 1)-dimensional or 1-dimensional on Zs; 5.

Theorem 3.0.9. Let (1.1)) be a weakly delayed system and let (2.1)) have a double
root A\ = 0. Then the space of solutions, being initially 2(m,, + 1)-dimensional, turns

into a 0-dimensional space on Z,; .5, namely, into the zero solution.
n
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4 DISCUSSION OF STABILITY

In this chapter we use the explicit formulas derived in Chapter 3 for stability analysis
of linear system (|1.1]).

Define a norm of a 2 x 2 matrix A = {a;}7;_, as
|All = max{|ai| + [a12], [a21] + |as:|}
and, for 2 x 1 vectors x = (x,75), an induced vector norm
]l = max{fz ], 2]}
For a discrete vector ¢: Z°, ~— R* we define

191, := max{{|e(=ma)[|, [ (=mn + D, [[£0)]]}-

Now we define the stability of the zero solution of linear system (/1.1

n

x(k+1) = Az(k) + > B'ay(k — my)

=1

where k € Z%, , B" are 2 x 2 constant matrices.
Definition 4.0.10. The zero solution x(k) =0, k € Z%, of (1.1)) is said to be

a) Stable if, given € > 0 and ky > 0, there exists & = 6(e, ko) such that p(k),
ke zp loll,,, < 0 implies ||z(k, ko, p)|| < & for all k > ko, uniformly

ko—myp

stable if 6 may be chosen independently of ko, unstable if it is not stable;
b) Asymptotically stable if it is stable and limy_. ||z(k)| = O;

c) Conditionally stable (conditionally asymptotically stable) if it is stable (asymp-
totically stable) under the condition that a subspace P of the space all initial

data with dim P satisfying
1< dimP < 2(my, + 1)
is fized.

It is easy to see that

max{||" (0)[], |@2(0) [}, [2(=D)l, - .., [2(=mu) |} < " [m..

Assume

q = max{|A;], [A2|} < 1.
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Lemma 4.0.11. For every k € Z;;, .o, the following inequality

1
(k—1-—m)¢" '™ <M= ——— (4.1)
g™ Ing
holds.
Proof. Define an auxiliary function
fla) = (@ —=1—m)g"— ™ (4.2)
and determine its maximum. The first derivate of the function (4.2) is
flx)=¢ "™+ (z—1—my)g" " ™Ing.
From the equation
M (2 =1 —my)g" ™ Ing =0
we obtain a stationary point
To = 1 —+ m; — —.
Inq
The second derivative of the function f(z) is
f”(.T) — qz—l—ml hlq + q.t—l—ml lIlq + (ZL‘ 1= ml)qx—l—ml 1n2 q
=¢ "M Ing|2+ (xr —1—my)Ing|.
At the stationary point xy, we get
P~ ) = g Hilng (4.3

The value of (4.3) is negative for ¢ < 1 and, at the stationary point, the function
f(z) assumes its maximum. Since f(x¢) = M, formula (4.1]) holds. O

In the following Theorems[4.0.12H4.0.27] we prove the stability, asymptotic stabil-
ity, conditional asymptotic stability, and conditional stability of system , .
Tracing the statements of these theorems we conclude that it is sufficient to per-
form stability investigation only on the interval k € Z;; ,. Therefore we omit the

technical details connected with investigating the stability on k € Zg=*!.

Theorem 4.0.12. If Theorem holds and q < 1, then the zero solution of (1.1)
is stable.

70



CHAPTER 4. DISCUSSION OF STABILITY

Proof. Let the case I) be valid. We show that the zero solution is stable (we assume
keZy o).

(o)l < 1A% )1
n l my . k—1 N
el [Zw =y —m) | + 020 3 Il “\wml]
=1

r=0 r=m;+1

+

n my k—1
> by lz ARy (r — my) + o(0) > )\If_l_ug_ml]

=1 r=0 r=m;+1

< [IAT [l (0)1]

< max{|A1|"; [A2|* | (0)]]

n my k—1
+Z|b’;a|[z|A1|’“-1-’”||<1>2<r—mz>||+||<1>2<o>|| 3 |A1|k-1-T|A2|T-ml]

=1 r=0 r=m;+1

n my k—1
< @9, + > 1015 [Z NG N o D qklml]

=1 r=0 r=m;+1

T T A h—1—m, .
< [+ (o = 1= g,
L =1
- n u 1— qml+1 .
< 1+Z|b12| ———— + M | |[|¢" I, (4.4)
L =1 l—gq
We set
= *l 1— qml
E= 1+ b =1+ )|,
=1 l—q
€
= —.
FE

This equality implies
ly(R)| < Ell@*lm, <& k€ Zy 1

if

||SD*| mn < 5

If the case II) holds, the proof can be performed similarly. O

Moreover, we can improve Theorem [4.0.12] since the inequality ¢ < 1 guarantees

even asymptotic stability.

Theorem 4.0.13. If Theorem holds and q < 1, then the zero solution of (|L.1])
s asymptotically stable.
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Proof. Let the case I) be valid. By Theorem [4.0.12, the zero solution of (|1.1)) is
stable. We show that

T [ly(k)| =0
for every initial problem (L.1]) is asymptotically stable for k& € Z7? ,,. From the
inequalities obtained in the proof of Theorem [4.0.12] we get

lim {y(k)]|

k—o0

. - * —1-m 1_qml+1 —1-m *
N ) | ™
=1

: k||, % . - *l | k—1-my 1-— qml+1 *
< Jim g1, + fim (3000l e,
=1

i (310 = 1= ) ) g, =0
=1

where the last limit was computed by L’ Hospital rule. If the case II) holds, the

proof can be performed similarly. O

Theorem 4.0.14. If Theorem holds and q < 1, then the zero solution of (1.1)

is asymptotically stable.

Proof. We show that the zero solution is stable for the case b3} =0, for k € Z3° ,.
We will proceed in a way similar to that of the proof of Theorem [4.0.12, Then,

ly®)IF < A3l (0)]

+ 1> 03 [Z NSy (1 —my) + (k-1 — ml))\klm’CDQ(O)] H
=1 r=0
< [A3]lll¢"(0)]

+ 21615 lz A @ (r — )|+ (B =1 — mz)M!k_l_mlHl%(O)H]
=1

r=0

< [A*lle"(0)ll

n my
e [Z Ay — )+ (k — 1 —mz>|A|k-1-ml|||<1>2<o>||]
=1

r=0

n my
< @9 lmn + D 1075 [Z A g (R mz)qk_l_mlH@*Hmn}
=1 r=0

m;+1

n i} e 1_q —1—-m *
< [ bl A ),
=1

72



CHAPTER 4. DISCUSSION OF STABILITY

_qml+1
< [t (1)1

We obtain the same inequality (4.4]) as in the proof of Theorem [4.0.12] The rest
of the proof of stability copies that of Theorem [4.0.12] Asymptotic stability can be
proved by a scheme similar to that of the proof of Theorem |4.0.13| If b5, = 0 , the

proof can be performed similarly. O

Theorem 4.0.15. If Theorem holds and q < 1, then the zero solution of (1.1)

is asymptotically stable.

Proof. For |y(k)||, k € Zg; ., we get

ly(®)II < 1A311¢"(0)]

+

3|5 (1= mgn )|

=1 Lr=0

< [|A5]lll¢"(0)]
+> [Z A7 (r = ma) || + (k=1 — mz)IM’“m’!Hq’?(OW]
=1 Lr=0

< A*lle(0)l]

n my
+2 [Z A7 (r — ma) || + (k=1 — mz)IM’“‘l‘m’HI‘PE“(O)H]
=1 Lr=0

n [my
=1

r=0

k| * - E—1—my 1—qmtt k—1—my .
< ¢l + |21 4 1, Tk lomi 1",
=1
. S L=t .
< 19 + [Z< M)] .
=1 —dq
_ qml+1
I +Z( M)] 16" (45)

From (4.5)), it is easy to see that the zero solution of ([1.1]) is stable. The proof of
asymptotic stability can be made similarly to that of Theorem [4.0.13
O

Lemma 4.0.16. Let g € (0,1), then, for every k € Zs, o, the following inequality

_glng+1 1

1
¢+ k"< N i=q ma < ) (4.6)
Ingq
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holds.

Proof. Define an auxiliary function

fx) =q" +z¢""" (4.7)
and determine its maximum. The first derivate of is
fll@)=q¢"Ing+q"" +2¢"" Ing.
From the equation
¢"Ing+¢"" +a¢" " Ing =0,
we obtain a stationary point

glng+1

o= Inq

The second derivative of the function f(z) is

f”(l') — q:r 1H2q—|— qazfl lnq + qul 1Hq—|— qu,1 1n2q

=¢*! lnq(qlnq+2+x1nq>.

At the stationary point xg, we have

_glng+l 4

1 1
_%) = ¢  Ta Ing. (4.8)

f// ( g

The value of (4.8) is negative for ¢ < 1 and, at the stationary point, the function

f(z) assumes its maximum. Since f(x¢) = N, formula (4.6 holds. ]

Theorem 4.0.17. If Theorem holds and q < 1, then the zero solution of (1.1

s asymptotically stable.

Proof. First, we show that the zero solution of (L.1)) is stable. For ||y, (k)||, k € Z5 .,

we get

lys (B) ] < A1 () + KA I3(0)]

n ml
> [Z N1 — ) + (k=1 — mm“mlso;m)] H
=1 r=0
S qk||()0*| Mn + qu_1||()0*||mn

n my
+_ [bis] lZ A o + (B =1 = mz)Ml’”mle*Hmn]
=1 r=0
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< [q’“ + k™!

n 1— my+1
+> (b (q’“ml — &
=1

q

+wk—1—nm¢’lm>hmwmn

- *[ 1- qml+1 *
< lN+ > |b12|<1_q + M)] 16"l (4.9)
=1
and7 for ”y2(k)||7 k€ Zﬁn+27 we get

ly2(B) < IMF I 0)] < @107 i, < 19"l b € Z35, 4. (4.10)

From (4.9)), (4.10) it is easy to see that the zero solution of (|1.1]) is stable. The proof
of asymptotic stability can be made similarly to that of Theorem [£.0.13
O

Theorem 4.0.18. If Theorem holds and |A\1| = 1, |X2| < g < 1, then the zero
solution of (L.1]) is stable.

Proof. We show that the zero solution of (1.1]) is stable for k € Z:° ,. For the case
I), we get

()l < [AX] 1o )]
n my k—1
+ZMHZWWHMW—WWW%@HZ|MHﬂmwﬂ
=1

r=0 r=m;+1

+

n my k-1
S| S ) ) T A

=1 r=0 r=m;+1

< [IAT [l (0)1]

< max{|A1*; [Ao|* I (0)]]

n my k—1
+ZmﬂZMNIW%vaMWMW|Zrhﬁ”wvﬂ

=1 r=0 r=m;+1

IN

nwm+2mﬂzwmww¢mlzq ]
=1

r=m;+1

IN

i . 1 1— qkiliml *
R e e [

=1

IA

q x
143 (4 0+ ) [l
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We set

oy q
= [1"';“7112 ((ml+1)+ l—qﬂ’

€
0 =—.
M,
This equality implies
ly(R)ll < Mille™llm, <&k € Zy 1o
if
1" ., <0

In the case II), we get

ly(®)IF < AT Nl (0)]

o k—1
2 lZ MRy (= my) + @1(0) Y AI_"”A’S‘l—’”]

r=0 r=m;+1

< [IAT [l (0)1]

< — k=1
2 [t [Z Pl 1@ — )|+ [ 210)]] 32 |A1|“‘””|A2|'f—1—r]
=1

r=0 r=m;+1

< max{|A1*; Ao}l (0)]]

k—1
+Z|b [ZM”H<I>1<r—ml>u+u<1>1<o>|| > ulwwklr]

r=0 r=m;+1

S [Zq’f o o 4 1 e S ]

=1 r=m;+1

< 1+Z|b |Zq’f - T]Hs@ "
[ - * 1_qk *

< 1+Z|b2l1|1]||¢ [P
L =1 —q

< 1+z|b ]Hso o

We set

[1 - Z |b21 ]
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This equality implies
ly(R)l| < Malle™[lm, <&k € Zy 1
if
1" lm,, < 0.
O

Theorem 4.0.19. If Theorem holds and |A\i| < q < 1,|Xo| = 1, then the zero
solution of (L1.1]) is stable.

Proof. In this case, we carry out the proof similarly to that of Theorem [4.0.18]
O

Theorem 4.0.20. If Theorem|2.1.1] holds, the case I) occurs, |\1| < g < 1,|Ao| >1
and ©5(0) = 0, then the zero solution of (1.1) is conditionally asymptotically stable.

Proof. In this case, ¢*(0) = (¢3(0),0)" and ®5(0) = (¢3(0),0)” = (0,0), we perform
the proof similarly to that of Theorem and Theorem [4.0.13, For k € Z7; .,
we get

ly(®B)II < A" (O)]

k—1
[Z NTET @y (r — my) + @2(0) D )\’fl’")\g‘ml]

r=0 r=my+1

H(o V)

n my k—1
+Zrbiér[Z|A1|’f”\|¢>z<r—ml>|r+u<b2<o>u 5 w’““\wml]

=1 r=0 r=m;+1

< ¥ ller(0)]]

#3130 P |

r=0

n my
< 6 e+ 37 I [z q’f—l-*nso*umn]

=1 r=0

B n my
<l eSS q] 16
L =1 r=0
k—1—my 1— qml+1 *
< |q +Z\512\ 1o 1" [lm.,
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—ml—l _

S q I I
=¢" |1+ > b —————|¢*lm.-
=1 l—q

Now, it is easy to see that
lim [Jy(k)]| = 0.
O

Theorem 4.0.21. If Theorem|2.1.1 holds, the case II) occurs, |Aa] < q < 1,|A\| >1
and ¢7(0) = 0, then the zero solution of (1.1)) is conditionally asymptotically stable.

Proof. In this case, ¢*(0) = (0, ¢5(0))" and <I>1(0) (0, ¢5(0)) = (0,0), we perform
the proof similarly to that of Theorem [£.0.20] For k € Z° ., we get

ly(B)II < A" (0)]

_|_

= L k-1
Z b§l1 lz )\kflﬂd@l(r —my) + ®1(0) Z )\q—mz)\lglr]

0
0 A’“ 5(0)

“ il k—1
# 3 Pl = )+ O 3 el
=1

r=0 r=m;+1

< [Aaf*l3(0)]

(| SUNET ]

r=0

n my
< 16 o+ 3 B3, [Z q’f“uso*umn].
r=0

=1

We obtain the same inequality as in the proof of Theorem [4.0.20l The rest of the
proof copies that of Theorem [4.0.20] n

Theorem 4.0.22. If Theorem holds, the case I) occurs, |A\1| = 1,|Xo| > 1 and
©5(0) = 0, then the zero solution of (1.1)) is conditionally stable.

Proof. In this case, ©*(0) = (¢3(0),0)T and ®5(0) = (©3(0),0)T = (0,0) we, perform
the proof similarly to that of Theorem |4.0.20l For k € Z;° ., we get

ly(R)| < [IAT¢" (0)]]

my k—1
i lz ATy (r — my) + o(0) Z )\]f_l_r)‘gml]

r=0 r=m;+1

78



CHAPTER 4. DISCUSSION OF STABILITY

() ()]

n my k—1
+Z|5T§|[Z|/\1|k_1_r||‘1>2(7“—mz)||+||‘1’2(0)|| Yo

=1 r=0 r:mlJ,»l

< [al*ller(0)l]

n my
e [Z T —mz)H]

=1 r=0

n ml
S [Z ||so*||mn]
r=0

=1

1+Zlb (i + 1 ]Hw*umn.

We set .
My =1+ |bih|(m; + 1),

=1
0= —.
M;
This equality implies
ly(R) || < Ms|lo™|[m,, <&k €Zy iy

if

*
||SD | mn

]

Theorem 4.0.23. If Theorem holds, the case 1) occurs, |Ao| = 1,|\] > 1
and ¢3(0) = 0, then the zero solution of (1.1)) is conditionally stable.

Proof. We perform the proof similarly to that of Theorem [4.0.22] O

Theorem 4.0.24. [f Theorem holds, the case by, = 0 occurs, |\| = 1 and
©5(0) = 0, then the zero solution of (1.1]) is conditionally stable.

Proof. In this case, ©*(0) = (¢1(0),0)T and ®,(0) = (0,0)?, we perform the proof
similarly to that of Theorem [4.0.14] and, for k € Z;7 ., we get

ly(B)II < A50* (0)]

r=0

[Z N0y (r —my) + (k=1 — ml))\klm@Q(O)] H
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(o))

n my
+ > 16 [Z AP Do (r = m) | + (k=1 = mz)lM“mlH%@)”]
=1

r=0

<

n my
< [lei ()] + > [b35] [Z 1™, + (B — 1 — mz)||<1>2(0)||]
=1 r=0

< [+ Sl

=1
We set

My =1+ |bih|(my + 1),
=1

0:=—.
M,
This equality implies
ly(B)[| < Mal|"[lm, <&k €Ly 15
if
1" ., < 6.
m

Theorem 4.0.25. [f Theorem holds, the case bty = 0 occurs, |\| = 1 and
©1(0) = 0, then the zero solution of (1.1]) is conditionally stable.

Proof. We perform the proof similarly to that of Theorem [4.0.24] O

Theorem 4.0.26. If Theorem holds and |\ =1 and ¢(0) = ¢3(0) = 0, then
the zero solution of (1.1)) is conditionally stable.

Proof. Conditional stability can be proved using a scheme similar to that of the
proof of Theorem [£.0.24] O

Theorem 4.0.27. If Theorem [2.1.5 holds and |\| = 1 and ¢3(0) = 0, then the zero
solution of (L.1|) is conditionally stable.

Proof. We show that the zero solution of (1.1)) is conditionally stable. For ||y, (k)|
ke Zy .o we get

Iy (B < A3 () + KA l3(0)]

_|_

n ml
S, [Z N1 — ) + (k=1 — mzn“m«o;(m] H
=1 =0
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n my
< ot O + 3 b3 [Z ||so*||mn]
=1 r=0

<1+ 105 + D)0 s (4.11)
=1
and, for [|y2(K)|, k € Z7; 5, we get
ly2(F) | < IAFlles(0)]] = 0,k € Z77 . (4.12)

From (4.11)), (4.12)) it is easy to see that the zero solution of (|1.1]) is conditionally
stable. ]
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5 CONCLUSIONS

To our best knowledge, weakly delayed systems were first defined in [24] for systems
of linear delayed differential systems with constant coefficients and, in [15], for planar
linear discrete systems with a single delay (in these papers such systems are called
systems with a weak delay). The weakly delayed systems analyzed in this paper can
be simplified and their solutions can be found in explicit analytical forms (results
obtained and published in [10] generalize those in [15] and [9]). Consequently, ana-
lytical forms of solutions can be used directly to solve several problems for weakly
delayed systems, e.g., problems of asymptotical behavior of their solutions, stability

problems, boundary-value problems, and some problems of control theory.
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