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Abstract. This paper considers sparsity-aware adaptive
compressed sensing acquisition and the joint reconstruction
of intra- and inter-correlated signals in the wireless sen-
sor networks via distributed compressed sensing. Due to
the different sparsity order of the finite-length signals, we
develop an adaptive sensing framework based on the spar-
sity order, in which sensor readings are sampled according
to its own sparsity order measure. On the decoder side,
utilizing a distributed compressive sensing scheme, a joint
reconstruction method is proposed to recover signal ensem-
ble even in imperfect data communication. Moreover, we
explore that by adapting the sampling rate of the sensed sig-
nals, not only the whole required number of measurements
is reduced, but also the reconstruction performance is sig-
nificantly improved. Numerical experiments verify that our
proposed algorithm achieves higher reconstruction accuracy
with a smaller number of required transmission, and with
lower complexity as compared to those of the state of the art
CS methods.
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1. Introduction
The advances in the field of telecommunication and

newly developed applications have increased the need for de-
ploying distributed wireless sensor networks (WSNs), which
of multiple sensors for monitoring a specific phenomenon
both in the time and space of an area of interest. There
are three main challenges in WSNs, i.e., network lifetime,
computational ability and bandwidth constraints [1]. In
this respect, the theory of distributed compressive sensing
(DCS) has been used to exploit inter- and intra-signal cor-
relations [2]. In a typical DCS setting with a joint sparsity
model (JSM), each sensor compresses its signal indepen-
dently by projecting the signal onto an incoherent basis and
transmitting the compressed information to the fusion center
(FC). Under the right conditions, the FC can jointly recon-

struct all the signals by knowing that the measured signals of
each sensor are individually sparse in some basis.

In applications with limited computation and complex-
ity capabilities, compressing the transmitted signals, as much
as possible is of great importance. SupposeN is the length of
the original signal satisfying Nyquist rate needed to sample
a signal x, M is the CS measurement samples, and k is the
sparsity order of the original signal. the compressed sensing
measures only M data samples, which is M = O(klog (N/k)),
where k << N is the order of the signal sparsity [3]. Practi-
cally, obtaining the required number of M data points needs
some prior knowledge of the signal, which is not applicable in
this case. So the upper bound on sparsity order is used which
may causes high number of measurements. Although many
natural signals of interest (i.e., smooth and piecewise smooth
1-D and 2-D signals with bounded variations) are not exactly
sparse, norm |.|0 may not be the desired measure of sparsity.
Therefore, we derive an appropriate sparsity measure which
utilizes the efficient GINI index (GI) introduced in [4].

The present paper proposes a framework for adaptively
compressing the signals of a WSN and reducing the amount
of the transmitted data as much as possible. Hence, an adap-
tive CS encoding procedure is considered at each time instant
τ ≥ 1, where the measurements are taken with respect to the
current sensors’ readings x (τ). Since, the sensed signal at
each time slot τmay has different sparsity pattern, we propose
to set the size of the measurement matrix based on the spar-
sity order of the signal at the current time slot itself. We will
show that by adapting the sampling rate, the required number
of measurements would be allocated efficiently in such a way
that we achieve significant saving with respect to the amount
of information that must be transmitted by each sensor. In
spite of the adaptive CS encoding scheme at the sensors,
a joint reconstruction algorithm is proposed to exploit both
intra- and inter-signal correlations at the decoder, which sup-
poses an intrinsic shared part exists between the signals of
the sensors. To do so, we develop a centralized DCS-based
algorithm for reconstructing the ensemble of sparse signals
in presence of additive white Gaussian noise (AWGN). In
this regard, we address the problem of the reconstruction en-
semble of signals for sensor nodes investigating a typical CS
reconstruction [5], JSM model [2], and a proposed model.
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The rest of this paper is organized as follows: in Re-
lated Works section, some state of the art related works are
reviewed in brief. In System Model section, the whole sce-
nario is presented in detail to adaptively measure and recon-
struct the sparse signal ensemble. In Experimental Results,
the performance of the proposed method is compared with
the state of the art algorithms. Finally, the paper concludes
in Conclusion section.

2. Related Works

In wireless sensor networks, sensors have limited com-
putation capability and energy resources without assistance
of an y established infrastructures, so many studies in the
literature are conducted considering these limitations for var-
ious applications [6–8]. In [9], influences of compressive
sensing parameters in compression of a common set of arti-
ficial signal on nodes’ lifetime is partially discussed. Also
in [10], by adjusting sampling rate, a sparse generated matrix
is proposed to maintain an acceptable signal reconstruction
performance. Differently from our work, the authors just rely
on least absolute shrinkage and selection operator (LASSO)
for reconstruction instead of addressing the problem of inves-
tigating different optimized reconstruction schemes. In [11],
the usage of a weighted form of the basis pursuit is stud-
ied, and even though the energy consumption in generating
the random projection matrix on the node itself is taken into
consideration. Nevertheless, the aim of the paper is quite
different from ours: the authors detect a specific event char-
acterized by awell-defined frequency, and thismakes it easier
to train the reconstruction algorithm to detect the specified
event; whereas in our approach, we address the reconstruction
without an y priors about the signal ensemble characteristics.

For the purposes of joint processing of the ensemble of
multiple sensor arrays an acoustic bearing estimation prob-
lem is addressed in [12]. Differently from our proposed
method, the algorithm is highly specific for the application.
In this paper, a more general scheme is investigated for the
joint reconstruction of a large number of signals obtained
from tens or hundreds of nodes. In order to obtain a better
sparsifying matrix during the reconstruction phase a PCA
based algorithm is proposed in [13]. The authors aim at
exploiting the spatial an temporal correlation characteristics
to enhance the reconstruction side proposing an approach
using jointly CS and PCA whereas the sensor side, where
the compression takes place, is totally neglected and much
more investigated in our paper. A joint-sparse recovery from
multiple measurements based on extension of the single mea-
surement vector method is presented in [14]. In the paper
authors do not investigate the performance of the algorithm
against channel variations, focusing on the reconstruction of
signals in lossless transmissions. Additionally, a blind recon-
struction approach is proposed in [15] in order to efficiently
reconstruct an unknown number of noisy components.

3. System Model
Suppose that J sensors are distributed at a number

of outdoor locations measuring an event such as tempera-
ture, pressure, wind speed, etc. throughout the day. Let
X (τ) ∈ RN×J consist of L consecutive readings of all J sen-
sors at time slot τ ∈ {t − L + 1, ..., t}. As the joint sparsity
model in [2], all signals share a common component xc (τ) ∈
RN such that x j (τ) = xc (τ) + xin j (τ) , ( j ∈ 1, 2, ..., J),
where xin j (τ) ∈ RN is the innovation part of each signal
x j (τ). There is a dictionary D ∈ RN×K that sparsely rep-
resents the signal (x j (τ) = Dα j (τ) = D(αc (τ) + αin j (τ)))
where |αc (τ)|`0 = kc and

��αin j (τ)
��
`0
= k j .

Each sensor measured its signal y j (τ) = Φj (τ) x j (τ)

by using an individual measurement matrix Φj (τ) ∈ Rwj×N .
The samples of the sensed signal y j (τ) ∈ Rwj transmitted to
FC and consequently were recovered via a conventional dig-
ital communication transceiver module. Obviously, y j (τ) is
the combination of two parts: the common part yc j (τ) ∈ Rwj

and the innovation part yin j (τ) ∈ Rwj , which can be written
as:

yc j (τ) = Φj (τ) xc (τ) , yin j (τ) = Φj (τ) xin j (τ) . (1)

Therefore, it is possible to state that r j (τ) = rc j (τ) +
r in j (τ), where rc j (τ) and r in j (τ) are the jth received sig-
nals in the FC corresponding to the common and innovation
parts of the transmitted one. The first and simplest idea to
independently recover the signals is as follows:

α̂ j (τ) = min
ά j (τ)

��ά j (τ)
��
0 or 1 ,

s.t.
��r j (τ) − Φj (τ)Dά j (τ)

��
2 ≤ ε (2)

where the reconstructed signals are attained by x̂ j (τ) =
Dα̂ j (τ).

But it is clear that recovering the samples by solving
(2) can only be useful when there is no difference between
r j and y j . This destructive difference can be caused by in-
accurate reconstruction resulting from compressive sensing,
which makes this recovery method impractical, especially for
scenarios in which symbol errors occur.

3.1 Designing Adaptive Measurement Matrix
In this subsection, we structurally design an efficient

measurement matrix for each captured signal at time instant
τ. Because each signal has a different sparsity pattern, the
choice of the number of sensing measurements depends on
the sparsity of the signal. Hence, we first set the size of
the measurement matrix for each sensed signal based on the
sparsity order of the signal itself. Therefore, the measure-
ment matrix jth sensor Φj is replaced with Φj (τ) for each
time instant {t − L + 1, ..., t} which is an Mτ × Nτ orthonor-
mal matrix with Mτ = ckτ log (Nτ/kτ) for some constant c,
where kτ is the sparsity order of the signal at τth time instant.
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In signal representation, practical sparsity is defined
based on different favorable properties, such as the number of
non-zero coefficients in the signal representation, relative dis-
tribution of the energy among the coefficients, andmany other
attributes. The authors [4] examine and compare quantita-
tively several sparsity measures, and their findings show that
the Gini index (GI) is the onlymeasure that has all the defined
properties. Hence, for the GI; given a vector x = [x1, ..., xN ],
with its elements re-ordered from smallest to largest, x[k] for
k = 1, 2, ..., N , where x[1] ≤ x[2] ≤ . . . ≤ x[N ], then there is
the following:

GI(x) = 1 − 2
N∑
k=1

x[k]
|x|1

(
N − k + 0.5

N

)
(3)

where |x|1 is the l1 norm of x. Because the GI is a normal-
ized index between 0 and 1 for an y vector, 0 is given for the
least sparse signal with all the coefficients having an equal
amount of energy, and 1 is given for the most sparse one with
all the energy in just one coefficient. As a consequence, for
different sparsity measures, the number of samples assigned
to the captured signal x j (τ) is as follows:

Mx j (τ) =

©­­­«
1 − GI(x j (τ))

τ∑
k=t−L+1

(
1 − GI(x j (k))

) ª®®®¬ × M . (4)

The number of measurements assigned for each signal
is proportional to the GI index of the signal itself; because the
GI does not determine the exact sparsity order. Note that via
the adaptive measuring, all the preceding GI estimates from
time slots {t − L + 1, ..., t − 1} implicitly affect the number
of samples assigned to the signal at time slot t.

3.2 Deploying a Weighting Matrix
In this subsection, the received signal of jth sen-

sor node at the FC r j (τ) ∈ Rwj is modeled as r j (τ) =
y j (τ) � ξ j (τ) + n j (τ). In which �, ξ j (τ) ∈ Rwj and
n j (τ) ∈ Rwj show the circular convolution operator, distur-
bance filter, and additive noise, respectively. These errors
occur during transmission of the signals. Suppose that the
FC receives the common and innovation parts of the trans-
mitted sensor signal separately; we try to estimate the filters
by modeling the received common signal at time slot τ as
rc j (τ) = Y c j (τ) ξ j (τ) + n j (τ), where Y c (τ) ∈ Rwj×wj is
the circulant matrix of yc j (τ) ∈ Rwj .

Supposing that the yc j (τ) signals are known by the
FC, it is equivalent knowing αc (τ) and Φj (τ)s. There-
fore, the estimated impulse response of the destructive filter
ξ̂ j (τ) ∈ Rwj can be achieved by solving the optimization
problem, as follows:

ξ̂ j (τ) = min
ξ́ j (τ)

��rc j (τ) − Y c j (τ) ξ́ j (τ)
��
2 . (5)

Now, the circulant matrix of the estimated weighting filters
ξ̂ j (τ) is attained by the following:

Ξ̄j (τ) =



ξ̂j(1) ξ̂j(wj) · · · ξ̂j(2)
ξ̂j(2) ξ̂j(1) · · · ξ̂j(3)
ξ̂j(3) ξ̂j(2) · · · ξ̂j(4)
...

...
...

...

ξ̂j(wj) ξ̂j(wj − 1) · · · ξ̂j(1)


. (6)

3.3 DCS-Based Reconstruction Algorithm
From the two earlier subsections and inspired from JSM

models [2], we propose a way to jointly recover the signal
ensemble of the sensor nodes, as follows:

R (τ) = Ξ̄ (τ)Φ (τ)Ψα (τ) + n (τ) , (7)

R (τ) =


r1 (τ)
r2 (τ)
...

rJ (τ)


, n (τ) =


n1 (τ)
n2 (τ)
...

nJ (τ)


, α (τ) =


αc (τ)
αin1 (τ)

...
αinJ (τ)


,

(8)

Ξ̄ (τ) =


Ξ̄1 (τ) · · · 0
...

. . .
...

0 · · · Ξ̄J (τ)

 , (9)

Φ (τ) =


Φ1 (τ) · · · 0
...

. . .
...

0 · · · ΦJ (τ)

 , (10)

Ψ =


D D 0 · · · 0

D 0 D · · ·
...

... . . . 0
D 0 · · · 0 D


(11)

where R (τ) ∈ RW , n (τ) ∈ RW , α (τ) ∈ RK(J+1),
Ξ̄ (τ) ∈ RW×W , Φ (τ) ∈ RW×NJ , Ψ ∈ RJN×K(J+1) and

W =
J∑
j=1

wj . To recover the desired signals, first α̂ (τ) =[
α̂T
c (τ) α̂T

in1
(τ) · · · α̂T

inJ (τ)
]T is computed by solv-

ing the optimization problem as follows:

α̂ (τ) = min
ά(τ)
|ά (τ)|0 or 1 ,

s.t.
��R (τ) − Ξ̄ (τ)Φ (τ)Ψα (τ)��2 ≤ ε . (12)

Then, x̂ j (τ) is computed by following:

x̂ j (τ) = D(α̂c (τ) + α̂in j (τ)) (13)

where α̂c (τ) and α̂in j (τ)s are within the α̂ (τ) vector.
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3.4 Modifying DCS-based Reconstruction
Algorithm

In this subsection, we are going to improve the re-
construction accuracy and time consumed by the proposed
method. In this sense, assuming that FC knows the common
part αc (τ) of the transmitted signals for each time slot τ,
then αc (τ) is omitted from the reconstruction of (12) by the
following mathematical ways:

R (τ) =
[
Ξ̄ (τ)Φ (τ)Ψ

] 
αc (τ)
αin1 (τ)

...
αinJ (τ)


+ n (τ) . (14)

Equation (14) can be rewritten as follows:

R (τ) = [A (τ) ‖H (τ)]



αc (τ)
_ _

αin1 (τ)
...

αinJ (τ)


+ n (τ)

= A (τ) αc (τ) + H (τ) αI (τ) + n (τ) (15)

where A (τ) and H (τ) are combination matrix join-
ing of the different involved parameters and αI (τ) =[
αin1 (τ)

T αin2 (τ)
T · · · αinJ (τ)

T ]T.
Then, if we define Rin (τ) = R (τ) − A (τ) αc (τ), the recovery
formula is modified to find just the innovation parts of the
signals, as follows:

α̂I (τ) = min
άI (τ)
|άI (τ)|0 or 1 ,

s.t. |Rin (τ) − H (τ) άI (τ)|2 ≤ ε . (16)

Consequently, the signal of each sensor x̂ j (τ) is recon-
structed by the following formula:

x̂ j (τ) = D(αc (τ) + α̂in j (τ)) (17)

where α̂in j (τ)s are within the computed α̂I (τ) vector.

3.5 Suggestion on Optimum αc (τ) for Fast
Recovery and More Accuracy

In the earlier subsection, we proposed an efficient re-
construction algorithm without involving the common pa-
rameters αc (τ) in the recovery process. It seems that finding
the optimum vector for αc (τ) can bring more improvements.
Because our proposedCSdecoder is based on the JSMmodel,

the first and simplest approach to find the optimum αcopt (τ)
is to solve the JSM-based optimization problem as follows:

αopt (τ) = min
άopt(τ)

��άopt (τ)
��
0 or 1 , s.t. X̂ (τ) = Ψάopt (τ) (18)

where X̂ (τ) =
[
x̂1 (τ)

T x̂2 (τ)
T · · · x̂J (τ)

T ]T is the con-
catenated vector of the recovered sensors signals via (17),
αopt (τ) is equal to

[
αcopt (τ)

T αin1 (τ)
T · · · αinJ (τ)

T ]T in
which the desired optimum common component αcopt(τ) is
located. Since, the optimization constraints in (18) is the
maximum sparsity of the innovations, regardless to the spar-
sity level of the common components (‖αc (τ)‖0), the greater
sparsity level for the innovations (αI (τ)) brings efficient re-
construction performance in terms of the consuming solu-
tion time and recovery accuracy. Actually, the idea behind
the proposed criterion for more improvement is when (18) is
independent from the sparsity of the (‖αc (τ)‖0), the com-
mon component can be omitted. Therefore, the optimization
problem is turned into the following:

αopt (τ) = min
άopt(τ)

J∑
j=1

���άin jopt (τ)
��� s.t. X̂ (τ) = Ψάopt (τ) (19)

where the optimum common component αcopt (τ) is within
the obtained optimum αopt (τ). Due to existence of the sim-
ilar support between the common and innovation parts, this
criterion compresses the energy of the signals asmuch as pos-
sible into the common part of the vector αopt (τ) and brings
the maximum sparsity for the innovation parts.

3.6 Algorithm Summary and Computational
Complexity

The proposed sparsity-aware adaptive compressed data
acquisitionmethodwith joint signal ensemble recovery based
on DCS regularization is summarized in Algorithm 1. At
each time slot τ ≥ 1, the fusion center periodically gathers
the adaptively compressed sensingmeasures by acquiring the
reading from a subset of the sensor nodes (Step I.). Then, the
decoder solves the weighted joint recovery problem (12) via
the basis pursuit denoising (BPDN) [5], resulting in an esti-
mate of X (τ) as X̂ (τ). Once α̂ (τ) has been recovered (12)
and the sensors signals X̂ (τ) are reconstructed (13), its J
signals are used in the two-step modification α (τ) as αopt (τ)
in (18) and (19), respectively (Step III.). Then, αopt (τ) is
used to update the estimates for x1 (τ) , x2 (τ) , . . ., xJ (τ) as
{x̂1 (τ) , x̂2 (τ) , . . ., x̂J (τ)} in 17, i.e., the estimates for sensor
data are built based on the most recently obtained estimates
for αopt (τ) given by (18) and (19). Finally, the estimated
optimum common component is back once for L time slots
for all sensors to modify their sensed data in advance of
transmission to FC. The assumption is that the l1 of differ-
ence signal



xj (τ) − xj (τ − 1)



l1
would be small, meaning

that the measured signal of the sensors are changing slowly
over time.
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Algorithm 1 Sparsity Aware Adaptive Compressed Data
Acquisition With Jointly DCS Recovery

Parameters: c, L, ε , αc and nj (τ)
Initializations
a: Set τ = t − L + 1,
b: Obtain [x1 (τ) , x2 (τ) , . . ., xJ (τ)], and form X (τ)
c: αc = αcopt and compute xc (τ) = Dαc
I. Adaptive CS Measurements
a: Solve (3) and (4) to obtain GI(xj (τ)) and Mx j (τ), respec-
tively.
b: Compute yc j (τ) = Φj (τ) xc (τ) and yin j (τ) =
Φj(τ)(xj(τ) − Dαc).
c: Deliver the adaptive CS measurements yc j (τ) and yin j (τ)
in (1) to Fusion Center utilizing two different CDMA codes.
II. DCS based Jointly Signal Reconstruction
a: Estimate the weighting filters ξ̂ j via solving optimization
problem in (5) and, then construct Ξ̄(τ).
b: Construct R(τ), Φ(τ) and Ψα̂(τ).
c: Solve (12) to obtain α̂ (τ) =

[
α̂T
c (τ) . . . α̂T

inJ (τ)
]T.

d: Reconstruct X̂(τ) =
[
x̂1 (τ)

T x̂2 (τ)
T . . . x̂J (τ)

T ]T by
(12)
III. Modifying the Reconstruction Algorithm
a: Solve (18) and (19) to obtain αopt (τ).
b: Reconstruct the updated estimates for X(τ) as X̂(τ).
c: Send the optimum components αcopt to the sensor nodes.
d: Set τ := τ + 1, and go to Initializations.

Hence, we are going to an alyze the complexity of
the proposed algorithm. From the encoder viewpoint, the
proposed adaptive CS algorithm involves sensing, sparsity
measuring, and adaptive sampling. Suppose that the total
length of sensed signal x j (τ) at time instant τ is N , then
total number of CS samples is Mx j (τ). The measuring of
the sparsity order takes O (N) operations, and the compu-
tational complexity of adaptive sampling is O

(
Mx j (τ)N

)
.

Because there are a total of J sensors distributed in the area
of interest, the computational complexity for all encoders
is J ×

(
O (N) +O

(
Mx j (τ)N

))
. From the decoder view-

point, the reconstruction complexity depends on the algo-
rithm utilized for the recovery. Here, we have explored three
different methods, individual reconstruction by BPDN [5],
joint recovery by JSM [2], and the proposed one. Accord-
ing to the mathematical an alysis using the interior point
method [16], the reconstruction procedure can be done by
J ×

(
O(N3)

)
,O

(
(J + 1)3 × N3

)
, O

(
J3 × N3) operations for

BPDN[5], JSM [2], and the proposed algorithm, respectively.

4. Experimental Results
In the following experiments, we consider a single

hop wireless sensor network with J = 25 sensor nodes
and one sink, in which the sensor nodes monitor a phe-
nomenon over T = 400 sampling instants, resulting in the

data ensemble x j ∈ R400, j = {1, 2, ..., 25}. The sensors
are deployed in a divided observation area of

√
J ×
√

J
grid of square areas, and in each grid, one sensor node
is randomly distributed in a uniform manner. The signals
from J sensors are generated such that there is a shared
common component xc ∈ R400 between them, and each
of them are sparse in a random dictionary D ∈ R400×512

with different sparsity levels (maximum 50-sparse). Con-
sequently, the signals are sensed by different measurement
matrices Φj ∈ Rwj×400 with a Gaussian random set of pro-
jections (for simplicity wj = Mx j (τ) ). The sensed samples
y j ∈ Rwj , j = {1, 2, ..., 25} are then sent to the fusion center
through a digital transceiver system. The system specifi-
cations are binary phase shift keying modulating (BPSK),
1/2 channel encoding, and DS-CDMA with 4-chip’s length.
Simulations are experimented for 100 frames with differ-
ent x js, and the obtained mean results are reported. The
CVX Matlab toolbox [17] is used to solve the least square
problem in (5). Moreover, other sparse-based optimization
problems are solved by the Sparse-Lab [18] Matlab toolbox.
For given sensors J = 25 and sampling instants T = 400,
the normalized mean squared error (NMSE) is defined as

NMSE = 1
J

J∑
j=1

T∑
n=1
(
x̂ j (n)

‖ x̂ j ‖2
−

x j (n)

‖x j ‖2
)
2
where x̂ j (τ) denotes

the estimate of x j (τ). The sensing rate and the compression
rate are wj

T and 1 − wj

T , respectively.

Figure 1 shows the average CS recovery error NMSE
against varying the number of measurements wj for indi-
vidual BPDN recovery, joint recovery by JSM and the pro-
posed algorithm with obtained αopt via (18) and (19). Be-
cause individual BPDN recovery neglects the intra- and inter-
correlation, its performance is poor against all the other
methods. It can be observed that utilizing the intra- and
inter-compressibility not only requires less sensor’ readings,
but it also brings better recovery performance in terms of
NMSE errors. Figure 1 illustrates that as the number of mea-
surements increases, the performance of individual BPDN
recovery and JSM recovery gradually approaches those of
the proposed ones, yet the best method is the algorithm with
αopt (τ) in (19). The corresponding reconstruction times ver-
sus different measurement numbers for the algorithms is de-
picted in Fig. 2. The consuming time for the algorithms
is close to each other in low number measurement samples,
but as the number of samples increases, the execution time
of our proposed method gradually changes. Compared to
the individual BPDN recovery and joint recovery by JSM,
our algorithm requires less reconstruction time at the higher
number of measurements.

To evaluate the performance of the weighting fil-
ters, the sensed measurements are transmitted to the FC
through AWGN channels, which cause bit errors. The semi-
normalized mean squared error of the signal recovery for
different bit error rates (BERs) is shown in Fig. 3 with the
number of measurements wj = 50 to 90, j = {1, 2, ..., 25}. It
can be observed that as expected, higher BERs bring more
errors into the methods; however, the proposed method can
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significantly (almost 10 times better) compensate for destruc-
tion and recover signalswhile producing lower reconstruction
errors. To better realize the reconstruction performance of
the proposed algorithm, a frame of the obtained signal at jth
sensor

(
x j (τ)

)
and its corresponding reconstructed signal(

x̂ j (τ)
)
are presented in Fig. 4. Corresponding to the signal,

the original related sparse vectors α j (τ)s and their recovered
ones α̂ j (τ)s by FC are shown in Fig. 5. Figure 6 depicts
the execution time of the DCS-based reconstruction problem
(16) with respect to the different number of measurements w
and sparsity levels k0. Hence, the dimension of the sparse
vector is equal to 64, which is a conventional value in image-
processing tasks (patching images by 8 × 8 blocks). It also
shows that the solving time of a CS problem depends on both
the sparsity ratio of the target sparse vector k0

K and measur-
ing ratio of the sensed signals w

K which depends on the type
of the application. Figure 7 shows the solving time against
different lengths of the sparse vector (K) for three different
characteristics of k0

K and w
K . The horizontal axis of the figure

is scaled by 64, and each ι value on this axis means that the
length of sparse vector α is equal to ι × 64. As expected,
more k0

K and w
K and also a greater length of the sparse vector

(more K) produces a greater solution time. Fig. 7 shows that
for each characteristic of k0

K and w
K , there exists a length of

sparse vector K , after which, the solution time significantly
shoots up with a sharp slope. These points are marked by
surrounding circles in Fig. 7. This means that if we want
to have an efficient CS-based system, the best length of α
should be selected around these points.

The receiver operating characteristic (ROC) curve is
an established means which evaluates the sensing system’s
performance. Figure 8 shows the ROC curves of the dif-
ferent methods. It verify that the proposed method is more
accurate than two others. A comparison of the ROC curves
in the proposed method with and without using weighting
filters for the three different SNRs (indicated by red circles)
is depicted in Fig. 9. Using the filters in the proposed scheme
creates greater accuracy in signal reconstruction, especially
in higher bit error rates (lower SNRs).
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Fig. 3. The performance of the proposed joint signal reconstruc-
tion algorithm againstAWGNchannel effects for different
BERs with and without utilizing weighting filters (9).
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Fig. 4. A frame of obtained signal at jth sensor
(
x j

)
and its

corresponding reconstructed signal
(
x̂ j

)
in the FC.
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Fig. 5. Sparse vectorsα j (τ) and their reconstructed ones α̂ j (τ)
corresponding to the signal in Fig. 4.
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Fig. 6. The DCS-based reconstruction time depends on the both
sparsity ratio and measuring ratio.
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Fig. 7. Execution time of the DCS problem (16) vs. length of
sparse vector (K).
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Fig. 8. ROC curves for individual BPDN recovery, joint recov-
ery by JSM and the proposed algorithm with obtained
αopt (τ) via (18) and (19).

0 0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm 

P
ro

b
a
b

il
ty

 o
f 

D
et

ec
ti

o
n

 

 

Proposed method without filters

Proposed method 

SNR= 5dB

SNR= 4dB

SNR= 6dB

Fig. 9. ROC comparison of the proposed algorithm in both with
and without utilizing the weighing filters.

5. Conclusion
In this paper, a distributed adaptive CS-based recon-

struction algorithm is proposed for WSN applications. Sen-
sor signals are adaptively measured and then are transmitted
to the FC. On the other side, the perturbation of the transmis-
sion system is modeled by using disturbance filters between
each sensor node and the FC. The estimated filters is em-
bedded into the reconstruction formula to compensate for the
errors. The simulation results verify that the proposed re-
covery algorithm can effectively improve the quality of the
reconstructed signal and decrease the execution time.
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