
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF TELECOMMUNICATIONS

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

SOCIAL MEDIA ANALYSIS USING PATTERN RECOGNITION

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. VILIAM KRIŽAN
AUTOR PRÁCE

Brno 2015

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
DEPARTMENT OF TELECOMMUNICATIONS

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

SOCIAL MEDIA ANALYSIS USING PATTERN RECOGNITION
ANALÝZA SOCIÁLNÍCH SÍTÍ VYUŽITÍM METOD ROZPOZNÁNÍ VZORU

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. VILIAM KRIŽAN
AUTOR PRÁCE

SUPERVISOR Ing. HICHAM ATASSI
VEDOUCÍ PRÁCE

BRNO 2015

VYSOKÉ UČENÍ
TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

Ústav telekomunikací

Diplomová práce
magisterský navazující studijní obor

Telekomunikační a informační technika

Student: Bc. Viliam Križan ID: 134529
Ročník: 2 Akademický rok: 2014/2015

NÁZEV TÉMATU:

Analýza sociálních sítí využitím metod rozpoznání vzoru

POKYNY PRO VYPRACOVÁNÍ:

Nastudujte současné metody rozpoznání emocí z textu. Zaměřte se na metody využívající algoritmy
strojového učení. Navrhněte a v jazyce Python vytvořte nástroj, který umožní rozpoznat emocionální
stav uživatelů ze zpráv sociální sítě Twitter v určité geografické lokalitě. Navržený nástroj by měl být
vybaven vhodným grafickým rozhraním.

DOPORUČENÁ LITERATURA:

[1] DUDA, Richard O.; HART, Peter E.; STORK, David G. Pattern classification. John Wiley & Sons,
2012.

[2] FELDMAN, Ronen; SANGER, James (ed.). The text mining handbook: advanced approaches in
analyzing unstructured data. Cambridge University Press, 2007.

[3] FRANCIS, Louise; FLYNN, Matt. Text mining handbook. In: Casualty Actuarial Society E-Forum,
Spring 2010. 2010. p. 1.

Termín zadání: 9.2.2015 Termín odevzdání: 26.5.2015

Vedoucí práce: Ing. Hicham Atassi, Ph.D.
Konzultanti diplomové práce:

doc. Ing. Jiří Mišurec, CSc.
Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí
zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků
porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRACT
The diploma thesis deals with emotion recognition from texts on social media. The state-of-
the-art methods of feature extraction, corpora and classifiers are described in the first section.
Emotions are recognized by a classifier trained on annotated data from the microblog ne-
twork Twitter. The advantage of using Twitter was the possibility to specify data collection
to a certain geographical location. Geographical data allows to monitor emotional variations
of population, for e.g. in different cities. The first task was to propose and develop a Baseline
algorithm which classifies data to emotional classes. The classification accuracy is improved
by employing a more complex SVM classifier. SVM classifiers, feature vectorizers and feature
selectors are used from the Scikit library, which is written in Python. The data for classifier
training were collected from the USA by the own developed mining application. The classifier
are trained on data automatically annotated in the collection process. Two implementations of
SVM classifiers are used. Final classified emotions that appear in different cities and in different
time intervals are displayed as color markers on a map.

KEYWORDS
emotions, text recognition, emotional analysis, data mining, twitter, tweets, social media,
Python, SVM, Scikit

ABSTRAKT
Diplomová práca sa zaoberá rozpoznávaním emócií z textu v sociálnych sieťach. Práca popisuje
súčasné metódy extrakcie príznakov, používané lexikóny, korpusy a klasifikátory. Emócie boli
rozpoznávané na základe klasifikátoru, netrénovaného na anotovaných dátach z mikroblogo-
vacej siete Twitter. Výhodou použitia služby Twitter, bolo geografické vymedzenie dát, ktoré
umožňuje sledovanie zmien emócií populácie v rôznych mestách. Prvým prístupom klasifiká-
cie bolo vytvorenie Baseline algoritmu. Pre zlepšenie klasifikácie sme v druhom bode použili
komplexnejší SVM klasifikátor. SVM klasifikátory, extrakcie a selekcie príznakov boli použité
z dostupnej Python knižnice Scikit. Dáta pre natrénovanie klasifikátoru boli zhromažďované
z oblasti USA, a to s pomocou vytvorenej aplikácie. Klasifikátor bol natrénovaný na dátach,
označených pri ich zhromažďovaní – bez manuálnej anotácie. Boli použité dve rôzne implan-
tácie SVM klasifikátorov. Výsledné klasifikované emócie, v rôznych mestách a dňoch, boli
zobrazené v podobe farebných značiek na mape.

KLÍČOVÁ SLOVA
emoce, rozpoznávaní textu, analýza emócii, data mining, twitter, tweety, sociální sítě, Python,
SVM, Scikit

KRIŽAN, Viliam Social Media Analysis using Pattern Recognition: master’s thesis. Brno: Brno
University of Technology, Faculty of Electrical Engineering and Communication, Department
of Telecommunications, 2015. 67 p. Supervised by Ing. Hicham Atassi

DECLARATION

I declare that I have written my master’s thesis on the theme of “Social Media Analysis using
Pattern Recognition” independently, under the guidance of the master’s thesis supervisor and
using the technical literature and other sources of information which are all quoted in the thesis
and detailed in the list of literature at the end of the thesis.

As the author of the master’s thesis I furthermore declare that, as regards the creation of
this master’s thesis, I have not infringed any copyright. In particular, I have not unlawfully enc-
roached on anyone’s personal and/or ownership rights and I am fully aware of the consequences
in the case of breaking Regulation S 11 and the following of the Copyright Act No 121/2000
Sb., and of the rights related to intellectual property right and changes in some Acts (Intellec-
tual Property Act) and formulated in later regulations, inclusive of the possible consequences
resulting from the provisions of Criminal Act No 40/2009 Sb., Section 2, Head VI, Part 4.

Brno .
(author’s signature)

ACKNOWLEDGEMENT

I am grateful to Hicham Atassi for frequent consultations and for valuable advices.

Brno .
(author’s signature)

ACKNOWLEDGEMENT

Research described in this master’s thesis has been implemented in the laboratories supported
byt the SIX project; reg. no. CZ.1.05/2.1.00/03.0072, operational program Výzkum a vývoj pro
inovace.

Brno .
(author’s signature)

Faculty of Electrical Engineering
and Communication
Brno University of Technology
Purkynova 118, CZ-61200 Brno
Czech Republic
http://www.six.feec.vutbr.cz

http://www.six.feec.vutbr.cz

CONTENTS

Introduction 12

1 State of the Art 14
1.1 Corpora and Lexicons . 15

1.1.1 MPQA Corpora . 15
1.1.2 General Inquirer . 15
1.1.3 LIWC . 15
1.1.4 WordNet . 15

1.2 Feature Extraction . 16
1.2.1 n-grams . 16
1.2.2 Punctuation and Emoticons . 17
1.2.3 Pattern-based features . 17

1.3 Feature Selection/Reduction . 18
1.4 Text Classification . 18

1.4.1 Naive Bayes . 18
1.4.2 k-nearest neighbors . 19
1.4.3 MaxEnt . 19
1.4.4 Support Vector Machines . 19

2 Twitter and APIs 21
2.1 Authentication and Authorization . 21
2.2 Twitter REST APIs . 22

2.2.1 Search API . 22
2.2.2 Limitations . 22

2.3 Twitter Streaming APIs . 23
2.3.1 Public Streams . 23

3 Technologies 24
3.1 Twitter API . 24
3.2 Google APIs . 24

3.2.1 Geocoding API . 24
3.2.2 Static Maps API . 25
3.2.3 Usage . 25

3.3 GTK+ . 25
3.4 Scikit Learn . 26
3.5 Natural Language Toolkit . 26

4 Baseline Approach 27
4.1 Baseline Algorithm . 27
4.2 Application . 28

5 Data Acquisition 31
5.1 Mining Application . 31
5.2 Collecting Data from Twitter . 32

5.2.1 Data of Training Corpus . 34
5.2.2 Data for Final Evaluation . 36

6 Classification 38
6.1 Data Fetching and Preprocessing . 38

6.1.1 Tokenization . 38
6.1.2 Filtering . 40

6.2 Feature Extraction . 40
6.2.1 n-gram Extraction . 41
6.2.2 Emoticon Extraction . 42

6.3 Feature Selection . 43
6.4 Classifiers . 43

6.4.1 SVM Classifiers in Scikit . 43
6.4.2 Classification Settings . 44

6.5 Building a Trained Model . 44
6.5.1 Training Application . 45
6.5.2 Evaluation of Emotional Classifier 46
6.5.3 Evaluation of Valence Classifier . 47

7 Final Evaluation 49
7.1 Fetching and Classifying Tweets . 49
7.2 Visualization . 51

7.2.1 Graphical User Interface . 51
7.2.2 Generation of Visualization . 52

7.3 Statistics . 54

8 Conclusion 55

Bibliography 58

List of symbols, physical constants and abbreviations 61

List of appendices 62

A SQL Table Structure 63

B Cities of Tweets Collection 65

C Contents of the DVD 66

D Installation & Requirements 67
D.1 Requirements . 67
D.2 Installation . 67
D.3 Configuration . 67

LIST OF FIGURES

1.1 Base Scheme of Text Recognition . 14
1.2 SVM linear separation . 19
4.1 Regular Expression Composition . 27
4.2 Baseline Application Flow Design . 28
4.3 Baseline Graphical User Interface Design . 29
4.4 Screenshot of the Baseline Application . 30
5.1 Data collection flow . 33
5.2 Areas of Twitter data collection . 35
5.3 Collected tweets by labels . 35
5.4 Twitter in-query filtering flags . 36
5.5 Area of Twitter data collection for evaluation 36
5.6 Tweets collected for final evaluation by date of creation 37
6.1 Classifier model build process . 39
6.2 Example of tokenization and filtration . 41
6.3 Classification pipeline . 45
7.1 Classification and Visualization . 50
7.2 Geo Emotions GUI Design . 51
7.3 Gradient for showing mixed emotions on the map 52
7.4 Geo Emotions Application . 53
8.1 Research Timeline . 57

LIST OF TABLES

4.1 Labels of Emotion Categories [1] . 27
5.1 Search terms with appropriate labels added 34
6.1 Classification report of Emotional classifier – type LinearSVC 47
6.2 Classification report of Emotional classifier – type SGDClassifier 47
6.3 Classification report of Valence classifier – type LinearSVC 48
6.4 Classification report of Valence classifier – type SGDClassifier 48
7.1 Final Statistics . 54
8.1 Proposed and Developed Applications . 57
A.1 search_terms Table . 63
A.2 locations Table . 63
A.3 tweets Table . 63
A.4 tweet_labels Table . 64
B.1 Cities of tweets collection . 65

INTRODUCTION

Emotions have strong impact on human’s life. Emotions are expressed either by a facial
expressions, gesture, voice, or they are reflected by a written text. Text can be in the form
of document, correspondence list, short message, blog, or as a review of product or service.
Nowadays, there is a huge amount of data available on the Internet. Social media are a good
example of environments, where people share their life events or ideas. The posts in social
media are usually represented by text, which can be analyzed by automatic systems.

I have exploited the well-known Social Network Twitter. Among the variety of Social
Media on the Internet, the data from Twitter were uniquely represented as short messages
known as tweets.

The major aim of this thesis was to create an application capable of classifying tweets
into emotional classes in certain geographic locations. The motivation for this work was
to observe emotional variations in predefined cities. The overview of emotional content
of tweets can be used for monitoring of how the population reacts to certain situations.
The reactions of population can dramatically change due to political, ethnic or natural
inconsistencies. The emotional monitoring can also capture the population reaction based
on a defined topic. Automatic systems may react on a detected emotional fluctuations in
the geographic area, and find a reason.

In first part of the thesis I proposed and developed an application that implemented a
Baseline algorithm for classifying tweets in a user defined location. Then, I figured out that
this algorithm needed to be improved hence a more complex classifier, the Support Vector
Machine classifier, was employed. Data for classification were collected by own proposed
mining application. The classifier trained model was built and trained on collected twe-
ets from the United States of America. Classification was done from tweets from several
American cities. The statistical results of temporal emotional changes were presented in
the own proposed visualizing application.

This thesis is organized as follows:
Chapter 1 describes corpora and lexicons used usually for emotion recognition and

for sentiment analysis. Next, the state-of-the-art for feature extraction and selection, that
encode the emotional state of text data, is presented. The chapter also presents various
types of classifiers, used in text mining domain.

Chapter 2 introduces the Twitter APIs used for extracting data from Twitter. The Se-
arch API is also described in detail, including described parameters defining the search.
Finally, the Streaming API which can be used for data mining is also presented.

Chapter 3 specifies technologies used for developing all own applications. In addition to
Twitter API, this chapter describes the Google APIs used for geocoding and visualization,
Scikit Learn and NLTK used for the classification, and GTK+ for developing the GUI.
Basic usage and examples are also included.

Chapter 4 deals with the design and implementation of the Baseline application.
The application is written in Python, and is equipped by a graphical user interface.

12

The application analyzes tweets and recognizes their emotional content within a user
defined geographical location.

Chapter 5 discusses the acquisition of data from Twitter, which are used for the clas-
sifier training and evaluation. Moreover, a server application was developed to collect
tweets using the Twitter API. Collected tweets were splitted into two groups: first group
for classifier training, testing and validating, and the second group is left for final evalu-
ation. The chapter also presents the collection scheme and the obtained statistical data of
collected tweets.

Chapter 6 describes the steps of classifier training and testing. Two classifiers were trai-
ned, one for valence classification and the other for the emotional classification. The clas-
sifier pipeline uses components from the Scikit toolkit[24].

Finally, Chapter 7 reports results of experiments made on tweets, that have been
collected in the mining process. A client application with a graphical interface was proposed
and developed. The developed application classified the collected tweets into an emotional
classes, and visualized the results as a statistical data on the map of USA.

13

1 STATE OF THE ART

Text mining is a significant area of machine learning. Texts are mostly written in natural
language, in a contrast of computer or programming languages. That gives us the oppor-
tunity to take the advantage of the language rules and grammar, for making the content
understandable by computers. Processing of natural language have variety of applications,
such as question answering (IBM’s Watson) or information extraction.

The most attractive area of text processing is sentiment analysis and emotion re-
cognition. Sentiment is “a personal blief or judgment that is not founded on proof or
certainty” [5]. Sentiment may express subjectivity, attitude, opinion, orientation, emo-
tion, etc. Systems based on sentiment analysis can be used for a review summarization
of products or services. For example, the classification of movie reviews to either posi-
tive or negative categories. One of the promising applications of sentiment analysis and
recognition is public media evaluation, especially those from social media.

Human emotions are a key part of human interaction, which is also valid for to human
computer interaction, where the machines have difficulty to understand the emotions. Most
of the researchers have categorized the emotions into different classes. The six categories
defined by Ekman [2] are the most known among them. These basic Ekman’s emotions
are happiness, sadness, fear, anger, disgust and surprise.

The later sections will describe available corpora, lexicons and techniques for feature ex-
traction, feature selection and classification.

Text Feature extraction Feature selection Classification
output
class

Fig. 1.1: Base Scheme of Text Recognition

14

1.1 Corpora and Lexicons

Having annotated data is crucial for any experiment with text mining. Corpus is made
from the acquired data, that are labeled either by human or machine.

1.1.1 MPQA Corpora

The MPQAs are Multi-Perspective Question Answering corpora. The MPQA Opinion
Corpus was created as a part of corpus annotation project by Wiebe, Wilson and Cardie [9].
The lexicon was constructed by manual annotation of a 10 000 sentences from the world
news. Annotators classified a big amount of words and constituents, such as adjectives,
modals, adverbs, verbs and nouns. Several types of sentiment and private states were
labeled. The emotion labels were ambiguous and hard to distinguish from the other types
of sentiment [1].

The Subjectivity Lexicon was built for sentiment analysis, analyzing the polarity of
expressions. Lexicon contains a set of positive, negative and neutral words and phrases,
which are tagged with their prior polarity. The corpus was constructed by annotating
almost 16 thousand expressions from 425 documents. [11]

All MPQA resources are available at http://mpqa.cs.pitt.edu.

1.1.2 General Inquirer

General Inquirer (GI) is a Harvard’s lexicon, which tags almost 12 thousand words into
182 categories. Categories includes: valence categories, syntactic and semantic markers,
words of pleasures or pain, words reflecting the language of particular institutions, etc.
The emotion-related tags can be used as features for identification in emotion recognition
systems. More about the GI at http://www.wjh.harvard.edu/~inquirer/.

1.1.3 LIWC

Linguistic Inquiry and Word Count (LIWC) is a proprietary text analysis software. LWIC
includes LWIWC2007 dictionary, which was composed of almost 4 500 words and word
stems. Words are classified into categories, for example the word “cried” is classified into
sadness, negative emotion, overall effect, verb and past tense verb. The results of LIWC
classification are highly correlated with the General Inquirer’s. For more information see
http://www.liwc.net.

1.1.4 WordNet

WordNet is a lexical reference system, where nouns, verbs and adjectives are organized
into synonym sets, called synsets. The synsets are interlinked by conceptual-semantic and
lexical relations. Wordnet links the word forms, specific senses of words and the semantic
relations. The most frequent synset relation is supersubordinate relation (hyperonymy).
For example a subset of object: “bed” and “bunkbed”.

15

http://mpqa.cs.pitt.edu
http://www.wjh.harvard.edu/~inquirer/
http://www.liwc.net

WordNet Domains is a lexicon based on Princeton’s WordNet1, with an expansion of
domain labels and multilingual support. Domain labels are a semantic way for categori-
zation into areas of human knowledge, for example sports, finances, news, etc. Domains
provides an natural way of semantic relations between word senses. Each synset is a mem-
ber of at least one semantic domain.

WordNet-Affect is an extension of WordNet Domains, proposed by Strapparava and
Valitutti [8]. Affective (emotional) labels were added to the lexicon, as a representation of
emotional states: mood, emotional responses, attitude, or situation eliciting an emotions.
Four extra labels were created as a support, besides the emotion tags, hence positive, nega-
tive, ambiguous, and neutral. The six basic (Ekman’s [2]) emotions are part of the lexicon.
The main purpose of the lexicon was to describe affective meanings in natural language.
See the WordNet Domains homepage http://wndomains.fbk.eu for more details.

1.2 Feature Extraction

Text contains words, letters, punctuation or other symbols, and may be arranged into
patterns. These characteristics are known features (or attributes). Features are a part
of the learning and evaluation process, and they are used by classifiers for finding the
differences between classes. Frequently used features by researchers are n-grams (incl.
unigrams), patterns, punctuation characters, emoticons (especially in blogs and chats),
uppercases and count features2.

1.2.1 n-grams

n-grams are sequences of n items, such as words, letters, syllables, etc. The purpose of
the n-grams is to compute the joint of sequence probabilities or probability of an upcoming
item in the sequence. Simplest n-gram model is the unigram model, where n is 1. The next
most used n-grams are bigrams, which are suitable for two-word phrases, including nega-
tive phrases, like “not good”. The disadvantage of n-gram model is that most languages
have long-distant dependencies. This drawback makes the n-gram model unsuitable for
text data information extraction when using it as the only model.

Davidov et al. [5] purposed a binary n-gram features (𝑛 ∈ 1–5) with a weight, equal
to inverted count of word/sequence in their corpus. The weight led to prioritizing the rare
words/sequences over the common ones.

The n-grams might not be efficient for sentiment analysis. Unigrams can be supported
by part-of-speech (POS) tags as meta features, like presented by Barbosa et al. [15]. Besides
of the POS tags, they mapped the words to their prior subjectivity and polarity. The prior
polarity is switched from positive to negative, or vice-versa, by the occurrence of negative
word (not) or negative expression. They derived the subjectivity and polarity of the tag

1http://wordnet.princeton.edu
2Counted feature is considered as counts of a specific feature.

16

http://wndomains.fbk.eu
http://wordnet.princeton.edu

from the subjectivity lexicon. Go et al. [14], on the other hand, found the POS tags as
improper features.

1.2.2 Punctuation and Emoticons

Punctuations are a part of sentences, and can be used as generic features. The exclama-
tion marks “!” and question marks “?” can emphasize the textual emotional content. For
example, the repetition of exclamation marks significantly indicates anger. The number of
these punctuations in a sentence is a possible feature. Capital letters of words can increase
their weight or express a certain emotion.

Emoticons (smileys) are textual representations of emotions. They are usually written
with basic ASCII characters. For example :-) express happiness whereas :-(reflects sadness.
Nowadays, ideograms, represented by pictograph, are getting more popular in electronic
messages and social networks. These pictographs are called emojis, and are represented by
a UTF-8 encoded character. Characters are rendered using a special font. As an analogy
to the ASCII emoticons, the emojis , and / represent their emotions analogously to
ASCII characters. Emoticons and emojis are considered as the most significant carriers of
information in the textual content.

1.2.3 Pattern-based features

One of the pattern based feature is based on the arrangement of texts into high-frequency
words (HFW) and content words (CW). The pattern-based feature was presented by Da-
vidov et al. [6] and implemented in [5]. They defined the HFW as words appearing more
than 𝑇𝐻 times, per million words, and CW as words appearing more than 𝑇𝐶 times, per
million words. 𝑇𝐻 and 𝑇𝐶 are thresholds, which were set to 1 000 words per million for
𝑇𝐶 , and 100 words per million for 𝑇𝐻 . The pattern is constructed by 2–6 HFWs and 1–5
CWs. Avoidance of capturing only a part of multi-word expression is done by constraining
the pattern to begin and end with an HFW.

Class sequential rules (CSR) is the next approach of pattern-based features, proposed
by Wen et al. [3]. CSR is a sentence-level pattern for the sentiment/emotion classification.
Two emotion labels are obtained for each sentence, by lexicon-based and SVM-based met-
hods. The derived CSR feature is subsequently used for SVM-based emotion classification.
Sentences with conjunction words, such as “but” or “where”, are separated before the fe-
ature extraction. These conjunction words are added into the sequence, since they reflect
relationship between the sub-sentences. The same emotion labels, for one (sub)sentence
collected by classifiers, are written as one into the sequence. The advantage of this app-
roach is the usage of several emotional labels. An example of a CSR from sentence with
conjunction word:

< {𝑛𝑜𝑛𝑒, 𝑠𝑎𝑑𝑛𝑒𝑠𝑠}{𝑠𝑎𝑑𝑛𝑒𝑠𝑠}{𝑏𝑢𝑡}{ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠} > . (1.1)

17

1.3 Feature Selection/Reduction

Extraction of all possible features from the training set is not an effective approach, since
it can cause overfitting or misclassification due to the inclusion of redundant or irrelevant
features. To solve these issues, the number of input features should be reduced by either
selecting a certain number of them or by transforming the whole feature space to a new
space with smaller number of dimensions. Regarding text data, the feature selection is
performed by applying a set of rules as it is reported in the following paragraphs.

Davidov et al. [5] defined an 0.5 % rule. All words (unigrams) and n-grams, appearing
in less than 0.5 % of the training set, were discarded.

Go et al. [14] took the advantage of Twitter syntax. They replaced the Twitter’s spe-
cial properties by tokens. Usernames, which starts with a @ (at) symbol, were replaced by
USERNAME token. URL links were converted into URL tokens. Repeated letters, which often
occurs in Twitter messages, were shrunk to a maximum of two occurrences. For example
the word “huuuuungry”, was replaced by “huugry” hence still preserving the stronger emp-
hasis (two “u”s). This type of feature selection reduced the set to 54 %, from the original
feature set.

1.4 Text Classification

Classification, as the last step of the pattern recognition process, assigns the input feature
vector to a certain class. There are several algorithms for classification, the most known
among them for emotion recognition are the Naive Bayes, Maximum Entropy, Support
Vector Machines (SVM) and k-nearest neighbors.

1.4.1 Naive Bayes

The Naive Bayes classification method is based on Bayes rule, and relies on a simple
representation of document, called bag of words. The aim of this method is to choose
the class with a highest probability. This can be formalized as follows:

𝑐𝑁𝐵 = arg max
𝑐𝑗∈𝐶

𝑃 (𝑐𝑗)
∏︁

𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝑃 (𝑤𝑖|𝑐𝑗), (1.2)

where 𝑐𝑗 represents the class from all 𝐶 classes and 𝑤𝑖 represents the word on position 𝑖.
The 𝑃 (𝑐𝑗) is the prior probability of the class 𝑐𝑗 and 𝑃 (𝑤𝑖|𝑐𝑗) is the probability of word
𝑤𝑖 for the given class 𝑐𝑗 .

Aman [1] in his research used the Naive Bayes classification for emotion recognition.
The accuracy of the emotion/non-emotion classification with ten-fold cross validation was
72.08 %, combining the General Inquirer (section 1.1.2) and WordNet-Affect (section 1.1.4)
lexicons altogether and separately. It is worth mentioning that non-lexical features incre-
ased the overall accuracy.

18

Go et al. [14] in the Twitter sentiment analysis obtained the best accuracy of Naive
Bayes using unigrams and bigrams as features. Sentiment was represented as positive,
negative or neutral. The resulting accuracy was 82.7 %.

1.4.2 k-nearest neighbors

Davidov et al. [5] used an k-nearest neighbors (kNN) method for classification. In their
approach, they constructed a feature vector 𝑉 . For each vector the Euclidean distance was
computed between the trained and the testing vectors. The constant 𝑘 was set to 10.

1.4.3 MaxEnt

Maximum Entropy (MaxEnt) is a feature-based model, that uses search-based optimiza-
tion to find weights for the features that maximize the likelihood of the training data. The
MaxEnt model does not make an independence assumption of features, like in the Naive
Bayes, and therefore overlapping features have no effect on the classification.

Go et al. [14] used Standford Classifier for preforming MaxEnt classification. They
used conjugate gradient ascent for the training weights. The reached accuracy was 83.0 %,
using unigrams and bigrams – higher accuracy comparing to the Naive Bayes.

1.4.4 Support Vector Machines

Support Vector Machines (SVMs) preprocesses data in high dimensions, much higher
than the original feature space. The main idea behind the SVMs, is to find a separating
hyperplane, with the largest margin in the learning process. SVMs are defined by vectors of
points closest to the separating hyperplane. The best hyperplane is defined by the largest
margin between two classes. An example of linear separation can be seen on Fig. 1.2. [16]

feature 1

fe
at

ur
e

2

class 1
class 2

ma
rgi

n
ma

rgi
n

separating hyperplane

separating hyperplane

support vectors

Fig. 1.2: SVM linear separation

19

The SVMs can only separate two classes. There are several methods, that overco-
mes this drawback, such as “one-against-one” (one-vs-one) approach and “one-against-all”
(one-vs-rest) approach. The “one-against-one” approach creates 𝐶2(𝑛) two-class combina-
tions (𝑛 is the number of classes) of SVMs, comparing each class to the other. The “one-
against-all” approach compares each class against the concatenation of the rest classes.

SVM have shown a slightly better results over Naive Bayes in emotion recognition
presented by Aman [1]. The accuracy of SVM reached 73.89 %, where the non-lexical
features had no affect on the result.

Wen et al. [3] compared the use of three SVMs on classifying a Chinese microblog
texts, for both sentence-level and document-level emotion classification.

Go et al. [14] used an SVM with linear kernel. Sentiment got the best accuracy using
only unigrams as features.

Milgram et al. [13], compared the two multiclass approaches: “one-against-one” and
“one-against-all”. The “one-against-all” strategy was more accurate for classification with
fewer classes.

20

2 TWITTER AND APIS

Twitter is a microblog site, where users share short messages known as tweets. Tweets
are limited to 140 characters, and may contain various characters. Character @, followed
by a username, is used to refer, include, or address the message to a certain user, for e.g.
@stanfordnlp. The target user may be notified about the tweet. Referring to the particular
user is the prime key of direct (private) messages. The # (hash) character has a role of
tagging the message with a certain keyword(s). A tweet may contain couple of hashtags.
Hashtags are good for other users, who are following or searching for a defined topic or
subject, for e.g. #finances.

Twitter posts may be retweeted (reposted) by other users to share the information to
their present or future followers. Retweeted (reposted) tweets are indicated by the retweet
keyword “RT” at the beginning of message. Due to the length limitation, the tweets often
have URLs, which may point to the entire article or story. URLs are also suitable for
linking to a picture or a short video.

Twitter introduces different types of APIs to read and write Twitter data (tweets).
The Twitter data are accessible through the Streaming APIs or the REST APIs. REST
APIs provide an access in query-response context. Streaming APIs allows to continuously
deliver tweets in real-time using a persistent connection. It should be mentioned here that
authentication is required in order to receive or edit Twitter data.

2.1 Authentication and Authorization

The own application have to be registered, in order to use the Twitter APIs. Application
registration form is available on https://apps.twitter.com, where basic application
details as name, description and website are filled.1 After the registration, two keys (tokens)
are generated for authentication: Consumer Key and Consumer Secret.

Twitter APIs uses OAuth2 mechanism to authenticate the application. Two types of
authentication are available: Application–user authentication and Application-only authen-
tication.

Application–user authentication uses access tokens (besides of consumer tokens), spe-
cified for each twitter user. Access tokens are generated in the user authorization. The user
has to be signed in on Twitter, to confirm the authorization for the requested access le-
vel, depending on API’s endpoint (connection). If the application wants to make requests
on user’s behalf, the user has to grant the permission for this action. The user can ma-
nage the authorized applications in Twitter application management, for e.g. to remove
the application grants.

Application-only authentication is used for making an API requests on the application
level, without a user context. This type of authentication does not approve the application

1Twitter account is required for registering a new application.
2http://oauth.net

21

https://apps.twitter.com
http://oauth.net

to manipulate with twitter data, or to read private user’s informations, incl. private tweets,
emails, etc. Not all Twitter APIs support the Application-only authentication (for e.g.
the Streaming APIs does not).

More about the Twitter OAuth authentication and authorization is available in [17].

2.2 Twitter REST APIs

Twitter REST APIs (version 1.1) provides RESTful accessibility to the Twitter data.
For e.g., reading tweets, looking into the user’s profiles, creating new tweets, etc. Actions,
which are requested to be processed or done, are defined by API endpoints. An application
connects to the certain endpoint, to get (GET) or write (POST) data, using the request-
response protocol (HTTP). All endpoints requires an OAuth authentication to be built
upon a request. The response from the server is encoded in JSON format.

2.2.1 Search API

The search endpoint search/tweets is available for searching tweets from Twitter domain.
The Search API is focused on relevance, rather than completeness. Note that not all
tweets are indexed by the Twitter. The completeness of tweets is the main feature of
Streaming API.

The Search API offers various operators in search query, to clearly specify results that
should be retrieved. The default operator is AND, which is defined by spaces in-between
the words. The OR operator is declared by putting the OR keyword, surrounded by spaces
between the two words. The NOT operator is represented by a minus character, perpending
the word that should be excluded from the search results.

Search can be also refined by other additional parameters. One of the parameters is
the Geolocalization (geocode), which gives the ability to restrict tweets by a given location.
The position is specified by latitude, longitude and radius, where the tweets have been
constructed at the time of writing. A tweet location is determined by the GPS locators,
available in mobile handhelds, or by estimation, using reverse geocoding of the user’s
profile. Second significant parameter is the result type (result_type), where the tweets
are narrowed into popular, recent or mixed. Other additional parameters, as for iteration,
specification of language or a number of tweets are also available.

2.2.2 Limitations

REST APIs are subjected to the rate limitation. The limitation is based on a number
of requests that are sent to the Twitter. For the user authentication, the restriction is
considered on a per-user basis and for each endpoint separately. There is a 15 minute
window, where maximum of requests can be sent, depending on the endpoint. Most of
the endpoints have maximum of 15 requests in the window, again for each user (access
token) independently. When using the application-only authentication, the rate limitation

22

is restricted to the whole application globally. That means, that the request restriction in
a window is considered per application only, and not for per user, due to absence of user
authorization.

The search endpoint (search/tweets) limitation is 180 requests for user-based authen-
tication and 450 requests for app-based authentication. The maximum number of tweets
per request is 100. See the Rate Limits Chart in [18] for full limit description.

2.3 Twitter Streaming APIs

The Streaming APIs are based on persistent connection to the providing server. Streaming
APIs offer low latency access to Twitter’s global stream. The data are pushed in real time
and in a single connection. APIs provide three types of streams:

• Public streams – suitable for data mining or following certain user or topic,
• User streams – suitable for stream and events of one authorized user,
• Site streams – suitable for receiving real-time data of multiple authorized users.
Disadvantage of using the Twitter Streaming API is the requirement of Application–

user authentication. A Twitter user need to be specified in order to get the Stream data.
Each user may get a different set of data, based on its behavior on Twitter (followers,
statuses, searches), even when the same parameters for Streaming API are used.

2.3.1 Public Streams

The public REST APIs, as presented above, offered to read and search the tweets in
Twitter. Public Streams provide the same thing, except the tweets are received in real
time.

The version 1.1 of APIs implements the statuses/filter endpoint, which allows
the application to set the filter of receiving tweets. Filter is specified by (at least one)
parameter.

23

3 TECHNOLOGIES

The implementation which is be presented in Section 4, uses various technologies. Python 3
is used as a base programming language. The library modules and APIs are presented in
this chapter.

3.1 Twitter API

The Twitter’s REST and Streaming APIs (described in Chapter 2) are handled by Python’s
TwitterAPI module1. The connection to API requires a CONSUMER_KEY and a CONSUMER_-
SECRET, when using an Application-only authentication. For Application-user authentica-
tion, the ACCESS_TOKENT_KEY and ACCESS_TOKEN_SECRET, have to be defined additionally.

Requests are made by request() method, defining the endpoint and the addressed
data. The data are either GET data, for requesting, or POST data, for posting onto
the Twitter. The next example shows a basic search request of tweets, containing the word
“pizza”. Note that the auth_type=’oAuth2’ sings the usage of Application-only authen-
tication.
from TwitterAPI import TwitterAPI
api = TwitterAPI (CONSUMER_KEY , CONSUMER_SECRET ,

auth_type =’ oAuth2 ’)
r = api . request (’ search / tweets ’, {’q’:’pizza ’})

3.2 Google APIs

The geographic location, represented in numerical form, is hard to obtain and remember
by humans. People are used to write the addresses or names of locations or cities. For this
purpose, the Google Geocoding API is available. Google Map APIs are a good candidate
for visualization of the selected location or area.

3.2.1 Geocoding API

The Geocoding API2 is used for converting an address (or name of the location) into
the geographic coordinates, latitude and longitude. The reverse geocoding, for translating
the geographic coordinates into the human-readable address, is also available.

The geographic code is retrieved by making a HTTP request, to the constructed URL
https://maps.googleapis.com/maps/api/geocode/json?address=query.
The query is considered as desired address. The output is received in JSON format, where
all possible results are presented. Exact geographic coordinates, of the location, are found
in the location key under the geomerty.

1Available at https://github.com/geduldig/TwitterAPI
2Documentation at https://developers.google.com/maps/documentation/geocoding

24

https://github.com/geduldig/TwitterAPI
https://developers.google.com/maps/documentation/geocoding

Limit of the Google Geocoding API (for free) is maximum of 2 500 requests per 24-
hours, or maximum of 5 requests per second. This limitation is restricted for each API key
or for each IP address (when not using an API key) separately.

3.2.2 Static Maps API

Google provides Map APIs for presentation of the world map, or a selected area. The API
is intended for inclusion on the web pages or mobile applications. The Static Maps API v2 3

generates a static map image of a defined location, zoom and/or size. To request the static
map the address https://maps.googleapis.com/maps/api/staticmap is used. The URL
address requires some parameters to be declared. The basic available parameters are:

• center – for specifying the exact geographic coordinates or address,
• zoom – for defining the zoom level of the map (number from 0 to 21),
• size – which defines the dimension of a produced image in pixels (for eg. 450x300)
• maptype – which specifies the type of map to be constructed (roadmap, satellite,

hybrid, or terrain)
Limitations of Static Maps API are 1 000 static map requests per IP address per 24 hour

period, and 50 requests per IP address per minute. When using the authentication, by
defining the Google API token key with the request, the limitation is 25 000 images per
24-hours for one token key.

3.2.3 Usage

The HTTP requests, for accessing and receiving the Google API data, can be made by
using a urllib.request module. urllib is a standard Python library. The request is made
by calling the urllib.request.urlopen() method with the specified URL. The GET
data, included in the URL, should be properly encoded. Encoding is done by the
urllib.parse.urlencode() method.

Example of usage:
import urllib . request
url = ’https :// maps . googleapis . com / maps / api / geocode / json ?’
url += urllib . parse . urlencode ({ ’ address ’: ’ london ’}) # GET data

response = urllib . request . urlopen (url)
rawdata = response . read ()
text = rawdata . decode (’utf −8’)

3.3 GTK+

GTK+ (GIMP toolkit)4 is a cross-platform library for creating an GUI application. GTK+
supports basic widgets, such as Windows, Boxes, Buttons, Text inputs, etc. The Python’s
bindings for the GTK+ can be found in the module gi.repository.

3Documentation at https://developers.google.com/maps/documentation/staticmaps/index
4http://www.gtk.org/

25

https://developers.google.com/maps/documentation/staticmaps/index
http://www.gtk.org/

The GUI can be constructed in WYSIWYG Glade editor, as an XML .glade file.
The glade file is loaded by the GTK+, where each widget is identified and referenced by
its ID.

3.4 Scikit Learn

Scikit Learn is an open source set of tools for Machine Learning written in Python. Tools
are supported by different low-level C/C++ libraries, such as libSVM or liblinear. Sci-
kit includes algorithms for supervised and unsupervised learning. Mechanisms included
in the bundle are Classification, Regression, Clustering, Model selection, Dimensionality
reduction and methods for Data preprocessing. Each estimator implements a fit method
for training and predict method for predicting a class or a value in case of regression
tasks. Some transformer estimators use transform method for transforming the data or
reducing the dimensionality, for e.g. in Feature Selection. [23]

3.5 Natural Language Toolkit

Natural Language Toolkit (NLTK) is a Python based library for working with human
language data. NLTK provides interfaces to corpora and lexical resources. Toolkit includes
methods for text tokenization, stemming, parsing, semantic reasoning and tagging.

Available corporas are WordNet, The Penn Treeban Corpus, The Inaugural Add-
ress Corpus, and many more. Each corpus or dictionary has to be downloaded using
a nltk.download() interactive command in Python’s interpreter.

26

4 BASELINE APPROACH

The first aim of this thesis was to propose and develop a baseline approach which clas-
sifies tweets within a certain geographical location according to their emotional content.
Tweets were collected by the Twitter REST API, using the search mechanism presented
in Section 2.2. The application returns a statistical overview of tweets emotions within
the selected area. Note that only English tweets are processed.

4.1 Baseline Algorithm

The task of Baseline Algorithm is to classify tweets into 6 basic emotional states (Ek-
man [2]; Chapter 1) and into mixed emotion or no emotion. These emotional categories
are labeled by two character labels, as shown in Table 4.1. Unigrams are used as an emotion
indicators, including words and emoticons. These indicators are written into a CSV file,
as a database. Lexicon database is built by a few words (collected from Aman’s thesis [1])
and most frequent emoticons.

Tab. 4.1: Labels of Emotion Categories [1]

Emotion Category Label
Happiness hp
Sadness sd
Anger ag
Disgust dg
Surprise sp
Fear fr
Mixed emotion me
No emotion ne

Regular expressions are created for each emotion category, consisting of unigrams lo-
aded from the database. The regular expressions are composed to match at the word or
emoticon borders, as shown in Figure 4.1. Start of an unigram is considered at a word
border (\b) or at start of a hashtag (#). End of the unigram is matched at the border or
before an non-word character (\W). Unigrams, of one emotional label, are escaped and con-
catenated by a or (pipe, |) character. Note that (?:) is a non-capturing group sequence,
used only for matching alternatives.

(?:\b|#)(joined-unigrams)(?:\b|\W)

Fig. 4.1: Regular Expression Composition

Feature extraction is done by applying the regular expressions, for each emotional
category of one tweet. The expression matches the emotional indicators. The classification
is evaluated by counting the occurrence of indicators, and returning the corresponding
emotion label. Only one label is returned per tweet. If there are no indicators in each

27

category, the result is no emotion (ne). When two or more emotion labels occurs in one
tweet message, the mixed emotion (me) is considered.

Module Baseline was developed, for the purpose of emotion classification. Module loads
the emotion indicators, compiles the regular expressions, and classifies the presented data.
Tweets are classified by calling an Baseline.process() method. The iterable object (list)
of tweets is given as an argument for the method. The method returns a counts of emotional
labels, for a statistical calculations.

4.2 Application

The application is designed (Fig. 4.2) to take an user input, by typing the address of desired
location. Location is translated into geographic coordinates by Google Geocoding (Section
3.2.1). Coordinates are used in Twitter Search API (Section 2.2.1), to define the location
of tweets in specified radius1.

Classification, of founded tweets, is done by the Baseline algorithm. The result of
classification is represented by pie chart, where each color represents its own emotional
category. The map is downloaded by Google Static Maps (Section 3.2.2) as a temporary
PNG image, to show the area of interest.

User Input

Google Geocoding

Google Map Twitter REST API

Classification

Pie Chart

location

coordinatescoordinates

tweets

background

classes

Fig. 4.2: Baseline Application Flow Design

Gnome’s GTK+ was used for building the graphical user interface (GUI) in the appli-
cation. The skeleton of GUI is shown on Fig. 4.3. Menu bar have a function of controlling
the interface and showing the About dialog. Search entry have a purpose of user inputs,
to type the location’s address. After the entry activation (by hitting the Enter), the app-
lication flow starts to begin (Fig. 4.2). If the input is a known address and geographic

1Radius was set to 15 km.

28

coordinates are found, the tweets are downloaded and analyzed. All progress is shown in
the Status bar. The resulting pie chart is rendered as an overlay on a map. The percentage
of emotion labels (emotions) are written in the Status bar.

File Help

Search Entry

Status bar

Map

Pie Chart

Fig. 4.3: Baseline Graphical User Interface Design

An example of usage and results are illustrated on Fig. 4.4. “London” was used as
an input of search entry. 50 tweets were analyzed, resulting 19 % of happiness, 5 % of
sadness, 7 % of mixed emotion, and rest 69 % of no emotion.

29

Fig. 4.4: Screenshot of the Baseline Application

30

5 DATA ACQUISITION

This chapter focuses on data collection from Twitter. Data were selected using a search
mechanism with specified search terms. Each tweet found by the search term is annotated
with labels, that the search term have assigned. The objective was to target on English
speaking countries, namely on the United States of America. The application proposed for
data collection and annotation is described below.

5.1 Mining Application

Application Twitter Miner was developed for the purpose of tweets collection, and there-
fore to build the Twitter corpus. Data from Twitter are collected using the Twitter REST
API (as presented in Section 2.2). Selection of data is provided by the Search API, where
GEO location option is used. Tweets are saved into two groups. The first group of tweets
is for training, testing, validating the classifier. The second group of tweets is for final
evaluation using a trained classifier. Data for training are gathered and annotated using
a search terms. Search terms have assigned an emotional label and/or valence label, that is
added to the collected tweet. Data designated for final evaluation are collected in the same
way as data for training. Filters may be defined in a place of a search term, for e.g. to filter
only non-retweeted (reposted) tweets (-filter:retweets). Final evaluation is based on
the trained model, where each tweet is classified to an emotional class. The classified data
can be visualized on map, to show a emotional changes in time in different cities.

Tweets are stored in a relational (SQL) database, specifically to the tweets table.
The tweets table consists of tweet ID, text, user ID, number or retweets (reposts), flags
and other columns that are essential for the mining process. Each tweet may have couple
of labels, which are saved into the tweet_labels table. Each label have an attribute, that
indicates an used classifier, from which the label was classified or annotated.1 The indicator
with the value of “search” express, that the label was annotated by using one of the search
terms, from a Table 5.1.

The database have two other tables, namely locations and search_terms, which are
used for specifying the data collection. The locations table stores a geographic locations,
including a location name, geographic code, radius, and a type of mining group. The mining
group tells whether data collected from the location are intended for training (testing and
validation) or for final evaluation. The second table search_terms holds the search queries,
that are used to build a corpus. The full specification of table structures can be found in
Appendix A. The connection and the table collation for text storage was set to utf8mb4
(in MySQL), for the purpose of storing the 4 Byte UTF-8 characters, such as emojis.

Twitter Miner application is executed by miner.py, using a Python 3 interpreter.
The application has several options:

• -c COUNT – to set the maximum number of tweets per request,
1A label and class are interchangeable.

31

• -i INTERVAL – to set the time interval between a set of requests (in seconds),
• -g train/classify – to specify the data collection for training or for classification
• --classify – to use a trained emotional classifier and classify collected tweets.

Three main Python classes were developed for the mining application, namely the Da-
tabase, TwitterAPI, and MinerBase. The Database class handles a connection to the da-
tabase and provides methods for fetching and storing tweets, locations and search terms.
The TwitterAPI is a class from the external library, which was described in Section 3.1.

The main class of the application is MinerBase. The MinerBase handles several sub-
miners, where each subminer (TweetMiner class) have its own geographic location coordi-
nates and search term (only in training) parameters. The parameters for a subminer are
used to build a REST request query for the Twitter API. Note that only one instance of
TwitterAPI is needed, and therefore it is shared among all “subminers”. The miner uses
the subminers to pool Twitter for new tweets in defined intervals.

The subminer stores an indicator of location (location_id) and an indicator of used
search term (search_category). The indicators help the subminers to find a maximum
tweet ID, for next requests – for each location and search terms separately. The maximum
tweet ID is used to iterate over a timeline, that Twitter responds with.

Getting data for training is done by iterating over a search timeline and setting an ini-
tial cursor. Tweets are collected based on their IDs, starting from the cursor to the least
non-collected tweet. The cursor is set to the min. tweet ID from the tweets set after each
request, and therefore to continue the iteration (from top to bottom). The cursor is reset
after all tweets are collected in the timeline iteration. Resetting cursors causes the next
pooling to start the iteration from the very top, and therefore to get newest data. The ite-
ration is done by setting max_id and since_id as the request parameters. The max_id
parameter is the cursor with a value of last tweet ID from previous request minus one
(preventing the last tweet to be fetched again). The since_id parameter is set to a max
tweet ID, that is stored in the database for that location and search term.

Collection of tweets for final evaluation uses a principle of getting a newest Twitter
data for each request – newest as the newest submitted tweets. The since_id is used to
set the max tweet ID from the last request or from the database, preventing to fetching
a duplicate data. For more information about the iteration process, please refer to Working
with Timelines in [18].

Twitter Miner application can be started also by executing the runminer.sh script,
which will ensure a non-stop running (restarts the miner after a failure).

5.2 Collecting Data from Twitter

Data collection from Twitter was performed within the United States. The option lang
was set to en in the requests, to ensure that all tweets were written only in English only.

32

Tw
ee

t
La

be
ls

Tw
itt

er RE
ST

 A
PI

Lo
ca

tio
ns

Tr
ain

Ev
alu

at
io

n
Se

ar
ch

 T
er

m
s

Tw
ee

ts

Tr
ain

Ev
alu

at
io

n

Su
bm

in
er

s

Su
bm

in
er

s

Ba
se

lin
e

Cl
as

sifi
er

Tr
ain

ed
 C

las
sifi

er

lab
els

labels

labels

Fi
g.

5.
1:

D
at

a
co

lle
ct

io
n

flo
w

33

5.2.1 Data of Training Corpus

The amount of data flowing on Twitter takes a grater amount of time to be properly
labeled by human annotators. Using search terms, such as hashtags [21] and emoticons,
overcome the need of manual annotation. The search terms were mapped to proper labels,
as seen on Table 5.1. The positive (pos) and the negative (neg) labels were added to
support emotional labels. Hashtags were selected to represent an emotional states with
mainly used words (unigrams), from the Baseline approach, using the same principles as
in [22].

Tab. 5.1: Search terms with appropriate labels added

Search terms Labels added
#angry OR #annoyed OR #pissed ag, neg
#amazing sp, pos
#crap dg, neg
#disgusted dg, neg
#frustrated fr, neg
#happy OR #awesome hp, pos
#sad OR #lonely OR #unhappy sd, neg
#surprised OR #suddenly sp
:) pos
:(neg

Each collected tweet was classified and annotated with the Baseline algorithm, indica-
ted by “baseline” string value in the labels table. This approach was done to find emotional
states even in tweets annotated only to valence labels (pos/neg) in search process.

Data collection started on 3rd of March 2015, targeting on 30 US cities. Focusing
on areas with about 12 km radiuses and using a not frequently used hashtags, led to
a insufficient amount of data for emotional annotation and for the learning process. Around
1 200 tweets were collected per day, where the disgust and fear were presented only in few
tweets (1 to 10 per day). The area of data collection was extended to the whole USA (excl.
Hawaii and Alaska), resulting in more data. The final areas of Twitter data collection can
be seen on Figure 5.2.

Tweets were finally acquired from a 6 overlaying areas, covering most of the land of
United States. Uniqueness of tweet identifiers ensured storing non-duplicated data. Total
of 222 480 tweets were collected, intended for building the Twitter Corpora. The emoti-
onal label fear has been annotated only on about 800 tweets. The low number of tweets
indicating the fear emotion was insufficient for training, and therefore this label was not
considered.

The positive valence was found in 158 316 tweets and the negative valence in 64 827 twe-
ets. The emotional labels classified by the Baseline algorithm and assigned to valence cate-
gory (in search process) increased the total number of emotional labels 10 times. The final
count of labels, combined with the baseline emotional annotations, for training the model

34

Fig. 5.2: Areas of Twitter data collection

can be seen on Figure 5.3.

ag dg fr hp sd sp
0

1

2

3

4

5

6
·104

2,984 3,380
815

52,997

12,736

6,552

nu
m

be
r

of
tw

ee
ts

(a) emotional labels

po
s

neg
0

0.5

1

1.5

·105

1.58 · 105

64,827

(b) polarity labels

Fig. 5.3: Collected tweets by labels

35

5.2.2 Data for Final Evaluation

Collection of tweets for the final evaluation was done to show changes of emotional content
within predefined geographical areas. Collected data in this step will be subsequently
classified by the classifier trained on data from Twitter corpus.

Tweets for final evaluation were collected from 32 cities. Only tweets that were not
retweeted (reposted) and were not replies to other tweets, were selected. The filtering was
performed using Twitter in-query filter flags, as seen on Figure 5.4. The map (Fig. 5.5)
shows the geographical locations and radiuses where the tweets were collected. Radiuses
vary from 5 km to 23 km. The cities were selected based on their population or another
special attributes, such as criminality or unemployment. The full list of the cities can be
found in the table of Appendix B.

-filter:retweets AND -filter:replies

Fig. 5.4: Twitter in-query filtering flags

Fig. 5.5: Area of Twitter data collection for evaluation

The mining application was set to collect the tweets regularly by a time interval of one
hour. The application is executed as follows:

runminer.sh -g classify -i 3600 -c 40

The tweets collection, for final evaluation, started on 26th of April 2015 and continued
until 22nd of May 2015. The collection rate was 40 tweets per hour per city, resulting of
max. 960 tweets per day for a city and max. of 30 720 total tweets per day. Figure 5.6
shows the number of tweets collected for each day, ordered by a creation date. Note, that
UTC time was considered. On average 19 497 tweets were collected per day.

36

04-
26

04-
28

04-
30

05-
02

05-
04

05-
06

05-
08

05-
10

05-
12

05-
14

05-
16

05-
18

05-
20

05-
22

0

0.
51

1.
52

2.
53

·1
04

numberoftweets

Fi
g.

5.
6:

Tw
ee

ts
co

lle
ct

ed
fo

r
fin

al
ev

al
ua

tio
n

by
da

te
of

cr
ea

tio
n

37

6 CLASSIFICATION

Data collected for training were used to train a SVM classifier. Each tweet was tokenized to
tokens, such as words, emoticons and hashtags. Non-valuable tweets, that did not contained
at least 2 English words, were filtered, and therefore were not used in the training process.
Features were extracted using a Hash Vectorizer for n-grams and a Count Vectorizer (with
Tf-idf weighting) for emoticons [24]. The features from each vectorizer were concatenated
using the Feature Union method [24]. The Variance threshold [24] was used as a basic
method for a Feature Selection.

The process of building and training a classifier is described below. The building steps
are visualized on Fig. 6.1.

6.1 Data Fetching and Preprocessing

Tweets for training, testing and validation are fetched from the tweets table. Tweets with
emotional labels (ag, sp, hp, sd, dg) assigned in the search process and by the Baseline
algorithm are selected. Only non-retweeted (non-reposted) and non-reply tweets are fet-
ched, by setting a condition in two table columns (Appendix A):
retweeted = 0 AND is_reply = 0.

6.1.1 Tokenization

Tokenization of text from tweets is done by Christopher Potts’s Twitter-aware tokenizer[7].
Tokenizer splits the text into a tokens of ASCII emoticons (incl. the reverse order), phone
numbers, HTML tags, Twitter hashtags, Twitter user handles and words. The Twitter-
aware tokenizer also replaces the HTML entities into a proper UTF-8 Unicode characters.
The tokenization is done by a regular expression, compiled from all named token possibi-
lities.

The Twitter-aware tokenizer was refactored to run on Python 3. UTF-8 emoticons and
emojis were added to the list of token possibilities, to the regular expression of a tokenizer,
specifically these sets:

• U+2600 – U+26FF — symbols (♀, ,),
• U+2700 – U+27BF — symbols and arrows (E),
• U+10080 – U+100FF — linear ideograms,
• U+1F300 – U+1F5FF — pictographs ($),
• U+1F600 – U+1F64F — emojis.

The tokenizer is implemented in the TweetUtils module as the TweetTokenizer class.
The class have the tokenize() method for tokenizing a single text string and the to-
kenize_batch() method for tokenizing an iterable object (such as list).

38

Tweet
Labels

Tweets

Train Evaluation

Tokenize

1n

labels

text

Filter tweets

text tokens

nltk.corpus.words

TweetTokenizer

n-gram Extraction Emoticon Extraction

text tokens + valence labels

Preprocessing

Feature extraction

Feature Selection

HashingVectorizer TfidVectorizer

labels

Classifier

VarianceThreshold

SVC/LinearSVC/SGDClassifier

Fig. 6.1: Classifier model build process

39

6.1.2 Filtering

Filtering tweets for training purposes consists of these steps:
1. Tweets which contain less than 2 English words are discarded.
2. Removing hashtags that have been used for searching.
3. Replacing URLs and user handles with special tokens.

Fetched tweets are filtered before passing them into the learning process. Tweets that
have less than 2 English words are not passed to the vectorizer, and therefore discarded
from the learning process. Words are selected from the tokens, after the tokenization, and
compared with the word dictionary.

The word dictionary is retrieved from the NLTK (Section 3.5). The module containing
the dictionary is imported from nltk.corpus.words.1 The module contains dictionaries
of various languages, and therefore the desired language must be specified. The words
returned from the dictionary are returned in Python’s list format, by default. The list
format has time complexity of O(𝑛), which slows down the searching for a proper word.
The reference variable of words was transformed to the Python’s set format. The time
complexity of searching and value reading of the set format is O(1). Transformation from
list to set reduced the searching process from second to nanoseconds. The Python’s set
format is an implementation of Hash Set, however it does not support indexing and slicing.

Example of using the word dictionary:
from nltk . corpus import words

words = words . words (’en ’) # Get English Words

words = set (words) # Transform to set

Test if words is in the ~ dictionary

’word ’ in words # Returns : True or False

The hashtags from search terms (Tab. 5.1) are removed before training. The absence
of removal would lead classifier to be focused primary on these hashtags.

Tokenized tweets are filtered for Feature Extraction, to include only the words, emoti-
cons, special tokens and other characters, based on the Feature Extractor. The filters for
each Feature Extractor will be presented in the following section.

An example of tokenization and 𝑛-gram filtering is shown on Fig. 6.2.

6.2 Feature Extraction

Two feature extraction schemes were used, namely the Hashing Vectorizer and the Count
Vectorizer with Tf-idf weighting. The feature extraction schemes were build using the Sci-
kit library [23], located in a module sklearn.feature_extraction.text. Each vectorizer

1Note, that the corpus needs to be downloaded using a nltk.download().

40

The #moon sets ☾, and so do I. Good night ;-) from @space_station.

The | #moon | sets | ☾| , | and | so | do | I | . | Good | night | ;-) | from | @space_station | .

hashtag UTF-8 emoticon ASCII emoticon user handle

Christopher Pott's Tokenizer

The | #moon | sets | , | and | so | do | I | . | Good | night | from | __USERNAME__ | .

TweetTokenizerFilter

Tweet Example

Fig. 6.2: Example of tokenization and filtration

had to implement fit() and transform() methods. Features from vectorizers were con-
catenated by a Feature Union [24].

6.2.1 n-gram Extraction

Hashing Vectorizer (HashingVectorizer) was used to extract n-grams, where 𝑛 ∈ {1, 2, 3}.
Therefore only unigrams, bigrams and trigrams were considered as features.

Feature hashing is based on a “hashing trick”[25], where each feature is hashed into
a number. The hash value corresponds to a column in the hash table. The hash table should
be adequately big enough, to be able to store several features and minimize hashing colli-
sions. Most of the hash table values are zeros, and therefore the hash table is represented
by a sparse matrix. The signed 32 bit version of Murmurhash3 is used in the Scikit’s im-
plementation of HashingVectorizer. The hash value is shortened by a modulo of number
of desired features (number of hash table’s columns).

The feature vectorizer is stateless, and therefore it does not need to be fitted before
the transformation. The statelessness have a disadvantage, that the already hashed feature
cannot be reversely computed for purposes of real text 𝑛-gram feature determination.
The advantage, on the other hand, is low memory consumption, because of an absence of
bag-of-words dictionary. The feature hashing is suitable for large scale data.

The tokens filtration, for the 𝑛-gram feature extractor, is done by implemented Tweet-
TokenizerFilter (TweetUtils module). The tokenizer filter removes the emoticons and
emojis, and passes only words and other set of characters to the vectorizer. The Twitter
user handles are replaced by the special token __USERNAME__, to represent the username
placement. The URL links are replaced by the __URL__ token. The replacement of user
handles and URLs helps to remove insignificant data, while keeping an information of
placement and count.

41

The valence labels were added to the tokens for the 𝑛-gram feature extractor, to sup-
port the decision making. The positive valence was identified by a __pos__ token and
the negative valence by a __neg__ token.

The Scikit’s HashingVectorizer parameters were set as follows:
HashingVectorizer (lowercase = False ,

preprocessor =None ,
tokenizer = tok_filter . filter ,
non_negative =True ,
ngram_range =(1 , 3) ,
n_features =2 ∗∗ 22 ,

)

The lowercasing of characters and preprocessing was done by the TweetTokenizer. Tweets
passed to the vectorizer were already tokenized, and therefore the tokenizer parameter
was set to the reference of filtering method of an TweetTokenizerFilter instance. Maxi-
mum number of features (table columns) was set to 220 = 1, 048, 576 features.

6.2.2 Emoticon Extraction

The Count Vectorizer with Tf-idf weighting was used to extract the emoticons and emojis
from tweets. The data for feature extraction were filtered to include only the emoticons.
The filtration was done on tokens, from an already tokenized tweets. The instance of
TweetTokenizerEmoticons (TweetUtils module) provided the filtration mechanism.

The Scikit’s Tf-idf Vectorizer consist of a Count Vectorizer followed by a Tf-idf Trans-
former. The Tf-idf, term-frequency times inverse document-frequency, is a common we-
ighting scheme, used especially in a document classification. The Tf-idf weighting scales
down the impact of tokens, that occur frequently in the given corpus, and therefore making
the less frequently occurred tokens to be more valued. More about the Tf-idf can be found
in [26].

The TfidfVectorizer paramters were set as follows:
TfidfVectorizer (lowercase = False ,

preprocessor =None ,
TweetTokenizerEmoticons instance

tokenizer = tok_emoticons . filter ,
max_df =1.0 ,
min_df =1 ,
max_features =None , # All emoticons

use_idf =True ,
smooth_idf =True ,

)

The tok_emoticons was an instance of TweetTokenizerEmoticons.

42

6.3 Feature Selection

Features, from the Hashing Vectorizer and the Tf-idf Vectorizer, were concatenated by a Fe-
ature Union [24]. The constructed Feature Union is an instance of sklearn.pipeline.Fea-
tureUnion, which holds all vectorizers. Each vectorizer (transformer) in the Feature Union
is identified by its name. Optionally, the vectorizer can be wighted, by setting the trans-
former_weights parameter. The weight parameter is defined in a Python’s dictionary
format, where the keys are the identifiers of vectorizers.

The first feature selection is done by a Variance Threshold method, using the instance
of sklearn.feature_selection.VarianceThreshold. The threshold was set to 0.000004.

The LinearSVC and the SGDClassifier classifiers (will be presented in Secion 6.4)
implements the loss function, and have the penalty type option. The penalty can be set
to the L1 (Least Absolute Deviation, Eq. 6.1) or to the L2 (Least Squares Error, Eq. 6.2).
One of the loss function, that is available in both classifier, is Squared Hinge-loss (L2) [27].

𝑆 =
𝑚∑︁
𝑖

|𝑦𝑖 − f(𝑥𝑖)| (6.1)

𝑆 =
𝑚∑︁
𝑖

(𝑦𝑖 − f(𝑥𝑖))2 (6.2)

6.4 Classifiers

SVM classifiers (Section 1.4.4) were used for the Twitter emotional and valence classifi-
cation. The linear kernel was used for SVM class separation, since it was proven to be
efficient for textual and document classification ([14]). The “one-vs-rest” approach was
used for the multiclass classification.

6.4.1 SVM Classifiers in Scikit

Scikit implements these SVM classifiers for supervised learning, that have a linear kernel:
• SVC (kernel=’linear’),
• NuSVC (kernel=’linear’),
• LinearSVC,
• SGDClassifier.

Each instance of Scikit’s SVM classifier have a fit() method for training and a predict()
method for classification. The fit(X, y) method takes two arrays as arguments. The X
is a matrix of vectorized data, where each row represents a tweet (document, or a sample)
and each column represents one feature. The y is a row vector of annotated classes for each
tweet (document). The classification method predict(X) takes the same type of matrix
as the fit method.

43

The SVC and the NuSVC are an implementations of libSVM [28]. These implementati-
ons supports various kernels, namely the RBF, linear, polynomial, sigmoid and the pre-
computed kernel. The time complexity is higher than quadratic, which is unsatisfactory
for training on a higher number of tweets (documents). The multiclass support is done
only by a “one-vs-one” scheme, but can be also done with “one-vs-rest” scheme using
a OneVsRestClassifier wrapper [24]. The NuSVC is an Nu-Support Vector Classifier,
which can control the number of support vectors.

The LinearSVC is an implementation of liblinear [29]. The liblinear is more flexible,
than libSVM, and supports various penalties and loss functions. The liblinear is very
efficient for scaling to large number of data (tweets), than the libSVM. The multiclass
support is done by “one-vs-rest” scheme. The disadvantage of liblinear is the usage of
internal sparse data representation, where a memory copying is required.

The SGDClassifier is a set of linear classifiers with Stochastic Gradient Descent trai-
ning, which also includes the SVM. The SGD classifier overcomes the need of coping
data to the internal representation, as occurring in the LinearSVC (liblinear). The advan-
tage of SGDClassifier is a much fast scaling to very large data sets, comparing against
the LinearSVC.

6.4.2 Classification Settings

The LinearSVC classifier parameters, for classification to the emotional and valence classes,
were set as follows:
LinearSVC (C =1.0 ,

loss =’ squared_hinge ’,
penalty =’l2 ’,
dual = False ,
tol =1e−3, # tolerance

class_weight =’auto ’,
multi_class =’ovr ’,

)

The class_weight=’auto’ sets the class weighting based on a number of tweets (sam-
ples) for each class – done for a reason of unbalanced number of tweets in each class.
The multi_class=’ovr’ selects the “one-vs-rest” scheme for multiclass classification.

The optional SGDClassifier was used to show the differences against the LinearSVC.
The parameters were set to the same values as for the LinearSVC shown above. Training
of the LinearSVC was done in a tens of seconds, however the training of SGDClassifier
took only milliseconds, but with a less precise classification.

6.5 Building a Trained Model

Two models were trained and built, namely the Emotional classifier model and the Valence
classifier model. The valence classifier, with positive and negative classes, was used to
support the classification of emotional classes. Each model was saved (serialized) for a later

44

classification, for the final evaluation process. An own application was developed to do
the building and training the model.

6.5.1 Training Application

The application Build Model (build_model.py) was implemented for building and training
a model for Twitter emotional and valence classification. Tweets annotated with ag, sp,
hp, sd and dg labels were fetched for the training of emotional classifier. The pos and
neg labeled tweets (annotated by search process) were fetched for the valence classifier
training. Each model had to be build and trained separately. Training of each classifier
was done by running the application with a different arguments.

The application have these arguments available:
• MODELTYPE – type of the model: emotional or valence (required),
• -c CLF – classifier type: svc, linearsvc (default) or sgdc,
• -f FILENAME – path to a filename, where the model will be saved to,
• -x – do the cross-validation.

Tweets are fetched from the database using the Database.get_tweets_for_clf()
method. The fetched tweets are randomly shuffled and separated into a training (90 %)
and a testing group (10 %)2, before getting into the Feature Extractor. The separated
tweets are split into tweets texts and annotated labels, using a make_bunch() function
(TweetUtils). The tweets for training are cleared from the searched hashtags.

Each steps for training a classifier (and later for classification) (Fig. 6.1) are pipelined
together using the sklearn.pipeline.make_pipeline() function. The pipeline comprises
of the Feature Union of two vectorizers (HashingVectorizer and TfidfVectorizer),
the Feature Selector VarianceThreshold and the SVM classifier. The created pipeline is
shown on the Figure 6.3.

Feature Union

n-gram Vectorizer Emoticon Vectorizer Variance Threshold Estimator (SVM)

Fig. 6.3: Classification pipeline

The instance of a class TrainedModel (TweetUtils) holds the pipeline and the names
(text representation) of classes (target_names). The trained model is saved and serialized
by the Python’s pickle module, if the Build Model application have been started with the -f
option. Examples of steps for fetching, shuffling, splitting, making and saving the trained
model are shown in the following code:
Fetching tweets from database

tweets = db. get_tweets_for_clf (labels , limit)
n_tweets = len (tweets)

2Splitting is done before the filtration, and therefore may not be accurate.

45

tweets = shuffle (tweets) # from sklearn . utils

Separation to training and testing groups

ratio = .9
tweets_train = tweets [: round (ratio ∗ n_tweets)]
tweets_test = tweets [round (ratio ∗ n_tweets) :]

Spliting the ~ data and labels

remove = (... searched hashtags ...)
tweets_train , y_train = make_bunch (tweets_train , labels ,

tokenizer , remove = remove ,
min_words =2)

tweets_test , y_test = make_bunch (tweets_test , labels , tokenizer ,
min_words =0)

Making a~ pipeline

pipeline = make_pipeline (feature_union , feature_selection , clf)
model = TrainedModel (pipeline = pipeline , target_names = labels)

Saving the ~ model

import pickle
with open (filename , ’wb ’) as fh:

pickle . dump (model , fh)

A report, consisting of precision (Eq. 6.3), recall (Eq. 6.4), and 𝑓1 score (Eq. 6.5) [30],
is presented after the training process. The average precision is weighted by the number
of tweets in each class.

Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6.3)

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6.4)

𝑓1 = 2 · Precision · Recall
Precision + Recall (6.5)

The 5-fold cross-validation is done by the sklearn.cross_validation.cross_val_sco-
re() function.

6.5.2 Evaluation of Emotional Classifier

Emotional classifier was trained on 39 947 tweets, from a total of 47 461 filtered tweets.
Vectorization and tokenization took around 6 s, making a 1 048 757 sparse features. Feature
Selection process identified 16, 979 features for the classifier.

The training time of LinearSVC classifier was around 32 s, and the test time about
3 ms3. The 5-fold Cross-validation gave an accuracy of 0.8910 (±0.01) and 𝑓1 score 0.8972
(±0.01). The precision, recall and f1 score for each class can be seen on Table 6.1.

The training time of Stochastic Gradient Descent classifier (SGDClassifier) was
only around 310 ms. The 5-fold Cross-validation accuracy was 0.8707 (± 0.02) and the 𝑓1

3Features were already vectorized (extracted) and selected.

46

Tab. 6.1: Classification report of Emotional classifier – type LinearSVC

Class Precision Recall 𝑓1 Support
ag 0.72 0.87 0.79 181
sp 0.56 0.87 0.68 470
hp 0.98 0.89 0.93 3110
sd 0.95 0.92 0.94 745
dg 0.94 0.95 0.95 240
average 0.92 0.90 0.90 total 4746

score 0.8764 (± 0.01). The precision, recall and f1 score for each class can be seen on
Table 6.2.

Tab. 6.2: Classification report of Emotional classifier – type SGDClassifier

Class Precision Recall 𝑓1 Support
ag 0.70 0.74 0.72 202
sp 0.49 0.73 0.59 460
hp 0.95 0.88 0.91 3103
sd 0.92 0.91 0.92 742
dg 0.98 0.89 0.93 239
average 0.89 0.87 0.88 total 4746

The classifier of type LinearSVC was selected, since it was more precise than the SGD
classifier, and had taken the same classification time. The trained models of emotional
classifiers were saved to the SVM-linear-model-emotional.pkl for LinearSVC and to
SVM-sgd-model-emotional.pkl for SGDClassifier (see Appendix C).

The surprise emotion had an precision of around 50 % for each classifier. This means,
that the surprise emotions were correctly classified only in the 1/2 of cases – same as using
a randomly generated surprise emotion flag.

6.5.3 Evaluation of Valence Classifier

The valence classifier (pos/neg) was trained on 123 509 tweets, from a total of 139 174 un-
filtered tweets. Vectorization and tokenization took around 34 s, making a 1 048 820 sparse
features. Feature Selection process identified 16, 590 features for the classifier.

The training time of LinearSVC classifier was around 2.6 s, and the test time about
3 ms4. The 5-fold Cross-validation gave an accuracy of 0.9843 (±0.00) and 𝑓1 score 0.9843
(±0.00). The precision, recall and f1 score for each class can be seen on Table 6.4.

The training time of Stochastic Gradient Descent classifier (SGDClassifier) was
only around 261 ms. The 5-fold Cross-validation accuracy was 0.9757 (± 0.02) and the 𝑓1

score 0.9758 (± 0.01). The precision, recall and f1 score for each class can be seen on
Table 6.2.

4Features were already vectorized (extracted) and selected.

47

Tab. 6.3: Classification report of Valence classifier – type LinearSVC

Class Precision Recall 𝑓1 Support
pos 0.99 0.99 0.99 10876
neg 0.97 0.99 0.98 4789
average 0.99 0.99 0.99 total 15665

Tab. 6.4: Classification report of Valence classifier – type SGDClassifier

Class Precision Recall 𝑓1 Support
pos 0.99 0.97 0.98 10930
neg 0.94 0.98 0.96 4735
average 0.97 0.97 0.97 total 15665

The classifier of type LinearSVC was selected, since it had taken the same classification
time. The trained models of valence classifiers were saved to the SVM-linear-model-
-valence.pkl for LinearSVC and to SVM-sgd-model-valence.pkl for SGDClassifier
(see Appendix C).

48

7 FINAL EVALUATION

This chapter discuss the final evaluation of classified data, using the trained classifier.
The tweets were collected in a time period of one month, as presented in Section 5.2.2.
The classification of collected tweets was done in the application with GUI – Geo Emotions.
The results of classified emotional classes were saved to the database, for later visualization.
Visualization was done in the same application, where the emotional view were presented
on the map of USA.

7.1 Fetching and Classifying Tweets

Classification of collected tweets can be done either in the visualizing application Geo
Emotions or right after collection in the Mining Application. The option “reclassify” must
be checked for classification in the Geo Emotions application. If the tweets need to be
classified right after they are fetch from Twitter, the argument --classify must be used,
when starting the Mining Application.

The Geo Emotions application takes tweets collected in the collection process (Sec-
tion 5.2.2), when classification is requested. Only tweets from locations, that have the mi-
ning_group equal to “classify”, are selected. Fetching tweets for the classification is done
by the method (instance) Database.get_tweets(), for which the location ID of tweets is
specified. The classification is done using trained classifiers, as presented in Section 6.5.

The Classification module was created to load and hold the Emotional classi-
fier (EmotionalClassifier) and the Valence classifier (ValenceClassifier). The Va-
lenceClassifier loads the valence LinearSVM model from the file SVM-linear-model-
-valence.pkl. The EmotionalClassifier loads the emotional LinearSVM model from
the file SVM-linear-model-emotional.pkl and creates an instance of ValenceClassi-
fier. The data classified by the instance of EmotionalClassifier are classified at first
to a valence class by the ValenceClassifier, which is appended as an additional token
to the rest of tokens (of tokenized tweets).

Each Python’s classes, that are used for holding the classifier, implements the clas-
sify() method. The method accepts a list of raw data for the first argument. Raw
data are tokenized and then passed to the predict() method of the pipelined classi-
fier (Fig. 6.3). The pipeline of the classifier is located in the instance of TrainedModel.
Trained model instance is loaded from the file, using the Python’s pickle data serializer:
pickle.load(filehandle).

The Geo Emotions application uses multiprocessing approach, to reduce the time of
classification. Several worker threads are created, based on a number of CPU cores. Two
threads are created for each CPU core. Fetched tweets are separated into smaller parts,
called chunks, before creation of worker threads. Each chunk contains a maximum of 250
tweets, that are waiting to be classified. The chunk is passed to the task queue, from
which the worker threads read. The results of classification (classes for each tweet) are
passed to the result queue by a worker thread. The task_done() is called on the task

49

Tw
ee

ts

Tr
ain

Ev
alu

at
io

n

Tw
ee

t
La

be
ls

Lo
ca

tio
ns

Tr
ain

Ev
alu

at
io

n

Cl
as

sifi
ca

tio
n

Em
ot

io
na

lC
la

ss
if

ie
r

1
n

Fe
tc

h

Fi
g.

7.
1:

C
la

ss
ifi

ca
tio

n
an

d
V

isu
al

iz
at

io
n

50

queue by a worker thread, when the chunk classification is finished. The result queue
is read by the main classification thread, which concatenates the results (classes) and
updates the graphical progress bar. The final concatenated classes of tweets are saved to
the database, after all jobs from the task queue are done. The classification takes around
2 minutes, when using 8 thread utilization.

7.2 Visualization

The Geo Emotions application (geo_emotions.py) was created to visualize emotional
changes over time in a certain geographical location. The application also does the classi-
fication of unclassified tweets, in case they are not already classified by the mining appli-
cation.

7.2.1 Graphical User Interface

The Graphical User Interface of the application was implemented using a GTK+ toolkit.
The design of the GUI is shown on the Fig. 7.2. The GUI consists of a button, check-
box, status line, progress bar and a drawing window. The drawing window is a WebKit’s
WebView component, which is basically a small web browser.

Load Data Button Reclassify Status line Progress bar

Select View

date

oc
cu

re
nc

e
[%

]

Fig. 7.2: Geo Emotions GUI Design

51

7.2.2 Generation of Visualization

Loading and visualizing the data is done by clicking on the “Load Data” button. The but-
ton’s action spawns a new thread of a GeoEmotionsThread, which handles the classification
and generates data for visualization. The application does emotional classification (Sec-
tion 7.1) of tweets from geographical locations intended for classification, if the “Reclassify”
option is checked.

Statistical data for visualization of already classified tweets are selected from the data-
base. The statistics of an emotional occurrences are calculated from the emotional classes,
based on the geographical location and date of tweet submission. A mixed value is com-
puted to visualize all emotions at once. Calculation of mixed emotional value is done as
follows:

𝑚𝑖𝑥𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑎𝑔 * 0 + 𝑠𝑑 * 30 + 𝑑𝑔 * 40 + 𝑠𝑝 * 50 + ℎ𝑝 * 100, (7.1)

where the 𝑎𝑔, 𝑠𝑑, 𝑑𝑔, 𝑠𝑝, and the ℎ𝑝 represents a percentage of emotional occurrence, that
they express. The percentage is calculated for each geographical location and each date
separately. The equation 7.1 was proposed based on trial-error process. The mixed value
is shown as a color gradient, as seen on Fig. 7.3.

0 10030 40 50
anger sadness happinesssurprise

disgust

Fig. 7.3: Gradient for showing mixed emotions on the map

The visualization is generated into the HTML content, and after that shown within
the WebView component. The HTML is generated by an instance of HtmlDataVisualizer,
using a HTML template. The HTML template consists of common HTML5 skeleton,
Google Charts API1 and JavaScript. The JavaScript handles the charts data and user’s
interaction in the WebView GUI component. The computed statistics are visualized on
the map for each geographical location for a selected date, and also on the graph, for the
desired geographical location.

The map in the application (Fig. 7.4) shows markers on the cities where the tweets were
collected. The radius of markers depends on the tweets collection radius, in that particular
geographical area. The color of the marker is dependent on the mixed emotional value
(Eq. 7.1) of the selected date, if the mixed emotional view is selected. When a specified
emotion is selected to be viewed, then the color of marker represents the percentage of
selected emotion. The color gradient is dynamically scaled, based on the minimums and
maximums of percentages for all geographical locations for selected date. Scaling insures
better representation, that can be visually viewed. Date is selected using slider under
the map.

1https://developers.google.com/chart/

52

https://developers.google.com/chart/

Fig. 7.4: Geo Emotions Application

The line chart is drawn after selection of desired city by clicking on the marker.
The chart shows the temporal changes of all emotions, where the x-axis represents the date
and y-axis represents the percentual occurrence of emotions.

53

7.3 Statistics

Table 7.1 shows the statical information about the tweet collection process and emotions
that have been reflected in the tweets.

Tab. 7.1: Final Statistics

Tweets collected for training 222, 476
Tweets collected for final evaluation 526, 421 510, 448 effective
Tweets total 748, 897
Time period of collection for evaluation 27 days
Total cities 32 cities
Average tweets per day 19, 497 tweets
Classification time (8 threads, all tweets) 96 s
Most appearing emotion Happiness (hp)
Least appearing emotion Disgust (dg)
Anger 114, 243 tweets 22 %
Disgust 6, 822 tweets 1 %
Happiness 198, 881 tweets 39 %
Sadness 50, 641 tweets 10 %
Surprise 139, 861 tweets 28 %

54

8 CONCLUSION

Emotions reflected in text documents and messages lack of facial, voice or mimic expres-
sions. This drawback makes it a difficult task for text recognition systems. Emotions were
defined, among other researchers, by Ekman [2] to anger, disgust, fear, happiness, sadness,
and surprise.

There are variety of classifier algorithms available, such as the Naive Byes, k-nearest
neighbors, MaxEnt and Support Vector Machines. The SVM classifier has proven to be
the most efficient for text classification.

From Social Networks available nowadays, such as Facebook, Myspace, Twitter or hi5,
Twitter has the most amount of data available for public. Not only the Twitter data are
mostly text oriented, but they are also limited to the 140 characters. The limitation to
a short messages indirectly enforce users to express their emotions intensively. Twitter
messages, called tweets, contain emoticons and hashtags among the words. Emoticons
themselves express emotions. Tweets often include slang words, which makes the task of
emotion recognition even more difficult when using a dictionary-based approach.

Twitter provides an APIs for reading and posting tweets. The Search API provides
an access to the data, by applying search queries in the requests. One of the parameters
in the search query request is the geocode, which limits the tweets a certain radius within
a geographical location. Maximum of 100 tweets can be acquired per request and maximum
of 480 requests can be sent within a 15 minute window.

First I proposed and developed an application that used the Baseline algorithm for
tweets classification into a 8 emotional labels. The application uses a location coordinates,
based on user input (address), to fetch the tweets. The fetched tweets are classified one by
one using unigrams as features. The Baseline corpus consist of most frequently used words
and emoticons that strongly express the emotions. The result is represented by a pie chart
drawn on a map.

Next I decided to separate the task into two parts. The first part was an server app-
lication, which acquired tweets from Twitter – either for testing, training and validating
the classifier or for final data evaluation. The second part was a client application, that
classified already collected tweets and visualized the results. The aim of the thesis was to
target on tweets within the United States of America.

Data from Twitter were acquired using proposed and developed application, called
Twitter Miner. The application used the Twitter API library for pooling Twitter in regular
time intervals using a search query. Fetched tweets were stored into the MySQL database.

Tweets intended for training and testing the classifier were fetched using selected search
terms. The search terms were constructed by an emotions or hashtags, of words from
the Baseline lexicon. Each fetched tweet was annotated by a labels attached to a search
term, that the tweet was collected by. The tweets collection was targeted on the continental
part of USA. 222 480 tweets were collected in total for training and testing. The happiness
emotion prevailed over the others. The fear emotion was reflected by only 800 tweets, which

55

was insufficient for the classifier training, and therefore this emotion was not considered.
Tweets for final evaluation were collected from 32 cities in a 27 day period. The cities

were selected by their population or special feature, such as higher criminality or burglary.
Tweet collection was running non-stop on a server, collecting (max.) 40 tweets per city per
hour. 510 448 were collected in total for the classification and evaluation. The collection
average per day was 19 497 tweets.

Two classifiers were trained and built by own proposed Build Model application.
The application used labeled tweets from the database. The tweets were preprocessed
by the tokenizer and filter. The trained model contains two feature vectorizers, namely
the Hashing Vectorizer and Tf-idf Vectorizer. Two implementations of the SVM’s from
the Scikit’s toolkit were used: Linear SVC and Stochastic Gradient Descend SVC. Two clas-
sifiers were trained by the application, namely the Valence classifier – classifying into
pos/neg classes, and the Emotional classifier, which considered five emotions.

An emotional classifier classified only into emotional classes, excluding the fear emo-
tion. The valence label was added as a feature, classified by the Valence classifier. Only
the LinearSVC was used for final evaluation, since it showed better classification accuracy
comparing to SGDClassifier. The accuracy given by 5-fold cross-validation was around
89 %. The precision of classification for surprise emotion was only 56 %.

Application Geo Emotions was developed for visualization and classification of collec-
ted tweets. Classification process was performed by multithreading, using worker threads.
Classification of half million tweets by 8 threads took 96 s. Tokenization and vectorization
of features were the most time consuming upon the classification process. The results of
emotions for each city and for each date were visualized on a map of USA. Each city
had an marker, which color was dependent on the occurred emotion or mixed emotions.
The date could be selected by slider under the map. The line chart of an emotion progress
for all days, that have been mined, was shown after selecting the desired city.

The classification can be improved by collecting more data, that are rightfully anno-
tated. New features can be used, such as Class Sequential Rules, to improve the model.
An option of manual human annotation is possible, using a web interface for the annotators
(not included).

The Python was used as the main programming language, with the support of other
libraries. Classifiers, feature extraction and feature selection were used from the Scikit
toolkit. The HTML5 and JavaScript was used for visualization of classified data. The SQL
was used for the communication between the applications and the database. The mining
application is highly dependent on the data provided by the Twitter API.

The progress of the research, that was done for the diploma thesis, is shown on the ti-
meline (Fig. 8.1). The list of all created application is shown on a Table 8.1.

56

october
2014

june
2015december january

2015

STATE OF
THE ART

BASELINE
APPROACH

november february march april may

END OF
SEMESTRAL

THESIS

TRAINING DATA
COLLECTION

DATA
COLLECTION

(EVALUATION)
DATA MINING
APPLICATION

FINAL
WRITING

Fig. 8.1: Research Timeline

Tab. 8.1: Proposed and Developed Applications

Application Name Executable Type GUI Purpose
Twitter Emotion Baseline emotions.py Client � Classification of tweets using

Baseline algorithm
Twitter Miner miner.py Server – Tweets collection (and clas-

sification)
Build Model build_model.py Both – Training and testing classi-

fiers
Geo Emotions geo_emotions.py Client � Visualization and classifica-

tion

57

BIBLIOGRAPHY

[1] AMAN, Saima. Recognizing emotions in text. 2007. PhD Thesis. University of Ottawa.

[2] EKMAN, Paul. An argument for basic emotions. Cognition & Emotion, 1992, 6.3-4:
169-200.

[3] WEN, Shiyang; WAN, Xiaojun. Emotion Classification in Microblog Texts Using
Class Sequential Rules. Institute of Computer Science and Technology, Peking Uni-
versity, Beijing, China. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence. Quebec. 2014. [online] [cit. 2014-11-16]. ISBN 2159-5399. Avai-
lable at: <http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/
8209/8419>

[4] Natural Language Processing. JURAFSKY, Dan; Christopher MANNING. [online].
Standford. Coursera. [cit. 2014-11-16]. Dostupné z: <https://class.coursera.org/
nlp/lecture>

[5] DAVIDOV, Dmitry; TSUR, Oren; RAPPOPORT, Ari. Enhanced sentiment learning
using twitter hashtags and smileys. In: Proceedings of the 23rd International Confe-
rence on Computational Linguistics: Posters. Association for Computational Lingu-
istics, 2010. p. 241-249.

[6] DAVIDOV, Dmitry; RAPPOPORT, Ari. Efficient unsupervised discovery of word
categories using symmetric patterns and high frequency words. In: Proceedings of
the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, 2006. p. 297-304.

[7] POTTS, Christopher. STANFORD LINGUISTICS. Sentiment Symposium
Tutorial [online]. 2011 [cit. 2014-12-02]. Available at: <http://sentiment.
christopherpotts.net>

[8] STRAPPARAVA, Carlo; VALITUTTI, Alessandro. WordNet Affect: an Affective Ex-
tension of WordNet. In: LREC. 2004. p. 1083-1086.

[9] WIEBE, Janyce; WILSON, Theresa; CARDIE, Claire. Annotating expressions of
opinions and emotions in language. Language resources and evaluation, 2005, 39.2-3:
165-210.

[10] WILSON, Theresa Ann. Fine-grained subjectivity and sentiment analysis: recognizing
the intensity, polarity, and attitudes of private states. ProQuest, 2008.

[11] WILSON, Theresa; WIEBE, Janyce; HOFFMANN, Paul. Recognizing contextual po-
larity in phrase-level sentiment analysis. In: Proceedings of the conference on human
language technology and empirical methods in natural language processing. Associa-
tion for Computational Linguistics, 2005. p. 347-354.

58

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8209/8419
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8209/8419
https://class.coursera.org/nlp/lecture
https://class.coursera.org/nlp/lecture
http://sentiment.christopherpotts.net
http://sentiment.christopherpotts.net

[12] MILLER, George A., et al. Introduction to wordnet: An on-line lexical database.
International journal of lexicography, 1990, 3.4: 235-244.

[13] MILGRAM, Jonathan; CHERIET, Mohamed; SABOURIN, Robert. “One Against
One” or “One Against All”: Which One is Better for Handwriting Recognition with
SVMs?. In: Tenth International Workshop on Frontiers in Handwriting Recognition.
Suvisoft, 2006.

[14] GO, Alec; BHAYANI, Richa; HUANG, Lei. Twitter sentiment classification using
distant supervision. CS224N Project Report, Stanford, 2009, 1-12.

[15] BARBOSA, Luciano; FENG, Junlan. Robust sentiment detection on twitter from
biased and noisy data. In: Proceedings of the 23rd International Conference on Com-
putational Linguistics: Posters. Association for Computational Linguistics, 2010. p.
36-44.

[16] DUDA, Richard O.; HART, Peter E.; STORK, David G. Pattern classification. John
Wiley & Sons, 2012.

[17] OAuth: Send secure authorized requests to the Twitter API. Twitter Developers. [cit.
2014-12-01]. Available at: <https://dev.twitter.com/oauth>

[18] REST APIs. Twitter Developers. [cit. 2014-12-01]. Available at: <https://dev.
twitter.com/rest/public>

[19] The Streaming APIs Twitter Developers. [cit. 2014-12-01]. Available at: <https:
//dev.twitter.com/streaming/overview>

[20] PILGRIM, Mark. Dive into Python 3. New York: Apress, 2009, xlix, 360 p. Expert’s
voice in open source. ISBN 14-302-2415-0.

[21] ROBERTS, Kirk, et al. EmpaTweet: Annotating and Detecting Emotions on Twitter.
In: LREC. 2012. p. 3806-3813.

[22] MOHAMMAD, Saif M. #Emotional tweets. In: Proceedings of the First Joint Con-
ference on Lexical and Computational Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation. Association for Computational Linguistics, 2012.
p. 246-255.

[23] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830,
2011. Available at: <http://www.jmlr.org/papers/volume12/pedregosa11a/
pedregosa11a.pdf>

[24] Documentation scikit-learn: machine learning in Python. [cit. 2015-05-02]. Available
at: <http://scikit-learn.org/stable/documentation.html>

59

https://dev.twitter.com/oauth
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://dev.twitter.com/streaming/overview
https://dev.twitter.com/streaming/overview
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://scikit-learn.org/stable/documentation.html

[25] WEINBERGER, Kilian, et al. Feature hashing for large scale multitask learning. In:
Proceedings of the 26th Annual International Conference on Machine Learning. ACM,
2009. p. 1113-1120. Available at: <http://arxiv.org/pdf/0902.2206>

[26] AIZAWA, Akiko. An information-theoretic perspective of tf–idf measures. Informa-
tion Processing & Management, 2003, 39.1: 45-65.

[27] LEE, Ching-Pei; LIN, Chih-Jen. A study on L2-loss (squared hinge-loss) multiclass
SVM. Neural computation, 2013, 25.5: 1302-1323.

[28] CHANG, Chih-Chung; LIN Chin-Jen. LIBSVM: A Library for Support Vector Machi-
nes. 2013. Available at: <http://csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>

[29] FAN, Rong-En, et. al. LIBLINEAR: A Library for Lange Linear Classification. 2014.
Available at: <http://csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf>

[30] POWERS, David Martin. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. 2011.

60

http://arxiv.org/pdf/0902.2206
http://csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

LIST OF SYMBOLS, PHYSICAL CONSTANTS AND ABB-
REVIATIONS

API Application Programming Interface

CSV Comma-separated values

GPS Global Positioning System

GUI Graphical User Interface

HTML HyperText Markup Language

JSON JavaScript Object Notation

kNN k-nearest neighbors

MaxEnt Maximum Entropy

NLP Natural Language Processing

POS part of speech

RBF Radial Basis Function

REST Representational State Transfer

SQL Structured Query Language

SVC Support Vector Classifier

SVM Support Vector Machines

Tf-idf Term Frequency–Inverse document frequency

UTC Coordinated Universal Time

UTF-8 Universal Coded Character Set + Transformation Format–8-bit

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

61

LIST OF APPENDICES

A SQL Table Structure 63

B Cities of Tweets Collection 65

C Contents of the DVD 66

D Installation & Requirements 67
D.1 Requirements . 67
D.2 Installation . 67
D.3 Configuration . 67

62

A SQL TABLE STRUCTURE

Note: Column in bold italic font represents a PRIMARY index.

Tab. A.1: search_terms Table

Column Type Note
search_category varchar(8) Internal identification
search varchar(255) Search query
labels varchar(255) Labels to add (separated by comma)
mine tinyint(1) Whether to use in mining

Tab. A.2: locations Table

Column Type Note
location_id varchar(8)
location_name varchar(64) Full location name
geocode varchar(64) Geo location in decimal format
radius int(11) Radius in km
mine tinyint(1) Whether to use in mining
mining_group enum(’train’, ’classify’) For training or classification?

Tab. A.3: tweets Table

Column Type Note
id bigint(20) Real Twitter Tweet ID
location_id varchar(8) Location id of miner (refers to locations)
created_at datetime Tweet time and date of creation
text varchar(255) Text of the tweet
retweet_count int(11) Number of retweets
is_reply tinyint(1) Whether is an reply
retweeted tinyint(1) Whether the text is retweeted from another user
user_id bigint(64) Real Twitter User ID
iso_language char(2) Language of the text in ISO
search_category varchar(8) Search category
mined_at timestamp Time and date of mining

63

Tab. A.4: tweet_labels Table

Column Type Note
tweet_id bigint(20) Refers to tweets
label varchar(8)
classifier varchar(32)

64

B CITIES OF TWEETS COLLECTION

Population was retrieved from the U.S Census Bureau and is stated as of 2014. Population
is rounded to thousands.

Tab. B.1: Cities of tweets collection

ID City State Population Radius Note
ALB Albuquerque NM 554,000 13 km higher criminality
ATL Atlanta GA 448,000 11 km
BIL Billings MT 109,000 6 km
BND Bend OR 166,000 7 km higher unemployment
BOS Boston MA 646,000 7 km
CHI Chicago IL 2,700,000 14 km
CHR Charlotte NC 793,000 16 km
CLE Cleveland OH 390,000 8 km higher burglary and robbery
DAL Dallas TX 1,300,000 17 km
DEN Denver CO 649,000 12 km
DET Detroit MI 689,000 11 km higher criminality
HOU Houston TX 2,200,000 23 km
IND Indianapolis IN 843,000 18 km
JCK Jackson MS 173,000 10 km
LA Los Angeles CA 3,900,000 20 km
LTR Little Rock AR 179,000 10 km
LV Las Vegas NV 584,000 20 km
MEM Memphis NC 647,000 17 km
MIA Miami FL 399,000 23 km
MIL Milwaukee WI 599,000 9 km
MIN Minneapolis MN 400,000 7 km
NYC New York NY 8,500,000 16 km
OKC Oklahoma City OK 646,000 23 km
OMA Omaha NE 424,000 11 km
PHIL Philadelphia PA 1,600,000 11 km
PHX Phoenix AZ 1,500,000 21 km
SEA Seattle WA 652,000 9 km
SJ San Jose CA 1,000,000 13 km
STL St. Louis MO 318,000 8 km higher property crime
WTR Waterbury CT 110,000 6 km
YAK Yakima WA 247,000 6 km
YUM Yuma AZ 201,000 9 km

65

C CONTENTS OF THE DVD
/

Applications/
gui/

GUI.py
main.glade
PieChart.py

libs/
scikit-learn-0.15.2/
TwitterAPI/
MySQL-for-Python-3/

Baseline.py
config.py
Database.py
Ekman.py
emotions.py
MinerBase.py
miner.py
runminer.sh
TweetMiner.py
TweetUtils.py
TwitterEmotions.py

Data/
mined_tweets.sql.gz
mysql_database_structure.sql
mysql_initial_data.sql
SVM-linear-model-emotional.pkl
SVM-linear-model-valence.pkl
tweet_labels_annotated.sql.gz
tweet_labels_classified.sql.gz
VirtualMachine.ova

Documents/
Social Media Analysis using Pattern Recognition.pdf

66

D INSTALLATION & REQUIREMENTS

D.1 Requirements
• Python 3+
• MySQL 5.5.3+

Python libraries:
• setuptools1

• urllib3
• requests_oauthlib
• numpy
• scipy
• MySQLdb2

• sklearn (Scikit) 0.16+2

• ntlk3 2

• python3-gi
• python3-gi-cairo

D.2 Installation
Installation was tested on Ubuntu 14.10 and Debian Wheezy.

apt-get install python3 python3-setuptools python3-dev∖
python3-urllib3 python3-pip python3-numpy python3-scipy python3-gi ∖
python3-gi-cairo
pip3 install requests_oauthlib

apt-get install mysql-server libmysql-dev

$ cd {DVDroot} /Application/libs/MySQL-for-Python-3
$ python3 setup.py build
$ sudo python3 setup.py install

Use the same steps to install the TwitterAPI, scikit-learn and nltk.

D.3 Configuration
1. Open the config.py file, located at Application/.
2. Set the Consumer key and secret, obtained from Twitter in the application registra-

tion.
3. Configure the database credentials.
4. Import the database structure from file mysql_database_structure.sql, located

in Data/.
5. Import initial data to the database from file mysql_initial_data.sql
6. Copy SVM models from Data/ to Application/models/.

1for building and installing other python’s libraries
2bundled
3Corporas are downloaded separately.

67

	Introduction
	State of the Art
	Corpora and Lexicons
	MPQA Corpora
	General Inquirer
	LIWC
	WordNet

	Feature Extraction
	n-grams
	Punctuation and Emoticons
	Pattern-based features

	Feature Selection/Reduction
	Text Classification
	Naive Bayes
	k-nearest neighbors
	MaxEnt
	Support Vector Machines

	Twitter and APIs
	Authentication and Authorization
	Twitter REST APIs
	Search API
	Limitations

	Twitter Streaming APIs
	Public Streams

	Technologies
	Twitter API
	Google APIs
	Geocoding API
	Static Maps API
	Usage

	GTK+
	Scikit Learn
	Natural Language Toolkit

	Baseline Approach
	Baseline Algorithm
	Application

	Data Acquisition
	Mining Application
	Collecting Data from Twitter
	Data of Training Corpus
	Data for Final Evaluation

	Classification
	Data Fetching and Preprocessing
	Tokenization
	Filtering

	Feature Extraction
	n-gram Extraction
	Emoticon Extraction

	Feature Selection
	Classifiers
	SVM Classifiers in Scikit
	Classification Settings

	Building a Trained Model
	Training Application
	Evaluation of Emotional Classifier
	Evaluation of Valence Classifier

	Final Evaluation
	Fetching and Classifying Tweets
	Visualization
	Graphical User Interface
	Generation of Visualization

	Statistics

	Conclusion
	Bibliography
	List of symbols, physical constants and abbreviations
	List of appendices
	SQL Table Structure
	Cities of Tweets Collection
	Contents of the DVD
	Installation & Requirements
	Requirements
	Installation
	Configuration

