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Abstract
This thesis focuses on exploring the possibilities of modelling music and speech with WaveNet,
a deep neural network for generating raw audio waveforms. Using existing implementations,
WaveNet was trained on multiple datasets and produced several audio files. Multiple ex-
periments were carried out with various hyperparameter setups of WaveNet to find the
optimal settings for the best results. Furthermore, multiple generation schemes were used,
each having varying impact on the quality of generated audio. This quality was evaluated
using human assessment via a questionnaire, where the musical samples were rated with
a score 2–3.1818 on a 5 point scale, which is comparable to the rating of referential audio
from the original WaveNet paper (3.1818).

Abstrakt
Práca sa zaoberá skúmaním možnosti modelovania hudby a reči pomocou WaveNetu, hlbokou
neurónovou sieťou pre generovanie zvuku na úrovni signálu. Za pomoci existujúcich imple-
mentácií bol WaveNet netrénovaný na rôznych datasetoch a vyprodukoval mnohé zvukové
súbory. Bolo vykonaných niekoľko experimentov s rôznym nastavením hyperparametrov
WaveNetu. Taktiež bolo použitých niekoľko schém generovania, každá s rôznym vplyvom
na generovaný výsledok. Kvalita výstupných zvukových súborov bola ohodnotená na zák-
lade dotazníku. Hudobné zvukové stopy dosiahli skóre 2–3.1818 na 5-bodovej škále, čo je
porovnateľné s hudobnými nahrávkami originálneho výskumného tímu (3.1818).
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Rozšířený abstrakt
Bakalárska práca skúma možnosť generovania hudby pomocou WaveNetu. WaveNet je
hlboká neurónová sieť umožňujúca modelovanie zvuku na úrovni signálu. Pôvodne bola
predstavená v roku 2016 výskumným tímom DeepMindu. Po dosiahnutí predsvedčivých
výsledkov v generovaní reči a autori okrajovo zamerali na hudbu. Cieľom tejto bakalárskej
práce je preskúmať sa primárne na generovanie hudby, preskúmať viaceré výsledky vypro-
dukované viacerými nastaveniami WaveNetu a zhrnúť zistenia pre možné budúce snahy v
tejto oblasti.

V úvode je rozoberaná problematika neruónových a hlbokých neurónových sietí, ich
štruktúra a rozdelenie. Špeciálna pozornosť sa kladie konvolučným neurónovým sieťam, na
ktorých je WaveNet sčasti založený. Následne analyzujem architektúru WaveNetu, gener-
atívne a autoregresívne modely, keďže jedným z nich je aj WaveNet.

Následne sú opísané časté problémy pri trénovaní hlbokých neurónových sietí, ako
napríklad pretrénovanie. V texte som načrtla rôzne riešenia tohto problému a niektoré
z nich sú použité v experimentačnej fáze.

Na experimenty som použila existujúce implementácie WaveNetu, upravila som ich
podľa potrieb tejto bakalárskej práce a vytvorila súbor skriptov pre ich jednoduché púš-
tanie. Trénovanie bolo vykonané na rôznych voľne prístupných datasetoch a výsledky boli
medzi sebou porovnané. Datasety boli rôznej kvality a veľkosti, vzorkované na frekvenciách
od 8 kHz do 48 kHz. Najčastejšie zastúpený hudobný nástroj v hudobných datasetoch bol
klavír, ale boli vykonané aj experimenty s gitarou, husľami, či flautou.

V rámci trénovania som preskúmala možnosti nastavenia rôznych hyperparametrov a
ich vplyv na kvalitu výsledku. Príkladmi sú veľkosť WaveNetu, rôzna vzorkovacia frekvien-
cia vstupných dát, rôzne nastavenie dropoutu, ako jednej z techník regularizácie, nastave-
nie rôznych hodnôť learning rate a pod. Ako výstup experimentov zahŕňam v texte graf
trénovania s tréningovou a validačnou chybou, vyprodukované audio súbory vykresľujem
pomocou grafov amplitúd v čase a spektrogramov. Ďalšie pomocné merítka kvality za-
hŕňajú rozloženie prevdepodobností amplitúd, ktoré vyprodukuje WaveNet, alebo entropia,
či cross-entropia výstupu.

V texte ďalej rozoberám predprípravu trénovacích dát ich transformáciou tzv. 𝜇-law
algoritmom do 8-bitového priestoru.

Na generovanie bola použitá vylepšená verzia pôvodného generovacieho procesu, ktorá
využíva ukladanie si už vypočítaných medzi-výsledkov a tak predchádza zbytočným výpoč-
tom a zrýchľuje celý proces. Skúšala som taktiež viaceré schémy generovania s rôznou
obtiažnosťou. Prvým bol tzv. teacher-forcing, kde sa ako vstup generovania každej vzorky
používa referenčný audio súbor. Kvalita výsledkov tu bola naväčšia, aj podtrénovaný model
zvládol kvalitne replikovať referenčný súbor. Druhým prístupom bola inicializácia generova-
cieho procesu referenčným zvukovým súborom. Tento prístup produkoval zvuky mierne
horšej kvality, ale pri dostatočnom natrénovaní bolo v jeho výsledkoch možné rezoznať isté
hudobné prvky. Nakoniec som vyskúšala najobtiažnejšiu schému – unikátne generovanie
bez referenčnej nahrávky. Táto schéma bola pre WaveNet najobtiažnejšia, výsledky boli
často veľmi zašumené, alebo naopak tiché.

Pre ohodnotenie kvality výstupov z experimentov som použila dotazník, ktorý bol vy-
plnený jedenástimi respondentmi. Za použitia tzv. MOS techniky boli urobené závery a
finálne porovnanie vyprodukovaných zvukových stôp s nahrávkami od pôvodného výskum-
ného tímu. Záverom z dotazníka bolo porovnanie kvalitatívnych hodnôt nahrávok a vyvode-
nie záverov. Jedna hudobná nahrávka získala rovnaké skóre (3.18), ako zahrnutá referenčná



nahrávka z pôvodného výskumného tímu. Ostatné boli hodnotené mierne horšie (skóre 2 z
5). V prílohe prezentujem rozloženie odpovedí na jednotlivé otázky dotazníka.

V závere sú zhrnuté výsledky, prezentované problémy, ktoré sa pri práci vyskytli, ich
príčiny a možné riešenia.

Všetky vygenerované zvukové súbory, ako aj zdrojové kódy sú uložené v mojom github
repozitári1.

1https://github.com/TerkaSlaninakova/BP
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Chapter 1

Introduction

Music is a ubiquitous artistic activity, that was found in every human culture and may have
been in existence for at least 55,000 years [43]. Many people, often without any musical
background, experience intense emotions in reaction to music, that stem from activations
in brain regions connected to euphoric reward responses [6].

The most dominant features of music are pitch, representing the sound’s position on a
frequency-related scale, rhythm, dynamics – the variation in loudness and timbre, represent-
ing the distinctive sound quality. Musical composition, the process of creating unique pieces
of music, makes use of relationships between these features. For example an interval, the
difference between two distinctive pitches, is a basic consideration in melody composition.

Algorithmic music generation (also known as algorithmic composition) is the process of
creating music without human intervention.

Systems capable of generating music are divided according to the underlying theoretical
foundation. For example Grammars [31] examine music similarly as a language, i.e. using
textual descriptions of its characteristics, such as harmonies and rhythm.

On the other hand, in Mathematical systems [14], the composition is controlled as a
stochastic process – by the use of non-deterministic methods and random events. First
attempts that used formal mathematical means date back to 1958 Xenakis’ compositions
of Analogique A et B [45] using Markov chains. Models based on Markov chains suffered
mainly from modeling the music as a plain sequence of notes, while musical pieces are
usually structured as progressions of long-scale bars.

Machine learning based techniques, such as Recurrent Neural Networks (RNNs), are
better in describing the long-term characteristics of music [15]. Particularly well suited for
this task are RNNs with Long Short-Term Memory (LSTM) units, which are more precise
in capturing long-term temporal dependencies [12].

Recently, Convolutional Neural Networks, traditionally working with visual data, were
successfully applied to audio generation as well. The goal of this thesis is to use WaveNet
[34], a generative model for raw audio based on Convolutional Neural Networks, to generate
unique sequences of sound.
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Chapter 2

Neural Networks

Neural networks (more specifically artificial neural networks) are computing systems loosely
inspired by biological neural networks designed to perform certain tasks without explicit
programming. Their basic unit is a neuron, visualized in Fig. 2.1, which receives an input
from a neuron or series of neurons, performs some kind of transformation on it and passes
it to the next set of neuron.

𝜙(

𝑛∑︁
𝑖=1

)

𝑥0

𝑥1

𝑥2

𝑥3

𝑥𝑛

1

𝑤
0

𝑤
1

𝑤2

𝑤3

𝑤𝑛

𝑦

𝑏

...

Figure 2.1: A single neuron with input in the form of vector 𝑥⃗ of length 𝑛. The input vector
has a weight vector 𝑤⃗ of the same length associated with it. Additionally, there is a bias
term 1 with implicit weight of 𝑏.

The weights are real numbers expressing the importance of the respective input to the
output and the bias term introduces a trainable constant value to the expression. Neuron’s
output is computed as a weighted sum of the input values:

𝑦 = 𝜙(

𝑛∑︁
𝑖=1

𝑥𝑖 · 𝑤𝑖 + 𝑏) = 𝜙(𝑤⃗𝑇 𝑥⃗+ 𝑏⃗)

Result of the weighted sum is oftentimes further transformed by an activation function
denoted as 𝜙. It is used to transform the activation level of a neuron into an output signal
[22]. Although a large enough neural network using any activation function can approximate
arbitrarily complex functions [10], ultimately, the choice of an activation function affects
backpropagation and therefore the training process as a whole [29].

There are several types of activation functions, some outperforming others, e.g. Sigmoid,
ReLU or Tanh.

Sigmoid is historically the most used one. It has the intuitive property of either not
propagating neuron at all or propagating it at maximum frequency, see Fig. 2.2. It is
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scarcely used today though, mainly because of its two drawbacks: close to zero gradients
for most input values and not having zero-centered activations. Gradients nearing zero
occur when neuron’s activation is close to zero or one. Then the gradient will be almost
zero, meaning its value will not be regarded during backpropagation.

Having activations, that are not zero-centered is problematic, because gradient on the
weights will in subsequent layers become either all positive or all negative, which could
negatively affect the dynamics in the updates of gradient for the weights (so-called zig-
zagging) [29].

Tanh is similar to Sigmoid, with the same drawback of disregarding gradients of ac-
tivations that are nearing -1 or 1, but it is zero-centered, so it is usually preferred over
Sigmoid.

Rectified Linear Unit (ReLU) is a simple, see Fig. 2.2, yet popular activation function,
which has shown faster convergence of stochastic gradient descent compared to Sigmoid
or Tanh [25]. One downside, stemming from ReLU assiging hard zero for negative values,
is that the affected neurons cannot be re-activated during training, which results in so-
called ”dying ReLU“ [27]. Several variants of ReLU were introduced that attempt to solve
the dying ReLU problem, e.g. Leaky ReLU [30]. This problem can be also mitigated by
initializing ReLU neurons with slightly positive biases.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

2

1

0

1

2 tanh
relu
sigmoid

Figure 2.2: Comparison of different activation functions. Sigmoid and Tanh are examples
of saturating activation functions, meaning they compress any real-numbered input into a
fixed limited range: [0, 1] and [−1, 1] respectively. ReLU is not bounded above.
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Input layer

𝐿1

Hidden layers

𝐿2 𝐿𝑛−1

Output layer

𝐿𝑛

𝑎(𝑙) = 𝜙(𝑊1 ·𝑋) . . . 𝑌 = 𝜙(𝑊𝑛−1 · 𝑎(𝑙𝑛−1))

Figure 2.3: Interconnected neurons are organized into layers. For each layer, weight matrix
is applied to the output of the previous layer, bias vector, which is omitted from the Figure
for brevity, is added and the final expression is fed into the activation function.

Goups of cooperating neurons are structured into layers to form neural networks. Fig
2.3 shows a Feedforward Neural Network. A neural network is considered to be feedforward
if the connections between neurons do not form a cycle, as opposed to Recurrent Neural
Networks, that do have cycles. If there are many hidden layers, a neural network is called
deep. The exact number is not clearly established, but usually having more than two hidden
layers counts as ”deep“. In contrast to Deep Neural Networks, we refer to networks with
less hidden layers as being shallow.

Deep neural networks began to be widely used only in approximately the last 10 years
and have dominated various machine learning competitions since. In 2006, Hinton et al.
published one of the earlier breakthrough papers [20] demonstrating an efficient way to
train deep networks with the use of unsupervised pre-training, that had just a single layer
of feature-detecting units. Today, the most successfull networks are much deeper, e.g.
ResNet [18], containing up to 152 layers.

Generally speaking, even though a shallow neural network can approximate any func-
tion, i.e. can in principle learn any mapping [4], depth can lead to an exponential reduction
in the number of neurons required, for specific functions or specific neural networks [13].

2.1 Convolutional Neural Networks
The focus of this thesis is WaveNet’s architecture, which is a variant of Convolutional Neural
Network (CNN). CNNs are mainly used in areas of image recognition and classification, but
have been also shown useful in the fields of speech recognition [46] or text classification [23].
Their central operation is convolution, which is a way of feature extraction from the input
data. Convolution involves sliding a matrix (= filter or feature detector) over the input
and computing the dot product to create an activation map. In practice, there are usually
multiple filters that are independently applied over the input to produce equally many
feature maps. The number of feature maps denotes the depth of a convolution layer – not
to be confused with depth of a neural network discussed above. An activation function
is then applied over the set of feature maps to introduce non-linearity. This process is
visualized in Fig. 2.4.
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Input

Filters

Filter maps
.

𝑤⃗𝑇 𝑥⃗+ 𝑏

Figure 2.4: The convolution operation. A filter is placed at a particular location over the
input matrix, its components are multiplied (dot product) to produce a single scalar for
every component. The filter is then slid by a fixed number of elements over the input and
this operation is repeated, thus obtaining the filter map.

A layer frequently appearing in Convolutional Neural Networks is a pooling layer. Pool-
ing layer is inserted in between two successive convolution layers. It works by moving
window (a stride) across the input space, combining multiple neurons into one, that will be
propagated to the next layer. Pooling is used to reduce the dimensionality, spatial size and
the number of parameters of the input. It also solves the overfitting problem described in
Section 2.2.

Except for the last one or two layers, only a small portion of neurons in one layer is
connected to neurons in the next layer, extent of this connectivity is referred to as Receptive
field of the input feature. An overview of an example CNN architecture is visualized in Fig.
2.5.

.

Input layer Convolutional layers

2 3
2 1.5 3 . . .

Pooling layer Fully-connected layer

Figure 2.5: The CNN architecture. The last layer is Fully-connected, meaning that it
contains neurons with full connections to activations in the previous layer. ”...“ denotes the
repetition of convolution and pooling layers.

2.2 Regularization techniques
Overfitting is one of the biggest problems in training neural networks [39]. It occurs when a
model performs well on the training data, but fails to generalize enough to perform well on
validation data as well. This happens because there are accidental regularities introduced
with the training data. The trained model then cannot differentiate between the general
regularities that should be learned and those which are caused by sampling error.

Multiple techniques were developed to tackle this problem, such as noise injection,
weight decay, special cross-validation variants, early stopping or dropout [38].

Noise injection tackles overfitting by penalizing complex models indirectly by adding
noise to the training dataset [40]. Weight decay adds a regularization term to the network’s
loss to compute the backpropagation gradient [26].
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In an early stopping setup, the dataset is split into a training set and a validation set.
Validation set is used as an indicative of overfitting during training. The training procedure
is stopped, just before the weights have converged. This convergence is determined by
various markers, such as validation loss being higher than it was the last time it was
checked, or so-called patience, i.e. the number of epochs to wait before early stop if there
is no progress on the validation set [9].

Dropout [41] is a simple regularization technique, which randomly drops certain per-
centage of neurons from the neural network during training, as visualized in Fig. 2.6. For
each training case in a mini-batch, the dropping of neurons results in creation of a ”thinned“
neural network. Forward and backpropagation for that training case are done only on this
thinned network. This prevents neurons from co-adapting too much on the training data
[41] .

Figure 2.6: Left: A Neural Network with 2 hidden layers. Right: A Neural Network with
dropout (dropped units are crossed). Taken from [41].

2.3 Autoregressive generative models
Generative models are a part of unsupervised machine learning applications. They model
the generated data in a probabilistic fashion, learning the joint probability distribution over
a data point and target (label) values.

Generative models are often contrasted with discriminative models, that directly model
the conditional distribution 𝑝(𝑦|𝑥) without taking the input distribution into account [8].
The goal of generative modeling is to discover relationships between parts of the data.
Examples of neural generative models include Generative Adverserial Networks [17], Vari-
ational AutoEncoders [24] or autoregressive models.

Autoregressive models represent a class of models that use values from the previous time
step to predict future ones, exploiting the fact that time series data is inherently sequential:

𝑝(𝑥) =
𝑇∏︁
𝑡=1

𝑝(𝑥𝑡|𝑥1, ..., 𝑥𝑡−1) (2.1)

The nature of Autoregressive models was used by models such as PixelCNN [35] to
model images pixel by pixel. The use of autoregression is seen in Fig. 2.7.
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Figure 2.7: Prediction of the next pixel from a neighbourhood of previous ones. Right: A
matrix used to mask 5x5 filters, to guarantee that the neural network is not influenced by
the pixels below in order to preserve the conditional probability of the data. Visualization
from PixelCNN [35].
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Chapter 3

Wavenet

WaveNet, the focus of this thesis, is a direct successor of PixelCNN and its extension
to the audio domain. Wavenet [34] is a deep neural network for generating raw audio
waveforms. In the original paper, van den Oord et al. demonstrate a state-of-the-art
performance when applied to text-to-speech problems. Furthermore, the model can capture
characteristics from multiple speakers and can switch between them after being conditioned
on the identity of the speaker. The same network can be also used to synthesize other types
of audio input, such as music. Since it was published in September 2016, the architecture
of WaveNet saw several improvements: the original research team managed to achieve a
1,000-fold performance improvement and launch it in Google Assistant [36]. Researchers
from Baidu created a model based on Wavenet with faster training time [3].

3.1 Architecture
Wavenet is an autoregressive model, that operates directly on the audio waveform level by
modelling the output sample by sample.

The key element of its architecture are dilated causal convolution layers. The word
’causal’ simply implies that the filter output does not depend on any future inputs and
therefore the conditional probability of the modeled data is kept. Dilated causal convolu-
tions (also known as convolutions à trous, or convolutions with holes) were introduced to
increase the receptive field at a reasonable computational cost, see Fig. 3.1.
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Causal Convolution

Input

Hidden
Layer

Hidden
Layer

Hidden
Layer

Output

(a) A stack of causal convolutional layers where
𝑘-th neuron in layer 𝑙 is influenced by neurons 𝑘
and 𝑘 − 1 from 𝑙 − 1. The receptive field of size
6 in this case denotes how many neurons in the
input layer influence the output neuron. Taken
from van den Oord’s talk at SANE 2017 [32].

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

(b) A stack of dilated convolutional layers where an increase of receptive
field was achieved by skipping over input values with a certain step. In-
creasing the skip step on every layer then allows for exponential, rather
than linear increase of receptive field. Taken from [33].

Figure 3.1: To predict a sample, the generating process has to take thousands of previous
samples into account, which is computationally costly. To be able to produce receptive field
of this magnitude, the dilations are doubled for every layer up to a limit and then repeated.

In order to speed up the training convergence, WaveNet makes use of residual con-
nections [18] throughout the network. Residual connections try to mitigate some of the
problems in training deep neural networks. Such as the vanishing gradient problem, which
arises during backpropagation, when a weight receives vanishingly small gradient prevent-
ing it from changing its value. Another one is degradation [19], denoting the observation,
that deeper neural networks are more difficult to train than shallow ones, due to increase
in accuracy saturation. Intuitively it can be thought of as valuable information not getting
passed through too many layers of the network. Residual connections solve it by introducing

”shortcut“ connections, that skip one or more layers.
In WaveNet, residual and skip connections are integrated into every layer, with the out-

put of residual connection providing input into the next layer and output of skip connection
being stored for every layer and post-processed once the final layer is computed, see Fig.
3.2.
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(a) A single residual block between a layer of in-
puts and the first dilation layer, adding to the ab-
straction visualized in 3.1b.

1⇥ 1 ReLUReLU
1⇥ 1

Dilated
Conv

tanh

⇥

+

�

1⇥ 1+ Softmax

Residual

Skip-connections

k Layers

Output

Causal
Conv

Input

(b) The WaveNet architecture in expressed in terms of residual blocks.
Residual and skip connections are evaluated for every layer, resulting
in a collection of skip-connections, one from every dilation layer. A se-
ries of post-processing transformations is done to produce the softmax
distribution of samples.

Figure 3.2: Visualization of the residual blocks’ position in WaveNet’s architecture.

A waveform 𝑥 = 𝑥1, ..., 𝑥𝑇 is represented by a joint probability that is factorized as s
product of conditional probabilities, as expressed by Eq. 2.1. The conditional probability
distribution is modeled by a stack of causal convolutional layers with using Softmax in the
output layer, see Fig. 3.2. There are no pooling layers in the network.

As an activation function, WaveNet uses gated activation units:

𝑧 = tanh(𝑊𝑓,𝑘 * 𝑥)⊙ 𝜎(𝑊𝑔,𝑘 * 𝑥)

Where the convolution operator is denoted by *, element-wise multiplication by ⊙, 𝜎 is the
logistic sigmoid function, 𝑘 is the layer index, 𝑓 and 𝑔 filter and gate and 𝑊 is the learnable
filter used in convolution.
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3.2 Original results
In the original paper, van den Oord et al. experimented with WaveNet on three different
tasks: free-speech generation (not conditioned on text), speech conditioned on text (text-
to-speech), and music audio modeling. Produced audio files are available in the Deepmind
blog introducing Wavenet1.

Free-form speech generation used the VCTK corpus [47]. The model generated non-
existent but human-like language with realistic intonations. Additionally, Wavenet was able
to capture characteristics of a single speaker by conditioning it on one-hot encoding of the
speaker’s identity.

For speech synthesis experiments, North American English dataset and Mandarin Chi-
nese dataset were used. During training, Wavenet was conditioned on linguistic features
derived from the input text and logarithmic fundamental frequency. As a contrastive sys-
tem, HMM-driven unit selection concatenative [16] and LSTM-RNN based statistical para-
metric [48] synthesizers were built. Evaluation was conducted by the mean opinion score
(MOS) tests, where paired with comparison tests, subjects were asked to choose which sam-
ple they preferred. The results showed that WaveNet outperformed the baseline statistical
parametric and concatenative speech synthesizers in both English and Mandarin.

For music modeling, the MagnaTagATune and YouTube piano datasets, described in
Chapter 5, were used. Generated samples were harmonic and musical, especially after
enlarging the receptive field from several miliseconds, as used for speech to several seconds
[34].

1https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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Chapter 4

Codebase description

WaveNet’s source code was not published with the original paper and several specifics of the
network’s implementation were missing. Despite this, various implementations appeared on
github1,2, focusing not only on audio, but image3 and text generation4 as well. I decided to
experiment with an implementation WaveNet in Python3 using a Deep Learning framework
TensorFlow [1].

I did not to write a WaveNet implementation from scratch, instead I reused some exist-
ing concepts and merged them into one solution. The implementation used in experiments
is partially based on tensorflow-wavenet1 and generation scheme on fast-wavenet [37]. Se-
quence diagram of the whole program is shown in Fig. 4.1.

Run Train Utils WaveNet 

Training 

load the dataset, prepare  
training and validation batches

start the training process
create the network 

save trained model 

Generate 

Generating

start generation process
Load saved model

save generated audio

Figure 4.1: Overview of the entire codebase. Run is orchestrating the execution, Train is
used for pre-processing the dataset and handling the training process. WaveNet, largely
based on 1, creates WaveNet and Generate contains implementation of the generative pro-
cess using Fast-Wavenet [37]. Utils are a collection of supporting actions, such as audio
loading and writing, constructing training batches, logging, plotting graphs and preparing
the environment.

1https://github.com/ibab/tensorflow-wavenet
2https://github.com/basveeling/wavenet
3https://github.com/Zeta36/tensorflow-image-wavenet
4https://github.com/Zeta36/tensorflow-tex-wavenet
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The execution starts with loading of the dataset with desired sampling rate. I used
variation of sampling rates, ranging from 8 kHz to 48 kHz. Pre-processing begins with a
𝜇-law transformation as described in Section and continues with one-hot encoding of the
sample to allow the model to learn an embedding for each discrete input value.

After the audio loading and pre-processing phase, training and validation batches are
created randomly from the dataset, the ratio being 80:20 in favor of training data. I
approach training in terms of epochs, one epoch being iteration of the training through all
the training data. After every epoch the order of training data is shuffled on the recording
level to prevent overfitting and help the model remain general [5].

The generation process, described in Section 4.3, produces a vector of probabilities,
each corresponding to an amplitude bin of the audio in 8-bit space (256 values). The post-
processing phase is then employed, involving the use of a transformation inverse to 𝜇-law
to get the floating-point amplitudes of the resulting waveform.

The whole execution is adjustable, parameters of the run are defined through param-
eters.json configuration file. Thanks to Tensorflow’s Save and Restore functionality5, the
trained model is being saved throughout the training process, so that it can be later use to
resume the training or initialize the generation process. One execution process can therefore
involve only generating the output audio from an existing model.

The codebase is available in my github repository6 together with the experiments.

4.1 Audio pre-processing
In order to adjust the dataset before entering the training phase, two transformations were
used: audio segmentation and 𝜇-law transformation.

Due to limitations of the training environment, It was not possible to run WaveNet on
files of a song length, i.e. over 3 minutes. Some of the datasets, e.g. MagnaTagaTune and
Youtube-8M described in Chapter 5, provide only such audio files. In order not to disregard
them just for this limitation, I segmented the downloaded datasets into parts of 8 seconds
for Youtube-8M and 2 seconds for MagnaTagATune. In a 8 kHz and 16 kHz sampling rates,
which are used for Youtube-8M and MagnaTagATune respectively, that amounts to 64000
and 32000 samples per one audio file.

4.1.1 𝜇-law

An audio compression scheme, known as the 𝜇-law transformation, is used to pre-process
input from all the datasets. This transformation is often used in analog signal transmission
with the goal of reducing wide dynamic range of an input audio signal [11]. With the input
𝑥;𝑥 ∈ [−1, 1], the equation for 𝜇-law encoding is the following:

𝑓(𝑥𝑡) = sgn(𝑥𝑡)
ln(1 + 𝜇|𝑥𝑡|)
ln(1 + 𝜇)

where 𝜇 = 255 (8 bits).
The reverse process of decoding is given by the following equation:

𝑓−1(𝑦) = sgn(𝑦)
1

𝜇
((1 + 𝜇)|𝑦| − 1) − 1 ≤ 𝑦 ≤ 1

5https://www.tensorflow.org/programmers_guide/saved_model
6https://github.com/TerkaSlaninakova/BP
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4.2 WaveNet
Implementation of WaveNet closely follows the overview of the architecture in Fig. 3.2. The
entry point to the network for the pre-processed input is a single convolutional layer, which
reduces the channel dimension. It is followed by multiple stacks of dilated convolutional
layers. Their exact number is modifiable by two hyperparameters: number of dilations and
number of blocks, as shown in Fig. 4.2.

Multiple Stacks

Figure 4.2: There can be multiple stacks of dilations of the same dilation factor. This
visualization shows 2 blocks with exponentially increasing dilation factor of 1, 2, 4 and 8.
Taken from van den Oord’s talk at SANE 2017 [32].

Dilation layers use skip and residual connections, as visualized in 3.1b.
The outputs of all the layers, propagated by skip-connections, are transformed back

to the original number of channels using two post-processing layers, as visualized in Fig.
3.2. These are followed by a softmax, that produces an output in the form of categorical
distribution over the quantization levels. Once whole waveform is predicted, it is converted
into a floating-point sequence of amplitudes by the reverse 𝜇-law transformation scheme.

4.3 Generation process
The sequential nature of creating the waveform makes the generation process computation-
ally expensive. Expressed in terms of algorithmic complexity, the overall computation time
for a single output is 𝑂(2𝐿), 𝐿 being the number of layers in the network [37]. The training
phase is faster, since conditional predictions can be made in parallel. Paine et al. presented
[37] an improvement over the original WaveNet’s generation, called Fast-Wavenet.
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Figure 4.3: Fast-Wavenet works by reducing the generation cost from 𝑂(2𝐿) to 𝑂(𝐿), 𝐿
being the number of layers. Timing experiments performed in [37].

The basic premise of fast-wavenet is to view the computational graph needed to get a
single output as a binary tree. Since the model is being applied repeatedly, there is a lot of
redundant computation, see Fig. 4.4. A single node in this computational graph is referred
to as a recurrent state.

Because of dilated convolutions, a single output depends on recurrent states spanning
several timesteps back, as opposed to just the immediate predecessors. Fast-WaveNet
introduces FIFO queues, that hold the cached recurrent states for the respective layer.
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Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

(a) The naive generation process, taken from [34].

(b) The generation process introduced in fast-wavenet. ℎ0
𝑒 is the input

sample, ℎ0
𝑟 the first recurrent state, ℎ3

𝑟 the fourth one. Length of the FIFO
queue holding recurrent states for a given dilation depends on the dilation
factor: 20 for the first state, 23 for the fourth one. Taken from [37].

Figure 4.4: Comparison of the naive and improved generation process by Fast-WaveNet.
The input sample is thought of as ”embedding“, therefore is named as ℎ0𝑒. The recurrent
states are referred to as ℎ𝑛𝑟 .

4.3.1 Generating a single sample

WaveNet outputs a distribution of probabilities out of which one value is chosen, represent-
ing one amplitude encoded using 𝜇-law, as show in Fig. 4.5.
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Figure 4.5: WaveNet’s output in the form of probability distribution. This image captures
generation using teacher forcing, with red dot symbolizing the ground truth and green dot
representing the chosen sample.

I used two approaches of choosing a single sample. The first and most straight-forward
one is to pick the one with the highest probability, represented by the green dot in Fig. 4.5.
The second, sampling approach is to pick one value out of the distribution randomly, given
the probabilities of the distribution. Choosing a sample with the highest probability works
fine in teacher-forcing setup, but results in silence in seeding and unique data generation
schemes. For these two generation schemes I decided to use the sampling approach.

4.3.2 Generation scheme

WaveNet is a generative model that can produce a unique audio without following specific
targets, which was done in the original paper with speech as well as music. However, to fully
test WaveNet’s generating abilities, three generation schemes were used: Teacher forcing,
seeding and unique generation.

Teacher forcing is a technique mostly seen in the context of Recurrent Neural Networks
[44], in which the ground truth output 𝑦(𝑡) is used as an input for the model at time 𝑡+1.
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Figure 4.6: Visualization of teacher forcing. In this setup, the generation process uses the
referential audio to produce a sample. Every sample is generated from its direct referential
predecessor and a recurrent states created from a context of several previous samples, as
explained in Section 4.3. For example the third sample of the generated waveform (𝑐1) is
given by 𝑏0 and 𝑎0. The first sample is assigned from the referential audio, because there
is nothing to predict it from.

The second setting was using so-called seeding, i.e. providing a value from which the
generation starts, based on the ground truth. Since every sample has to be generated from
a previous one, the first sample has to be chosen outside of the generation scheme. In this
case I used an existing audio to seed the generation with for the length of receptive field of
the waveform.
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Figure 4.7: The seeding scheme. The waveform consists of the seeded part (an existing
audio), shown in blue and the generated part (orange).

The last approach was to let WaveNet produce exclusively unique data without guiding
it based on any other existing audio. The very first sample was chosen randomly, from the
fixed range [0, 28 − 1], corresponding to the 8-bit space.
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Chapter 5

Datasets

In this chapter, the datasets used in the experiments are described. I used both speech
and music datasets for training. In music, I used mostly focused on datasets with clean
recordings of a single instrument to avoid overlaps of different sounds. For speech, I used
the VCTK dataset as used in original WaveNet paper, described in section 5.1.

5.1 VCTK - The Voice Cloning Toolkit
VCTK [47] is an English multi-speaker corpus from the Centre for Speech Technology
Research (CSTR). The dataset consists of 44 hours of audio recordings from 109 different
speakers. Each speaker reads out about 400 sentences from newspaper plus the Rainbow
Passage1 and an elicitation paragraph2 originally recorded with the intention of identifying
the speaker’s accent.

Speakers read different set of the newspaper sentences, that were selected using a greedy
algorithm to maximize the contextual and phonetic coverage, while the Rainbow passage
sentences were the same for all the speakers [42]. The recordings were originally made
at 96 kHz sampling frequency and were later downsampled to 48 kHz. I used multiple
sampling rates with this dataset ranging from 8 kHz to 48 kHz, the difference between them
is apparent from Fig. 5.3. For an example of one audio clip, see Fig. 5.1.

1The Rainbow Passage can be found in the International Dialects of English Archive: (http://
web.ku.edu/~idea/readings/rainbow.htm)

2The elicitation paragraph is as follows: Please call Stella. Ask her to bring these things with her from
the store: Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother
Bob. We also need a small plastic snake and a big toy frog for the kids. She can scoop these things into three
red bags, and we will go meet her Wednesday at the train station.
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Figure 5.1: A raw waveform of a 23-year-old female from Southern England (speaker p225)
saying ”Please, call Stella“.

The motivation behind the use of 𝜇-law, as described in Section 4.1.1, is apparent from
Fig. 5.2.
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(a) Histogram of the original audio without pre-
processing.
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(b) Histogram of the same audio after a 𝑚𝑢-law
pre-processing.

Figure 5.2: Amplitude histogram of the same audio as in Fig. 5.1, after a 𝜇-law transfor-
mation used in the pre-processing phase, which adjusts the distribution to make it more
uniform.
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(a) First 21ms of audio loaded at 8 kHz sampling rate.
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(b) Audio loaded at 48 kHz sampling rate.
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(c) Spectrogram of a 8 kHz audio.
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(d) Spectrogram of a 48 kHz audio.

Figure 5.3: An overview of the sampling rate’s influence on the audio quality. Audio is the
same as in Fig. 5.1.

5.2 IRMAS: a dataset for instrument recognition in musical
audio signals

IRMAS is a dataset primarily collected for training and evaluating methods of instrument
detection in audio files [7]. The included instruments are: cello, clarinet, flute, acoustic
guitar, electric guitar, organ, piano, saxophone, trumpet, violin, and human singing voice.
Additionally, there are further distinctions between individual genres the instruments are
involved in, such as jazz, pop, rock of classical.

The dataset consists of 6705 audio files in 16 bit stereo sampled at 44.1 kHz. These are
excerpts of 3 seconds from more than 2000 distinct recordings. With the focus on isolating
specific instruments, in training I used only a subset of the dataset. For example for piano,
there are 731 recordings that account for 36 minutes of data.

5.3 MagnaTagATune
MagnaTagATune is a dataset generated using a two-player online game TagATune [28].
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This approach represents a shift from the conventional use of music tagging algorithms
to annotate music. Traditionally, the evaluation metric of such algorithms are the measures
of agreement between the output and the ground truth set. Law et al. presented a new
evaluation approach consisting of collecting the judgments from players of the TagATune
game. Given a human player’s guess is denoted as 𝐺 = 0, 1 and the ground truth is denoted
as 𝐺𝑇 = 0, 1, the algorithm’s performance metric defined as:

𝑃𝑖,𝑗 =
1

𝑁

𝑁∑︁
𝑛=1

𝜎(𝐺𝑛,𝑗 = 𝐺𝑇𝑗)

where N is the number of players who saw the tags produced by an algorithm 𝑖 on clip 𝑗,
and 𝜎(𝐺𝑛,𝑗 = 𝐺𝑇𝑗) is a function which returns 1 if, for a sound clip 𝑗, the player 𝑛’s guess
and the ground truth equal.

The generated dataset consists of over 16 kHz-sampled 25000 audio clips of about 30
seconds each annotated with 188 tags taken from 5405 songs from the Magnatune label3.
The musical clips are very variable, containing genres such as jazz, punk, folk, etc.

I used a subset of the dataset of audio clips labeled as ’piano’. Unfortunately, many
of the recordings were not available at the stated url in the metadata csv4. Additional
complication was an overlapping voice inserted by the Magnatune label commenting on the
recording. Because of this, it was necessary to manually cut off the unwanted parts of the
recordings and leave only relevant piano bits.

The resulting dataset used for my experiments consisted of 16 kHz-sampled 2300 2 s
piano sounds, i.e. 1.3 hours.

5.4 YouTube-8M
YouTube-8M dataset [2] is the largest multi-label video classification dataset. It is composed
of 8 million videos, which amounts to approximately 500 K hours of video, annotated with
a vocabulary of 4800 visual entities. The raw dataset is very robust, being several terabytes
of size. For my purposes I extracted only audio from videos with the label ’piano’. Since
the data comes from user-uploaded videos, the recordings are often of a lower quality, with
the maximum sampling rate of 8 kHz. Due to the need of manually going through the
dataset and skipping low-quality recordings, I used only a small portion of the dataset.
The whole subset used for my experiments amounts to 261 source recordings, 8 s each, so
approximately 35 minutes.

3http://magnatune.com/
4http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
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Chapter 6

Experimentation results

With the goal of exploring capabilities of WaveNet with a custom implementation I carried
out several experiments focused on exploring different model setups, training and genera-
tion schemes. All of the generated audios and respective spectrograms, plots of waveforms,
entropies, and referential recordings are available in experiments directory my github repos-
itory1.

6.1 Model size
In order to find optimal size of WaveNet, 4 different model sizes were explored. The first one
(Medium) is an example of an average model size that I experimented with most frequently,
mainly for the reasonable trade-off between size and speed of training and generating. Small
model is included to provide a reference point for Medium for comparison of WaveNet’s
performance. According to van den Oord et al., enlargement of the receptive field seems
to be crucial to obtain samples that sound musical [34]. Big is used to explore this claim.
Finally, Big channels increases the residual and dilation channels, as opposed to receptive
field. The specifications are presented in Table 6.1.

Sampl. rate Dilations Stacks Dil. and res. channels Skip channels
Big 8 kHz 13 5 64 1024
Big channels 8 kHz 10 5 128 1024
Medium 8 kHz 10 5 64 1024
Small 8 kHz 5 2 32 512

Table 6.1: Parameters of different model sizes.

Different model sizes account for different lengths of the receptive field, as captured in
Table 6.2.

1https://github.com/TerkaSlaninakova/BP/tree/master/experiments
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Receptive field size (n. of samples) Receptive field size (ms)
Big 40957 5200
Big channels 5117 640
Medium 5117 640
Small 64 8

Table 6.2: Receptive field sizes corresponding to model sizes from Table 6.1, in number of
samples and miliseconds, using 8 kHz sampling rate.

The models of different sizes were trained on the Youtube-8M dataset, described in
Section 5.4 for 100 epochs, see Fig. 6.1.
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Figure 6.1: Training process of different WaveNet sizes. The reached training loss is about
2.75 for every model size except for small, which finished around 3.25. Validation loss is
fluctuating the most for big and small model.

Fig. 6.1 suggest that medium model and model with big residual and dilation channels
have slight advantage over Small and Big models in terms of the training progress.

I first explored the teacher forcing generation scheme, which produced convincing results
even with the weakest (Small) model2, see Fig. 6.2.

2https://github.com/TerkaSlaninakova/BP/tree/master/experiments/size/small/TF
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Figure 6.2: Spectrograms of referential and generated audio. There is small qualitative
degradation, but the musical information was kept.

Interestingly enough, teacher forcing on a small model produces3 convincing outcomes
even when the referential audio is not from the same dataset that the model was trained
on, as seen in Fig. 6.3.
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Figure 6.3: Spectrograms of referential and generated audio, where the referential audio is
not a part of WaveNet’s training dataset. Produced with the Small model from 6.1.

Other models performed similarly well in the teacher forcing setup4.
When using seeding, the differences between models became more apparent, see Fig.

6.4.
3https://github.com/TerkaSlaninakova/BP/tree/master/experiments/size/small/TF_notseen
4https://github.com/TerkaSlaninakova/BP/tree/master/experiments/size
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Figure 6.4: Models of different sizes using the seeding generation scheme. Notice the
apparent aggressive noisiness of the Small model and the lack of sound of the Big model.

As for unique generation looked similar as the seeding setup in Fig. 6.4, none of the
generated audios sounded musical.

6.2 Dropout
As explained in Section 2.2, dropout is used to mitigate negative effects overtraining.

When tried on medium-sized model, with the same specifications as in the previous
section of the Youtube-8M piano dataset, no difference among the individual dropouts was
visible, see Fig. 6.5.
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Figure 6.5: Dropout of 0, 25%, 50%, 75% applied to training of 45 epochs attempted with
a medium-sized model.

To make the effect of dropout more visible, I used a variation of big model, as described
in Section 6.1 with 13 dilations of 5 blocks and 128 dilation and residual channels. WaveNet
was trained on the IRMAS piano dataset. Dropout ranged from 0 (no dropout, all neurons
are considered in the training), 25%, 50% and 75%, meaning 75% of neurons are ignored
during training. The differences in training are captured in Fig. 6.6.
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Figure 6.6: Training process of different dropout schemes with the same WaveNet param-
eters. Overtraining is the most visible when not using any dropout, as seen in Fig. 6.6a.
Notice the training loss being very close to zero, while validation loss being very high. On
the other hand, 75% dropout’s training loss converges slowly and validation loss, although
still fluctuating, is on average less than in any other dropout. The training took 26–27
hours on GeForce GTX 1080.

The resulting generated audios under seeding and unique generation schemes were not
very convincing. There was no significant difference between 75% dropout5 and no dropout6.

6.3 Sampling rate
Audio signal with higher resolution, such as 48 kHz, captures subtle changes in the ampli-
tude better than one with a lower resolution, e.g. 8 kHz. This is demonstrated in Fig. 5.3.
In telecommunications, 8 kHz is usually deemed sufficient for speech transmission. In music
production however, it is crucial to cover the whole range of human hearing (20–20,000 Hz),
so following the Shannon-Nyquist sampling theorem, 44.1 kHz and higher sampling rates
are often used.

It was worth trying what effect do different sampling rates have on the training process
and generated audio. I chose the IRMAS’ piano dataset, with 721 3 second clips originally
sampled at 44 kHz and loaded it with increasing sampling rates of 8, 16, 24, 36, and 44 kHz.
Figure 6.7 shows the difference between training and validation losses in regards to different
sampling rates.

To preserve the same audio range (i.e. receptive field) for every sampling rate used,
it was necessary to increase the size of WaveNet. The sizing adjustments are captured in
Table 6.3.

5https://github.com/TerkaSlaninakova/BP/tree/master/experiments/drop/075
6https://github.com/TerkaSlaninakova/BP/tree/master/experiments/drop/0
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8 kHz 16 kHz 24 kHz 36 kHz 44 kHz

Number of blocks 5 5 5 6 7
Number of dilations 10 11 12 12 12
Receptive field (RF) size 5117 10237 20477 24572 28667
RF in Ms 630 639 853 682 651

Table 6.3: Sizing adjustments for models with different sampling rates.
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Figure 6.7: Validation and training losses of a dataset loaded at increasing sampling rates.
Greater sampling rates were able to reach lower training and validation losses in a lower
number of epochs, but in overall longer training time. The training times were: 8.029, 7.8,
7.36, 4.87 and 4 hours for 44 kHz down to 8 kHz respectively.

I tested the performance of the models with the seeding generation scheme7.
7https://github.com/TerkaSlaninakova/BP/tree/master/experiments/SR
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Figure 6.8: Generated audio files under the seeding generation scheme. Notice the quality
is degrading after 16 kHz with higher sampling rate, which can be heard from the generated
audios as well.

Since there was no benefit in continuing with higher sampling rate, as visualized in 6.8
and the training with higher sampling rates was much slower, I decided to continue with
the 8 kHz model up to 500 epochs. The resulting waveforms of seeding8 and unique data
generation setup9 can be seen in Fig. 6.9 and Fig. 6.10.

8https://github.com/TerkaSlaninakova/BP/tree/master/experiments/SR/8/500ep/seed
9https://github.com/TerkaSlaninakova/BP/tree/master/experiments/SR/8/500ep/unique
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Figure 6.9: Piano under a seeding scheme after 500 epochs and with reached validation loss
of 1.37 is able to produce an audio that sounds somewhat clean and musical, the individual
piano keys are audible.
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Figure 6.10: The same model as in Fig. 6.9, but producing a unique waveform.

From both waveforms in Fig. 6.9 and Fig. 6.10 some learned harmonic components are
hearable. Under the unique generation scheme, the output is more noisy, as captured in
the waveform plot. In the seeded generation setup, the samples corresponding to silence
and shifts between notes are much cleaner.

6.3.1 Different learning rates

In scope of tuning hyperparameters, several experiments were conducted to find an optimal
learning rate (LR). The effects on the training process are visualized in Fig. 6.11.
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Figure 6.11: Training process of different learning rates. 10−2 was too high of a learning
rate and caused the training process to be stuck at approximately 5.5. On the other hand,
10−5 was the smallest one demonstrating slower convergence, than the more optimal 10−3

and 10−4.

As seen in Fig. 6.11, learning rates of 10−3 and 10−4 demonstrated similar training
properties, while both higher and lower learning rates performed worse.

Additionally, an experiment focusing on the use of learning rate decay was set up.
Learning rate decay refers to the gradual annealing of the learning rate over time to speed
up the training convergence in the beginning and overcome overtraining later in the training
process. I used tensorflow’s exponential decay function10 to implement it.

10https://www.tensorflow.org/api_docs/python/tf/train/exponential_decay
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Figure 6.12: Training process of a model with standard learning rate and learning rate
decay.

The initial learning rate was 10−3. The final one, dropping after more than 10000
iterations, corresponding to 50 epochs as displayed in Fig. 6.12, was 0.00066. Since there
was no difference between the two training processes, I decided to use the learning rate of
10−4 throughout the rest of the experiments.

6.3.2 Speech

Although speech was not a focus of this thesis, I carried out an experiment dedicated to it.
For the sake of brevity, WaveNet was trained only a on a single speaker (p225) of the VCTK
Corpus, accounting for 231 3 s recordings. The model’s hyperparameters are specified in
Table 6.4.

Sampling rate Dilations Stacks Dil. channels Res. channels Skip channels

8 kHz 10 5 32 32 1024

Table 6.4: Specifications of model used for speech experiment.

The training took 250 epochs, reaching the validation loss of 0.5. Generation fared well
in the teacher forcing setup11 as expected, even with a referential recording of a different
voice12. Unique generation produced somewhat interesting made-up language-like sounds13,
see Fig. 6.13.

11https://github.com/TerkaSlaninakova/BP/tree/master/experiments/voice/tf
12https://github.com/TerkaSlaninakova/BP/blob/master/experiments/voice/tf_notseen
13https://github.com/TerkaSlaninakova/BP/tree/master/experiments/voice/unique
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Figure 6.13: Waveform produced from unique generation scheme of WaveNet trained on
speech.

6.4 Dataset-specific experiments
In these experiments, I focused on training the medium-sized model, described in Section
6.1, on the MagnaTagATune, YouTube-8M and IRMAS datasets that are described in
Chapter 5.

6.4.1 MagnaTagATune

After being trained for 75 epochs, which took a little over 30 hours, I tested the model’s
performance on seeding14,15.
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Figure 6.14: Spectrograms of the two seeded audio generations from a model trained on
MagnaTagATune dataset.

The generated audios sounded rather noisy. Upon close inspection, some of the piano
keys being played can be recognized, but overall the results were worse than compared to
IRMAS or YouTube-8M, as confirmed by the MOS score described in 6.5.

6.4.2 YouTube-8M

After continuing with a medium-sized model trained on the YouTube-8M dataset to 200
epochs, two16, 17 notable results were produced with the seeding setup:

14https://github.com/TerkaSlaninakova/BP/tree/master/experiments/other/magnatagatune/01
15https://github.com/TerkaSlaninakova/BP/tree/master/experiments/other/magnatagatune/02
16https://github.com/TerkaSlaninakova/BP/tree/master/experiments/other/yt/seed/02
17https://github.com/TerkaSlaninakova/BP/tree/master/experiments/other/yt/seed/01
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Figure 6.15: Generated audio clips after 200 epochs from the Youtube-8M dataset.

The generated audios are somewhat distant-sounding and noisy, but still with audible
piano keys. The sound shown in Fig. 6.15 (upper waveform) was used in the human
assessment experiments described in Section 6.5 and received a score of 3.1818.

6.4.3 Other instruments in the IRMAS datasets

IRMAS dataset contains recordings of various other instruments that were tried as well, for
example flute18, guitar19 or violin20.

The results from guitar generation were very noisy. This might be due to the different
styles of playing, such as strumming and plucking, producing different sounds, all of which
were included in the dataset.

With the seeded generation, a model trained on flute or violin was able to produce
sounds with clearly audible tones corresponding to the instrument used. However, in the
background, there were often distinct crashing-like noises. Unique generation was very
noisy.

6.5 Human assessment
In order to meaningfully asses the quality of generated sounds, a MOS (Mean Opinion score)
[21] measure was used. MOS captures subjective assessments of quality of a recording. It
is expressed as a single number, typically on a 5 point scale, where 1 is lowest perceived
quality, and 5 is the highest one. The overall quality is then calculated as an arithmetic
mean of the individual values.

Collection of the assessments was done through a survey21, where the subjects were
asked to rate the naturalness of the listened-to recording on a five-point scale score (1:
Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent). The subject had no context to the presented
sounds. To provide a reference point, I included generated sounds made by the original
research team as well [33]. There were 11 participants, the recordings that were used were
the following:

18https://github.com/TerkaSlaninakova/BP/tree/master/experiments/other/flute
19https://github.com/TerkaSlaninakova/BP/tree/master/experiments/other/guitar
20https://github.com/TerkaSlaninakova/BP/tree/master/experiments/other/violin
21https://docs.google.com/forms/d/1Cf01MM5YElgXHSkXppVzvtAKYiwZuwztnPCRhL4sLXw
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1. Piano from the experiments original research team22

2. Speech23 shown in 6.13.

3. Speech from experiments of the original reseach team24

4. Sound generated from the IRMAS piano dataset shown in Fig. 6.9.

5. Sound generated from the YouTube-8M piano dataset, portrayed in Fig. 6.15.

6. Sound generated form the MagnaTagATune piano dataset, mentioned in 6.14

1 2 3 4 5 6
3.1818 1.81 4.545 2 3.1818 2

Table 6.5: Results of the MOS questionnaire.

From the results presented in Table 6.5, the biggest divide is between the generated
speech from my experiments (1.81) and the original experiments (4.545). On the other hand,
participants rated on average the audio clip form the seeded generation using Youtube-8M
dataset 6.15 with the same score as the generated piano from the original experiments.

The sounds containing clear piano keys were rated lower – score of 2 for sound generated
from IRMAS and MagnaTagATune datasets. The sound from YouTube-8M gained the
highest score from musical audio clips. This specific sample has more of an atmospheric
quality to it25, as opposed to including sharply hearable notes, which might be why it
resonated more with the subjects.

The generated speech, although seemingly promising-looking from Fig. 6.13 received
the lowest score (1.81). This might be due to slight noisiness caused by unique generation
scheme that was used, as opposed to a seeded one, which was employed for all the generated
musical audios.

22https://storage.googleapis.com/deepmind-media/pixie/making-music/sample_5.wav
23https://raw.githubusercontent.com/TerkaSlaninakova/BP/master/experiments/MOS/2.wav
24https://storage.googleapis.com/deepmind-media/pixie/knowing-what-to-say/first-list/

speaker-6.wav
25As described by one participant.
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Chapter 7

Conclusion

The aim of this thesis was to explore the capabilities of a custom WaveNet implementation
and compare the results with those of the original research team. Several experiments with
multiple datasets were conducted to test different configurations of WaveNet to find an
optimal combination of hyperparameters.

Depending on the generation setup, audios of different quality were produced. Teacher
forcing proved itself to be the easiest one with output of a reasonable quality being produced
just after a few hours of training using a small model. Seeding and unique generation were
quite challenging, with a lot of training epochs needed to generate musically sounding
outputs, as opposed to just plain noise, silence, or various non-musical noises. The results
from human assessment described in Section 6.5 rated the musical samples by a score of
2–3.1818 on a 5-point scale, suggesting there is a lot of space for improvement for the
sounds to be aesthetically pleasing. However, the included musical sound generated by the
WaveNet’s original research team received a score of 3.1818 as well, suggesting the perceived
quality is comparable to the original musical experiments.

In my experiments I was able to reach the quality of WaveNet’s musical clips only
in one case, based on the results of human assessment. This might be due to a lack of
information about the specific setup of WaveNet from the original paper, smaller datasets
used, WaveNet being very resource-demanding, or limited training environment compared
to the one at DeepMind used by van den Oord et al.

Finally, when experimented on speech, WaveNet produced made-up language-like sounds,
suggesting human voice might be easier to generate than musical clips.

A possible extension of this work could include aiming for generation of better musical
samples by constructing WaveNet to be able to handle longer training data and use bigger
datasets. This would likely include further optimization of WaveNet’s hyperparameters to
derive the most information from the dataset during training. Another area of research
might be attempting speech generation as a part of a Text-to-speech system by introducing
local conditioning into WaveNet.
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Appendix A

Human assessment results

This appendix captures the individual answers to questionnaire described in Section 6.5.
Each question consisted of only a recording that the participants were asked to listen to
and evaluate its quality on a scale 1-5. The figures 1.1 to 1.6 contain the distribution of
the individual answers, that were summarized in Table 6.5. All of the sounds are available
in my GitHub repository1.
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Figure 1.1: Piano from the experiments of the original research team.
1https://github.com/TerkaSlaninakova/BP/tree/master/experiments/MOS
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Figure 1.2: Speech from the original research team.
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Figure 1.3: Speech from experiments of the original reseach team.
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Figure 1.4: Sound generated from the IRMAS piano dataset.
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Figure 1.5: Sound generated from the YouTube-8M piano dataset.
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Figure 1.6: Sound generated from the MagnaTagATune piano dataset.
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