
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER’S THESIS

Brno, 2022 Bc. MICHAEL JUREK





BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

DETECTION OF MODERN SLOW DOS ATTACKS
DETEKCE MODERNÍCH SLOW DOS ÚTOKŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Michael Jurek

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Marek Sikora

BRNO 2022





Date of project 
specification:

7.2.2022
Deadline for 
submission:

 24.5.2022

Supervisor:     Ing. Marek Sikora
Consultant:     Enrico Cambiaso (National Research Council, Italy) 

 
doc. Ing. Jan Hajný, Ph.D.

Chair of study program board 
 

Master's Thesis 
Master's study program Information Security

Department of Telecommunications 
Student: Bc. Michael Jurek ID: 182503
Year of 
study:

 2 Academic year:  2021/22

TITLE OF THESIS:

Detection of modern Slow DoS attacks

INSTRUCTION:

The SlowDrop and Slow Next attacks are among the latest so-called slow DoS attacks. Their main characteristic
is a very faithful imitation of legitimate users with a slow internet connection. The attacks do not contain any
invalid communication, nor do they show any significant signature. Therefore, addressing the effective detection
of these attacks is a major challenge for security professionals.
The task of the diploma thesis is to study in detail the characteristics of SlowDrop and Slow Next attacks, to
design and create a laboratory network with legitimate users, to use available attack generators and to apply
them in a laboratory network. Another task is to design and implement the most appropriate methodology for
detecting these attacks. The aim of this work is to create a tool with the highest possible detection accuracy. The
resulting solution should achieve acceptable accuracy for real network deployments.

RECOMMENDED LITERATURE:

[1] CAMBIASO, Enrico, Gianluca PAPALEO, Giovanni CHIOLA a Maurizio AIELLO. Designing and Modeling the
Slow Next DoS Attack. International Joint Conference. Cham: Springer International Publishing, 2015, 2015-5-27,
54(4), 249-259. Advances in Intelligent Systems and Computing. DOI:10.1007/978-3-319-19713-5_22

[2] MAZÁNEK, Pavel. Modelování a detekce útoku SlowDrop. Brno, Rok, 75 s. Diplomová práce. Vysoké učení
technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav telekomunikací. Vedoucí práce:
Ing. Marek Sikora

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno





ABSTRACT
With the evolving number of interconnected devices, the number of attacks arises. Mali-
cious actors can take advantage of such devices to create (D)DoS ((Distributed) Denial
of Service) attacks against victims. These attack are being more and more sophisticated.
New category of DoS attacks was discovered that tries to mimic standard user behav-
ior – Slow DoS Attacks. Malicious actor leverages transport protocol behavior to the
highest option by randomly dropping packets, not sending or delaying messages, or on
the other hand crafting special payloads causing DoS state of application server. This
thesis proposes parameters of network flow that should help to identify chosen Slow DoS
Attack. These parameters are divided into different categories describing single packets
or whole flow. Selected Slow DoS Attack are Slow Read, Slow Drop and Slow Next. For
each attack communication process is described on the transport and application layer
level. Then important parameters describing given Slow DoS Attack are discussed. Last
section sums up methods and tools of generation of these attacks. Next part deals with
possibilities and tools to create such an attack connection, discuss basic communication
concepts of creating parallel connections (multithreading, multiprocessing) and proposes
own Slow DoS Attack generator with endless options of custom defined attacks. Next
part describes testing environment for the attack generator and tools and scenarios of
data capture with the goal of dataset creation. That dataset is used for subsequent
detection using machine learning methods of supervised learning. Decision trees and
random forest are used to detect important and drop redundant features of selected
Slow DoS Attacks.

KEYWORDS
Anomaly-Based Detection, DoS, Decision Trees, Flow ID, Generator, LDoS, Machine
Learning, Python3, Random Forest, Slow DoS Attacks, Slow Read, Slow Drop, Slow
Next

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz




ROZŠÍŘENÝ ABSTRAKT
V dnešním propojeném světě ovlivňuje internet každý aspekt lidského života.
Zároveň roste počet propojených zařízení, na které nemá člověk přímo vliv, ale které
jej naopak mohou ovlivnit. Jak se člověk stává závislejší na moderních technologiích,
je pro něj klíčová jejich dostupnost. Vždy se najdou entity, které se snaží o znepřís-
tupnění takových služeb (D)DoS ((Distributed) Denial of Service) pro běžného uži-
vatele.

S rozvojem moderních IPS (Intrusion Prevention System) a IDS (Intrusion De-
tection System) systémů, prostředků antivirové ochrany či firewallů je pro útočníky
čím dál tím obtížnější zamaskovat své chování a vyhnout se tak detekci. Útočníci
proto vytvářejí nové typy útoků, které jsou čím dál tím víc sofistikovanější a snaží
se vyhnout případné detekci.

Nová kategorie DoS útoků, která napodobuje standardní chování uživatele v síti,
byla objevena a pojmenování Slow (pomalé) DoS útoky, někdy nazývané Low-rate
nebo Low-bandwidth útoky. Útočník se snaží využít maximálních možností trans-
portního protokolu, pomocí něhož jsou veškerá data přenášena. Mezi pozorované
chování útočníka patří náhodné zahazování paketů, neodesílání nebo zdržování
odesílání zpráv, oznamování protistraně o nemožnosti příjmu dat, pomalém čtení
dat nebo úmyslné vytváření paketů, jejíchž payload obsahuje taková data, která
způsobí zaneprázdnění aplikačního serveru.

Tato diplomová práce pojednává právě o pomalých DoS útocích. V první kapitole
jsou probrány základní koncepty komunikace pomocí protokolu TCP, otevírání spo-
jení pomocí trojcestného podání ruky, standardní zavírání spojení a zavírání spojení
způsobené nestandardní událostí. Dále zde je uveden popis fungování aplikačního
protokolu HTTP, jenž může být použit jako nadstavbový protokol a je použit v
následujících částech. Dále jsou zde popsány parametry spojení podle místa (klient,
server, síť) a směru detekce (odesílací a přijímací), které mohou být použity při
tvorbě IPS a IDS systémů. Zároveň jsou tyto parametry rozděleny do třech kategorií
podle toho, zda-li se podílejí na tvorbě síťového toku, či nikoli. General parame-
try jsou použity pro popis standardního síťového chování. Intra-flow parametry
slouží k popisu jednotlivých paketů a Inter-flow parametry slouži k popisu abstra-
hovaného toku dat. Nejdůležitější částí Inter-flow parametrů je identifikátor toku
dat (Flow ID), který slouží ke seskupení paketů v rámci jednoho spojení. Tvorba
tohotu parametru je možna více způsoby. V této práci je aplikován postup, který byl
použit při tvorbě datového souboru CIC-IDS2017 z důvodu jednoduššího připojení
vlastních dat. Dalšími kategoriemi jsou parametry týkající se objemu a velikosti
přenášených dat, časové parametry, které umožňují dělení pomalých DoS útoků a
parametry vlastností, mezi které se řadí například TCP příznaky a výsledky TCP
analýzy programu Wireshark. Poslední kategorií jsou aplikační parametry.



Druhá kapitola uvádí rozdíl mezi DoS a DDoS útoky a dále rozděluje DoS útoky
na kategorii záplavových útoků a útoků využívajících zranitelnost. Kategorie poma-
lých DoS útoků je uvedena jako podkategorie DoS útoků. V další části je uvedeno
rozdělení pomalých DoS útoků do jednotlivých kategorií podle typu chování a podle
časových parametrů. Časové parametry jsou dále napojeny na jednotlivé kategorie.

Třetí kapitola se zabývá vybranými pomalými DoS útoky. V této práci byly
vybrány útoky Slow Read, Slow Drop a Slow Next, jejichž chování je dále popsáno z
pohledu transportní komunikace. Dále jsou uvedeny důležité parametry jednoznačně
popisující chování, metody a nástroje umožňující jejich vytvoření.

Ve čtvrté kapitole je navržen a implementován ve skriptovacím jazyce python3
generátor pomalých DoS útoků. Nejrpve jsou popsány jednotlivé moduly umožňující
tvorbu HTTP požadavků s přístupem k transportnímu protokolu, kde byla vybrána
knihovna socket. Dále je zde popsán mechanismus chování útoků z pohledu uza-
vírání spojení (rozdíl použití příznaků FIN a RST). V další části je popsán způsob
asynchronní komunikace a paralelní provedení jednotlivých spojení s použitím více
vláken nebo více procesů. V další části je navrhnut samotný generátor. Jsou popsány
použité moduly potřebné k jeho tvorbě. Dále je uvedené chování a nastavení gen-
erátoru a popsány možnosti tvorby vlastního pomalého útoku. Dále je specifikována
vlastnost generátoru umožňující logování událostí do standardního výstupu nebo do
externího soboru.

Pátá kapitola popisuje testovací prostředí, výchozí nastavení webového serveru
Apache ve verzi 2.4.49 a použití výchozích modulů pro správu více spojení a jejich
časových limitů sloužících k ukončení spojení na straně serveru. Dále jsou popsány
možnosti rozšíření modulů o bezpečnostní moduly s možností ochrany webového
serveru proti pomalým DoS útokům. Následuje popis tvorby vlastního datového
souboru. Nejprve je probrána možnost zachycování síťových dat v reálném čase a
dále jsou popsány existující datové soubory, které je možno využít a rozšířit o vlastní
pomalé DoS útoky. Taktéž je zde popsán postup tvorby vlastního datového souboru
obsahující označený síťový tok.

V šesté kapitole je uvedeno několik možností detekce pomalých DoS útoků. Mezi
dvě hlavní kategorie detekce patří detekce signatur a detekce anomálií. V této práci
je kladen důraz na detekci anomálií, avšak jsou zde uvedeny i příklady možných
signatur.

Sedmá a poslední kapitola popisuje detekci anomálií s použitím strojového učení
s učitelem. Nejrpve jsou popsány jednotlivé metody strojového učení (s učitelem,
bez učitele a zpětnovazebné učení) s příklady. Dále jsou probrány dvě metody stro-
jového učení s učitelem, a to rozhodovací stromy a náhodné lesy, které jsou tvořeny
právě těmito stromy. Tyto metody jsou použity pro detekci významných parametrů
síťového toku determinující pomalý DoS útok. V první části této detekce je pop-



sán způsob výběru, tvorby a sběru dat. Je zde vytvořena převodní tabulka mezi
různými datovými soubory a jeden výsledný datový soubor, jenž obsahuje záznam
síťového toku po dobu jednoho týdne provozu spolů s označením, zda se jedná o
normální provoz nebo o jednotlivý typ útoku. Dále dochází k předzpracování dat,
kde jsou chybějící data vynechána, nenumerické hodnoty nahrazeny numerickými
pro strojové zpracování a vynechání sloupců dat, které by mohly zkreslovat průběh
detekce. V další části jsou vybrány pouze označené pomalé DoS útoky, a k tomu
je naškálován normální provoz v poměru (30:70). Dochází tedy k redukci datového
souboru. Další část je výběr parametrů, kde je vytvořen rozhodovací strom, který
určuje důležité parametry, ty jsou následně křížově validovány. Je vytvořena ko-
relační matice a silně korelované sloupce jsou vynechány. Pro spřesnění lze využí
optimalizačních metod pro různe nastavení náhodných stromů, avšak původně zv-
olené nastavení dosahuje výborných výsledků. Výsledný model je dále serializován
a uložen. Takto vytvořený model může být použit pro detkci vybraných pomalých
DoS útoků ve firewallech či IDS nebo IPS systémech.

JUREK, Michael. Detection of Modern Slow DoS Attacks. Brno: Brno University
of Technology, Faculty of Electrical Engineering and Communication, Department
of Telecommunications, 2022, 127 p. Master’s Thesis. Advised by Ing. Marek Sikora





Author’s Declaration

Author: Bc. Michael Jurek

Author’s ID: 182503

Paper type: Master’s Thesis

Academic year: 2021/22

Topic: Detection of Modern Slow DoS Attacks

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature∗

∗The author signs only in the printed version.





ACKNOWLEDGEMENT

I would like to thank the supervisor of my thesis, Ing. Marek Sikora for his academic lead
and valuable comments and the advisor, Dr. Enrico Cambiaso for valuable comments,
advice and adjustment of direction. I would like to thank my family for the support.





Contents

Introduction 23

1 Network communication 25
1.1 Application layer communication . . . . . . . . . . . . . . . . . . . . 28
1.2 Communication measures and parameters . . . . . . . . . . . . . . . 29

1.2.1 Flow classification and parameters . . . . . . . . . . . . . . . 29

2 DoS Attacks – Specification and Classification 35
2.1 Slow DoS Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Timeout Division of SDAs . . . . . . . . . . . . . . . . . . . . 40

3 Selected Slow DoS Attacks 43
3.1 Slow Read Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Slow Read SDA parameters . . . . . . . . . . . . . . . . . . . 44
3.1.2 Slow Read testing . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Slow Drop Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Slow Drop SDA parameters and testing . . . . . . . . . . . . . 49

3.3 Slow Next Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Slow Next SDA parameters and testing . . . . . . . . . . . . . 52

4 Slow DoS Attack Generator 53
4.1 TCP connection with HTTP payload modeling using available python3

modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.1 TCP connection and attack closures . . . . . . . . . . . . . . . 55

4.2 Multiple connections handling . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Concurrent execution . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Python SDA generator pyslowdos.py . . . . . . . . . . . . . . . . . . 59
4.3.1 Generator arguments and structure . . . . . . . . . . . . . . . 60

5 Testing environment and data capture 63
5.1 Web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Data capture and dataset . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Flow and dataset creation . . . . . . . . . . . . . . . . . . . . 69

6 Slow DoS Attacks Detection 71
6.1 SDAs Signature Detection . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 SDAs Anomaly or Behavior-Based Detection . . . . . . . . . . . . . . 74



7 Machine Learning SDA Detection 77
7.1 ML methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.1.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 ML performance methods . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 ML Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.1 Data creating and collecting . . . . . . . . . . . . . . . . . . . 80
7.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.4 Machine learning model training . . . . . . . . . . . . . . . . . 86
7.3.5 ML evaluating, selecting parametets, tunning and saving . . . 88

Conclusion 89

Bibliography 91

Symbols and abbreviations 99

List of appendices 101

A Communication and flow parameters 103

B Examples of generated TCP traffic 111
B.1 HTTP traffic using different modules . . . . . . . . . . . . . . . . . . 111

B.1.1 HTTP GET . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 Connection closures . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C Slow DoS Attacks Generator 113
C.1 Generator flowcharts . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.2 Generator arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.3 UML diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.4 Examples of generated SDAs . . . . . . . . . . . . . . . . . . . . . . 116

D Examples of SDAs detection 119
D.1 Signature-based detection . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2 Slow Read Attack testing . . . . . . . . . . . . . . . . . . . . . . . . 121
D.3 Flow features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
D.4 AppDDos.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E Content of the electronic attachment 125



List of Figures
1.1 Connection establishment with TCP 3-way handshake . . . . . . . . . 25
1.2 HTTP client-server communication . . . . . . . . . . . . . . . . . . . 26
1.3 TCP connection legitimate ending . . . . . . . . . . . . . . . . . . . . 27
1.4 TCP connection server-side ending . . . . . . . . . . . . . . . . . . . 27
1.5 Flow parameters direction . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Scheme of SDA traffic, normal traffic and Flooding attack traffic . . . 36
2.2 SDAs classification according attacked resource [1] . . . . . . . . . . 39
2.3 TCP connection time parameters . . . . . . . . . . . . . . . . . . . . 41
3.1 Slow Read Attack behavior . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Slow Drop Attack behavior . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Slow Next Attack behavior . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Slow Next Attack implementation behavior . . . . . . . . . . . . . . . 52
4.1 TCP connection closures according the communicating sides . . . . . 56
4.2 Synchronous communication . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Concurrent communication . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Testing network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1 Machine learning detection implementation . . . . . . . . . . . . . . . 80
7.2 Distribution of individual attacks . . . . . . . . . . . . . . . . . . . . 82
7.3 Decision tree on selected features for Slow DoS attacks . . . . . . . . 85
7.4 Confusion matrix of decision tree classification . . . . . . . . . . . . . 85
7.5 Important features for SDA selected using Random Forest . . . . . . 86
7.6 SDA feature correlation heatmap . . . . . . . . . . . . . . . . . . . . 87
7.7 SDA feature correlation heatmap after optimization . . . . . . . . . . 88
B.1 Example of HTTP GET traffic using module requests . . . . . . . . 111
B.2 Example of HTTP GET traffic using module urllib3 . . . . . . . . . 111
B.3 Example of HTTP GET traffic using module socket . . . . . . . . . 111
B.4 Example of one-side standard client closure . . . . . . . . . . . . . . . 112
B.5 Example of forced client closure . . . . . . . . . . . . . . . . . . . . . 112
B.6 Example of server timeout closure with RST flag . . . . . . . . . . . . 112
B.7 Example of server timeout closure with RST flag . . . . . . . . . . . . 112
C.1 Flowchart of Custom Slow DoS Attack . . . . . . . . . . . . . . . . . 113
C.2 Slow DoS Generator UML diagram . . . . . . . . . . . . . . . . . . . 115
C.3 Slow DoS Generator output in Slow Read mode . . . . . . . . . . . . 116
C.4 Slow DoS Generator output in Slow Drop mode . . . . . . . . . . . . 117
C.5 Slow DoS Generator output in Slow Next mode . . . . . . . . . . . . 117
C.6 Slow DoS Generator output in Custom mode . . . . . . . . . . . . . . 118
D.1 Connection duration for different sizes of receiver buffer size . . . . . 121





List of Tables
1.1 Statistic values of volume parameters . . . . . . . . . . . . . . . . . . 32
2.1 Categories of SDAs with examples . . . . . . . . . . . . . . . . . . . . 40
2.2 Timeout Exploiting Slow DoS Attacks . . . . . . . . . . . . . . . . . 42
4.1 Types of connection closure . . . . . . . . . . . . . . . . . . . . . . . 55
7.1 Results of detection – confusion matrix . . . . . . . . . . . . . . . . . 78
7.2 supervised_sda_balanced.csv dataset record distribution with nu-

merical labeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 Important features selected using decision tree . . . . . . . . . . . . . 84
7.4 ML model metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.1 Flow parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
D.1 Extended CIC DoS dataset from 2017 attack time distribution . . . . 123





List of Listings
3.1 Slow Read attack connection setup . . . . . . . . . . . . . . . . . . . 45
3.2 Example of the successful Slow Read Attack using slowhttptest [2] . 46
3.3 Example of Slow Read Attack using pyslowdos.py . . . . . . . . . . 46
3.4 Iptables accept incoming connection initialization traffic . . . . . . . 48
3.5 Iptables drop incoming packets with drop rate . . . . . . . . . . . . . 48
3.6 Iptables accept all policies . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Iptables delete all rules . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Example of the Slow Drop Attack . . . . . . . . . . . . . . . . . . . . 50
3.9 Example of Slow Drop Attack using pyslowdos.py . . . . . . . . . . 50
3.10 Example of Slow Next Attack using pyslowdos.py . . . . . . . . . . 52
4.1 HTTP request-response with requests . . . . . . . . . . . . . . . . . . 53
4.2 HTTP request-response with urllib3 . . . . . . . . . . . . . . . . . . . 53
4.3 HTTP request-response with socket . . . . . . . . . . . . . . . . . . . 54
4.4 Python asynchronous example . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Python threading example . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Logging structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1 Default timeout settings available from 𝑎𝑝𝑎𝑐ℎ𝑒2.𝑐𝑜𝑛𝑓 . . . . . . . . . . 64
5.2 MPM event module parameters available from 𝑚𝑜𝑑_𝑚𝑝𝑚_𝑒𝑣𝑒𝑛𝑡.𝑠𝑜 . 65
5.3 Finding basic Apache server settings . . . . . . . . . . . . . . . . . . 65
5.4 Request timeouts settings . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Ratelimit module example with output filter . . . . . . . . . . . . . . 67
5.6 Evasive module default configuration [3] . . . . . . . . . . . . . . . . 67
5.7 Traffic capture script on all interfaces restricted for 60 𝑠 duration . . . 68
5.8 Python CICFlowMeter download, instalation and activation . . . . . 70
5.9 Example of converting slow_read.pcap file into slow_read.csv file . 70
5.10 Example of incrementing flow time in csv file . . . . . . . . . . . . . . 70
5.11 Example of two csv files merging . . . . . . . . . . . . . . . . . . . . 70
6.1 Host-based SDAs specification . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Network-based SDAs specification . . . . . . . . . . . . . . . . . . . . 73
7.1 Transfer map between original and custom files . . . . . . . . . . . . 81
7.2 Flow ID generator function . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Process of creating upper trinagular matrix . . . . . . . . . . . . . . . 86
7.4 Dropped correlated columns of SDA features . . . . . . . . . . . . . . 87
D.1 Specification example of Slow Read attack . . . . . . . . . . . . . . . 119
D.2 Specification example of Slow Drop attack . . . . . . . . . . . . . . . 120
D.3 Specification example of Slow Next attack . . . . . . . . . . . . . . . 120
D.4 Flow features generated by Python CICFlowMeter . . . . . . . . . . . 122





Introduction
In today’s world, the Internet is affecting almost every aspect of human life. In
most cases for the better purpose. Provides useful tools for everyday communication
which shorten distances between people and allows remote work for professionals.
It provides any kind of information in almost every point in time. Internet has
no physical boundaries, it can span across the oceans in modern fiber optic cables,
through space using satellites. From huge server farms through smart houses, electric
cars to tiniest personal devices, such as wearable, IoT (Internet of Things) gadgets
and medical equipment.

But there is another side of the coin. Due to overall acceptance and spread, it
allows people with bad intentions to do whatever they want. There are malicious
users, hackers and attackers among legitimate ones. Their behavior can have de-
structive impact on the critical infrastructure, hospitals, military facilities, power
plants, universities, governments, public movements, freedom to vote or freedom of
speech.

In the computer networks and information security we can define model of secu-
rity policies – the CIA triad (Confidentiality, Integrity and Availability). Confiden-
tiality stands for an effort to keep data private and secret. Basically, it allows only
authorized users to access data. It can be achieved by user or data authentication,
authorization, access control, strict data classification and encryption. It can be
violated by brute force attacks or man-in-the-middle attacks etc. Integrity assures
that some data has not been modified by a malicious user. It can be accomplished
by cryptography means – encryption, hashing, digital signatures. On the other side
auditing, version control and IDS (Intrusion Detection System) with logging. The
last Availability ensures that all hardware and software resources keep reliably work-
ing. It also assumes that all the resources are updated, redundant and fault tolerant.
When the accident happens, it is essential that service can fast recover. [4]

This thesis is focused on the last part of the triad – Availability. Malicious
user can behave way that some target resources transit to disabled state and are
unavailable or below acceptable threshold for the legitimate users. This behavior is
called DoS (Denial of Service).

As the number of interconnected devices is raising, malicious actors try to develop
new methods of DoS attacks. On of the newest categories of DoS attacks are SDAs
(Slow DoS Attacks) sometimes called (Low-rate or Low-bandwidth DoS Attacks).
They try to mimic user behavior to avoid detection and cause DoS state. This thesis
is focused on process of generation and detection of such attacks.

23





1 Network communication
From the transport layer view of ISO/OSI (International Organization for Standard-
ization – Open Systems Interconnection model) model, this thesis is strictly focused
on TCP (Transmission Control Protocol) communication. It is reliable, connection-
oriented and error-resistent protocol. The connection between the client and server
is established in the beginning of the communication, then the application data can
be sent. In the end of the communication client or server can close TCP connection.
It is possible with two methods. Server must be in listening mode to receive client
connection establishment request.

Connection is created using TCP 3-way handshake, in fig. 1.1.

 

Client Server 
CLOSED 

SYN-SENT 

SYN-RECEIVED 

CLOSED 

ESTABLISHED 

SYN-RECEIVED 

SYN-SENT 

ESTABLISHED 

Fig. 1.1: Connection establishment with TCP 3-way handshake

Beginning state of TCP communication is CLOSED. The the client who wants to
start communicating creates TCP packet with SYN flag set to establish new con-
nection. It also means that the TCP socket is on the client side. New state is
SYN-SENT awaiting acknowledgment and another synchronizing packet. If received
the state transits to SYN-RECEIVED state. After the acknowledgment sent, client’s
socket transits to ESTABLISHED state. On the server side the socket ESTABLISHED
state is created after successful acknowledgment receive. [5]

After successful connection establishment application data can be transferred.
The sequence number identifies the order of the bytes sent from the client. These
data can be received in different order and are reconstructed by the reliable mecha-
nism. The sequence number is randomly chose in the beginning of the 3-way hand-
shake (in SYN packet) and then incremented. The application data is sent using
TCP PSH and TCP ACK flags and the raw data is an encoded payload. Application

25



data can be any kind of higher layer protocol (HTTP – Hypertext Transfer Proto-
col, HTTPS – Hypertext Transfer Protocol Secure, SMTP – Simple Mail Transfer
Protocol, FTP – File Transfer Protocol, SSH – Secure Shell Protocol and others).
Every communication exchange should be acknowledged by ACK flag. Example of
HTTP communication as a TCP payload wtith sending payload data using TCP
PSH and ACK is in fig. 1.2.

 

Client Server 

Fig. 1.2: HTTP client-server communication

As a TCP is en error-free protocol, correction mechanisms can be applied. Cor-
rupted or lost packets are dropped and retransmitted signalized with
TCP_RETRANSMISSION packet. A flow control mechanism otherwise limits the rate a
sender can transfer data. Client can signalized how much data is capable to receive
(with TCP WINDOW_SIZE value set). On the other hand server sends
TCP_WINDOW_FULL. If duplicate packets are sent TCP packet with TCP_DUPLICATE
flag is created.

Connection is terminated with TCP 4-way handshake in fig. 1.3, sometimes
called 4-way quitshake. When a client wants to terminate the connection, sends
TCP packet with FIN flag set. In this moment ESTABLISHED state transits to
FIN_WAIT_1 awaiting acknowledgment from the server. Then transits to FIN_WAIT_2

26



 

Client Server 
ESTABLISHED ESTABLISHED 

FIN_WAIT_1 

CLOSE_WAIT 

FIN_WAIT_2 

TIME_WAIT 

LAST_ACK 

CLOSED 
CLOSED 

Fig. 1.3: TCP connection legitimate ending

state. Awaits server to send FIN flag set. When received, connection transited to
TIME_WAIT state for certain period of time and then transits to CLOSED state.1 Server
transits to CLOSED state after the final acknowledgment received. [7]

 

Client Server 
ESTABLISHED ESTABLISHED 

CLOSED 

CLOSED 

Fig. 1.4: TCP connection server-side ending

Another approach is a server side connection closing. Server can immediately
close connection with TCP RST packet. There is no waiting state. Mostly it means
that an error occurred. Server can send RST packets when multiple events hap-
pened. When Keep-Alive packet limit exceeds, server sends RST packet. Or when
max number of connection exceeds, time of initial SYN packet expires, logic of upper
layer application decides to immediately terminate the connection, Internet Control

1The duration of TIME_WAIT state is defined by the double of maximum segment lifetime (MSL).
It is the maximum amount of time, that any packet can exists in the network before being discarded.
Standard implementation values are 30 s, 1 min or 2 min. During the TIME_WAIT state it can sent
acknowledgment packets if lost FIN is received. In this time period socket can’t be reused. [6]

27



Management Protocol (ICMP) DESTINATION UNREACHABLE message is received, un-
expected socket closure occurs or an error in TCP protocol happens then server
decides to close the connection.[8]

1.1 Application layer communication

Application protocols are transmitted inside data fields of TCP protocol that are
binary encoded. More information about the data are presented in the protocol of
the higher level of ISO/OSI.

One of the examples of application protocols is HTTP protocol. It begun as
an text oriented protocol in version HTTP/0.9. It allowed only ASCII (American
Standard Code for Information Interchange) text payload. With development of
the protocol, in version HTTP/1.0 it started to support transportation of pictures,
sounds, video clips and others. [9]

Structure of HTTP protocol is as follow. Client has to open a TCP connection
to send a valid HTTP request and waits for a response. This message contains of 3
parts:

• HTTP Request (Response):2

– HTTP Request – contains 3 elements (GET / HTTP/1.1). First is HTTP
method, that contains method the client wants to perform on the server.3

Another part of request is a path of the resource the client wants to
approach. It is called Request-URI (Uniform Resource Identifier) that is
composed of resource that will apply to request. It can compose regular
expression, absolute path (with domain or IP address) or relative path.
And the last part is the version of the HTTP protocol. [10]

– HTTP Response – is composed of 3 parts (HTTP/1.1 200 OK). First part
is the version of HTTP protocol. Second is response status code and last
part is reason phrase containing text information. HTTP repsonse does
not contain line end.

• HTTP Headers – dictionary type (Header: Value) record containing addi-
tional information for the server (request headers) of the client (response head-
ers). Each header is enclosed with end of line using ’\r\n’ and before the
next part is sent, one new line is awaited using the ’\r\n’ as well.

• HTTP Data – contains the encoded data.

2HTTP request or response line is closed with ’\r\n’ meaning end of line.
3Example of HTTP methods are: GET, POST, OPTIONS, PUT, DELETE, HEAD, CONNECT, PATCH, and

TRACE.

28



1.2 Communication measures and parameters
The crucial fact in communication measurement depends on approach which is taken
in mind. Results of measurement will differ depending on the side where the mea-
surement is realized. Communication measurement side can be divided to:

• Client (Attacker) side – Is the communication, where the attacker establishes
the communication. The way from the attacker to server is forwarding way
or sending way. The opposite is receiving or backwards way. While captur-
ing network parameters, it can be possible to measure client side parameters
mainly.

• Server side – Communication ways are inverted according to client side.
• Communication channel side – This is the measurement implemented during

the transmission over the communication channel. It can be used by IDS or
IPS systems.

It is crucial to choose one side and stick to that during whole communication pro-
cess. From this point of view network packets are forming network flows. Network
flow can be modeled as a directed graph 𝐺 = (𝑉, 𝐸) with nodes (graph vertices) 𝑉

and network paths (graph edges) 𝐸. Each node is network device that is serving
the network traffic with beginning (start) 𝑠 and ending nodes 𝑒. Each path between
nodes has some properties 𝑝 defining quality, capacity or latency of the flow. The
network flow can be described as (𝐺, 𝑝, 𝑠, 𝑡). [11]

1.2.1 Flow classification and parameters

This thesis is focused on the end to end communication, so the side of communication
can be neglected as the parameters are almost the same. The network flow can be
described with Flow ID. This should unambiguously identify the network flow. Basic
Flow ID is composed of Source IP address, Destination IP address and Destination
TCP port. Extended Flow ID can have extra information about protocol, start of the
flow and duration of the flow timestamps. As the flow can contain multiple parallel
connections, the information about source port is not important as it changes with
new established connections. 4

4Protocol number is inside IPv4 or IPv6 packet in the ’Protocol’ field of IP header. These
number are assigned by IANA (Internet Assigned Numbers Authority). For TCP protocol it is
assigned number 6. [12]

29



𝐹𝐿𝑂𝑊_𝐼𝐷 = 𝐼𝑃_𝑆𝑅𝐶 + 𝐼𝑃_𝐷𝑆𝑇 + 𝑇𝐶𝑃_𝐷𝑆𝑇

𝐸𝑋𝑇_𝐹𝐿𝑂𝑊_𝐼𝐷 = 𝐼𝑃_𝑆𝑅𝐶 + 𝐼𝑃_𝐷𝑆𝑇 + 𝑇𝐶𝑃_𝐷𝑆𝑇+
+ 𝑃𝑅𝑂𝑇𝑂 + 𝐶𝑂𝑁𝑁𝑆 + 𝑇𝐼𝑀𝐸𝑆𝑇𝐴𝑀𝑃+
+ 𝐹𝐿𝑂𝑊_𝐷𝑈𝑅𝐴𝑇𝐼𝑂𝑁

(1.1)

Flow parameters are listed in tab. A.1. They can be divided into three groups:
• Intra-flow parameters – are parameters describing network communication,

single packets inside the flow.
• Inter-flow parameters – are parameters describing aggregated view on the pack-

ets into a flow.
• Common parameters – are parameters that are independent on the flow.
Common parameters can be used for both Intra-flow or Inter-flow description.

They contain information available from TCP header (source IP address, destina-
tion IP address, destination port, protocol number, timestamp). Two important
parameters are FLAG and ATTACK_TYPE describing type of event the packet or flow is
part of. FLAG is a binary parameter where 0 means normal traffic and 1 stands for
malicious or attack traffic. If FLAG is set to 1, future attack classification parameter
take place. ATTACK_TYPE parameter classifies the certain type of the attack. It can
contain following values representing futured SDAs:

• 1 – Slow Read DoS attack
• 2 – Slow Drop DoS attack
• 3 – Slow Next DoS attack
• 4 – Custom Slow DoS attack
Intra-flow parameters describe individual packets inside a certain flow. They are

formed with data from TCP headers and from simplified parameters from Inter-flow
categories. They don’t have further knowledge about packet relations.

The network flow identifier can be used as an indexer to reduce the size of
the captured packets. These packets can be sorted and classified according to the
identifier into a flow. Parameters describing relation between packet are called Inter-
flow parameters. They can be classified into following categories:

• General parameters – contain important parameters. They are used for flow
description.

• Volume parameters – are volumetric parameters. They testify about some
statistical properties and amount expression.

• Time parameters – are parameters describing time periods between important
events.

• Feature parameters and TCP Analysis parameters –

30



• Application layer parameters – are parameters describing behavior of applica-
tion layer protocol.

General parameters

General parameters are used for flow description. The most important parameter
is FLOW_ID or EXT_FLOW_ID. Another important parameters are timestamps of flow
duration and number of connections inside the flow.

Volume parameters

Volume parameters can be created according the following rule:
𝑉 𝑜𝑙𝑢𝑚𝑒_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =< 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 > _ < 𝑡𝑦𝑝𝑒 > _ < 𝑠𝑡𝑎𝑡 > _ < 𝑎𝑚𝑜𝑢𝑛𝑡 >,
where direction can be either FWD – forwarding way, or RCV – receiving way. Ac-
cording the fig. 1.5 direction is determined by the position of the measurement side.
(For the measurement at server side directions will be swapped.)

Client Server

Measurement side

Forwarding flow

Receiving flow

Fig. 1.5: Flow parameters direction

Next part of volume parameters is type. Type stands for the values that will
be measured. It can be number of packets in the flow, packet throughput, size of
packets, length of TCP headers, size of the initial window, value of TCP window
size5, TCP window scale factor6, TCP maximum segment size7, bulk rate in bytes
and in packets8, TCP payload size or packets that have at least 1𝐵 payload.

Next part of volume parameters is stat which represents statistical properties on
aggregated packets in the flow. They have following values, in tab. 1.1.

5It is the size of receiver’s buffer. It says how much data receiver is willing to get. [13]
6It is used to extend the maximum size of TCP window size. If the value of the TCP window

size is larger than 64 kB it can be used.
7It specifies the largest amount of data that a device can receive in a single TCP segment.[14]
8Bulk rate mean the number of bytes or packets that are sent without explicit acknowledgment.

31



Name Description Calculation
(𝑥𝑖 – single parameter)

TOT Aggregated value of given parameters ∑︀𝑛
𝑖=1 𝑥𝑖

MAX Maximal value of given parameters max𝑛
𝑖=1(𝑥𝑖)

MIN Minimal value of given parameters min𝑛
𝑖=1(𝑥𝑖)

MEAN Mean value of given parameters 1
𝑛

∑︀𝑛
𝑖=1 𝑥𝑖

STD Standard deviation value of given parameters
√︁

1
𝑛

∑︀𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

Tab. 1.1: Statistic values of volume parameters

Last part of volume parameters is amount which describes count value of given
type. For the amount of bytes (size), mark 𝑆 is used. For the amount of packets,
mark 𝐶 is used and for the rate 𝑅 is used.

Time parameters

Another crucial parameter of network communication is time. It has similar struc-
ture as volume parameters with exception of amount. Time is measured in 𝑠 or 𝑚𝑠.
It contains information about IAT (Inter-arrival time) between two or all sent or
received packets and information about the state of the flow.

State of the flow means duration the flow was in idle or active state, where active
means that communication is happening. On the other side if the flow state is idle,
it means that the connection is not closed, but no data is flowing. Flow state does
not require direction as it is looked from broader perspective.

Flow contains multiple connections, some of the connections can be idle, closed
or active. State parameters describes important bounds (maximum, minimum),
total time for all connections inside the flow and mean and standard deviation for
one connection.

Feature and TCP Analysis Parameters

TCP header may contain up to nine one-bit flags. [5] Each flag means something
different. Each parameter represents number of certain flags inside the flow in
appropriate direction. Following flags are measured in this thesis:

• SYN – is the first flag beginning the TCP communication.
• ACK – indicates that Acknowledgment field of TCP header is important. It is

usually used in each TCP segment after the first one with SYN
• FIN – is the last flag from the host meaning end of communication. It should

be acknowledge in 4-way quitshake.
• PSH – is used to push data, often from web server to client.

32



• URG – indicates that urgent pointer is set and has some meaning.
• RST – is used for connection reset or end.
Wireshark can follow each TCP opened connection (session) and provides addi-

tional information about that session. It can create two types of analysis. First type
is TCP Flag (SEQ/ACK) analysis and second is TCP Reassembly analysis. TCP
Flag analysis follows packets in each session, saves important information from the
TCP header (time, sequence numbers, acknowledgment number, window size, flags).
Then performs analysis and appropriate flags are added to the TCP packets’ section
SEQ/ACK analysis. [15]

Possible flags of TCP analysis: [16]
• TCP ACKed unseen segment – set if the packet acknowledges incoming data,

that was not previously captured. Acknowledgment number is lower than
current ackownledgement number in the session.

• TCP Previous segment lost – happens when a packet arrives with a se-
quence number greater than expected sequence number should be on give
connection. It indicates that some packets did not arrive. It is followed by
packet retransmission.

• TCP Retransmission – occurs when the sender rentransmits a packet after
the expiration of the timeout for the acknowledgment. It is measured by RTO
(Retransmission timeout). [17]

• TCP Dup ACK <frame>#<ack number> – set if the same ACK number has been
seen and it is lower than the last byte of send data. If there is a gap in se-
quence number, receiver will generate that space with duplicate ACKs for each
subsequent packet in that session, until the missing packets are successfully
received. It contains the number of the frame where the duplicacy exists and
order of duplicate occurrence.

• TCP Out-Of-Order – occurs when the packet is with a sequence number lower
than the previously received inside one connection.

• TCP KeepAlive – is used to force receiver to send ACK packet. The sequence
number is equal to the last byte of data in previously received packet.

• TCP KeepAlive ACK – ACK response to TCP KeepAlive packet.
• TCP ZeroWindow – occurs when the receiver is unable to process incoming data

(due to receiver’s buffer overload). Value of Window is close to zero.
• TCP ZeroWindowProbe – occurs when the sender is testing if the receiver’s

ZeroWindow condition is in place yet. Sender prolongs the timer for probes.
• TCP ZeroWindowProbeAck – is send as an acknowledgment to zero window

probe packet.
• TCP ZeroWindowViolation – is used when the sender ignores the zero window

condition and sends aditional data.

33



• TCP WindowFull – is used by sender with knowledge of the size of receiver
buffer. If sender calculates that the payload data in the segment will com-
pletely fill the last known receiver buffer size on the host, it will flag data
and stop sending. This causes delays in communication often resulting in
TCP ZeroWindow response by the receiver.

• TCP WindowUpdate – is send by receiver when he process all data from his full
receiver’s buffer. It indicates more free space in receiver buffer. It is often
preceded by TCP ZeroWindow.

Application layer parameters

Application layer parameters abstract from the TCP flow. It is special category layer
above flow parameters. It contains all categories from Inter-flow parameters (volume
parameters just as time parameters) that describe application layer behavior.

From the volume parameters it can contains count or size of HTTP requests,
number of different HTTP requests, count or size of HTTP methods, number of
HTTP headers in each request, etc.

Time parameters can specify certain behavior of SDAs. It is more described in
sec. 2.1.1.

34



2 DoS Attacks – Specification and Classifi-
cation

With the Internet evolution and more devices being online, new types of attacks
have appeared. These attacks strictly depend on the goal and motivation of the
attacker. Perpetrator uses attack vectors to exploit target system vulnerability to
gain access to a device, personal data, company information or research. With these
information he can modify, destroy, steal and sell or disable from using given assets.
He can reach his goal with malware, viruses, social engineering methods or specific
denial methods (manipulating of network packets, logical errors, programming flaws
or resource handling). [18] [19]

The basic division of denial methods is into DoS attacks and DDoS (Distributed
Denial-of-Service) attacks. (Sometimes DDoS attacks are born in mind as a sub-
category of DoS attacks.) DDoS attacks overloads the victim with tons of requests
using compromised devices. Usually attacker infects devices with malware, allowing
him to be controlled remotely. We call such devices bots or zombies, that can form
group of devices – botnet. During DDoS attack, adversary controls bots and directs
all requests to single victim. [20]

DDoS attacks are being actively used to overload the victim’s device by seizing
all available connections that the service server can handle. Nowadays hacktivist
groups (e.g. Anonymous), state actors or even normal people use or are part of botnet
that is used for DDoS attack. [21]

Security professionals use DDoS attacks to cover-up subsequent attack vector.
Main goal is to hide malicious traffic of initial access to victim’s device, vulnerability
exploitation, malicious code execution or privilege escalation techniques by volume
centric DDoS.

On the other hand DoS attacks are usually managed from single attacker device
to a single victim device implementing TCP/IP (Transmission Control Protocol/In-
ternet Protocol) stack, such as personal computer, router, application server (web
server, email server, logging server, DNS (Domain Name System) server, DHCP
(Dynamic Host Configuration protocol) servers), providing any kind of service. It
can also target multiple network nodes, or even whole network segment. These at-
tacks can span from L2 to L7 of ISO/OSI model. The goal of DoS attack is to disable
target resources, lower the QoE (Quality of Experience) or do not allow connection
at all.

Historically first DoS attack was probably SYN flood attack against one of the
oldest ISP (Internet Service Provider) in the world (Panix) in 1996, denying network
services for several days. [22] One of the biggest DoS attacks was in February 2014

35



against cloud provider CloudFlare with maximum throughput of about 400 Gbps.
The attacker used NTP (Network Time Protocol) vulnerability to create DDoS by
NTP amplification.1 Another DoS attack was conducted in January 2015 after
terrorist attack on Charlie Hebdo where multiple French web sites were taken down
by Islamic hacker groups affiliated with terrorist group ISIS. [23] As times progresses,
the volume of DDoS attacks increases. In 2017, Google Cloud was targeted with
attack with peak volume of 2.54 Tbps. In March 2018 GitHub was attacked by
1.35 Tbps DDoS. In February 2020, Amazon AWS was targeted with DDoS with
peak of 2.3 Tbps. In July 2021, CloudFlare was hit by Mirai botnet with 17.2
million requests per second. [24] Lastly in early 2022, during Russian aggression
against Ukraine, Russian government, banks and public services was hit by people
around the world with HTTP based DDoS. Presented on static HTML website using
JavaScript. Where the only need to create multiple asynchronous requests was to
open given web page. [21]

Fig. 2.1: Scheme of SDA traffic, normal traffic and Flooding attack traffic

1A few hosts create small malicious NTP requests, where NTP server responds with large NTP
responses to single victim, overloads it and causes denial of service.

36



Basic specification of DoS attacks is at:
• Flood-based attacks – also called the first generation of DoS attacks or network

based DoS attacks, aim to overwhelm victim with large amount of simple
requests. Adversary usually generates multiple malicious requests which tend
to exhaust victim’s hardware and software resources and results in service
unavailability. [1]
This attacks can span to almost all layers of ISO/OSI model. Between L2
DoS attacks we can embody MAC (Medium Access Control) attacks, where
attacker creates multiple ethernet frames with different MAC addresses forcing
network switch MAC table to lose legitimate records.
On L3 we can distinguish various flood attack types, e. g. ICMP (Internet
Control Management Protocol) Flood attacks, where attacker forges Echo re-
quests with size bigger than maximal value.
Between attacks on L4 we count TCP SYN Attack, where attacker creates
large number of incomplete requests, that result in half opened connections
with victim and exhausting connection capacities for legitimate users.
On L7 attacks are not as voluminous as on lower layers. They congest the vic-
tim with valid requests of application layer protocols. E. g. DHCP Starvation
Attack, DNS Amplification Attack, VOIP flooding . . .

• Exploit-based attacks – also called the second generation or new generation
of DoS attacks, that use wrong implementation of transport or application
protocol. This can be exploited by attacker creating modified, half-opened
or changed connection creating uncontrollably opened connection. When this
legitimate connections are send slowly with low amount, we can call this behav-
ior as low-rate attack or SDAs. [25] As shown in fig. 2.1, we can see difference
between normal traffic, SDA traffic and flooding traffic. Also the difference
between normal and flooding (or distributed) attack traffic is enormous. But
the distinction between normal traffic and SDA traffic is small. It results in
hardness of detection of such a behavior.
First comparison between Flooded-based and low-rate attacks was provided by
Liu in 2012. [26] Then the first taxonomy of SDAs was created by Cambiaso
in 2012 [27] and in 2013. [1]

37



2.1 Slow DoS Attacks
SDAs’ name comes from the first and the most famous attack - Slowloris, named
after asian monkey, known for slow sneaking movement. It was created by Robert
"RSnake" Hansen in perl programming language. The behavior of the attack is to
keep as many opened connections as possible to web server. It is achieved by creating
incomplete legitimate HTTP (Hypertext Transfer Protocol) GET request followed by
partial legitimate request with header "X-a" maintaining the connection opened.
Target can’t serve other requests from legitimate users resulting in successful DoS.
The first use of this SDA was in 2009 during the Iranian presidential election. [28]

Other names for this category of attacks can be Low-rate DoS Attacks, Slow-rate
DoS Attacks or Low-bandwidth DoS Attacks.

The purpose of SDAs is to cause unavailability of victim’s device by creating
small amount of asynchronous connections. Usually transported through TCP pro-
tocol. The goal of an attacker is to occupy all possible queues with malicious requests
as long as possible. This can be reached by various techniques. Then all new in-
coming requests from legitimate users are discarded by the server. Once all queues
are occupied, the attacker has to send "keep alive" continuing requests, that keep
queues occupied.

The first issue that attacker must solve is to find the correct speed of requests
sending. When they are send fast enough, it is easier to implement, but on the
other side easier to detect by statistical detection of high-rate traffic. [29] Therefore
attacker must find the best threshold value, in which he sends malicious requests.

The next issue is to find the correct server timeout settings. Every application
server has some timeout settings of handling requests or connections. So for that
attacker it is suitable to find timeout values as close as real ones.

Attacker can exhaust queues in two different ways shown in fig. 2.2. It can
exhaust internal or external resources. Examples of exhausting the internal resources
are: occupying CPU time, exhausting RAM, fill hard disk, network queues on the
web server with unwanted data. This can cause Delayed Responses type of SDA.
In other words, attacker forces victim to do pricey operations which will result in
sending responses with delay. Attacks in this category are Apache Range Headers2,
#DoS3 and ReDoS4 attacks.

External resources are connected with victim’s network. Malicious client applica-
tion, where attacker can close and reopen connection whenever he wants - Resource

2Apache Range Headers – Attacker asks for specific overlapping byte range of large data from
web server.

3#DoS – Attacker sends single HTTP POST with thousands of variables or keys to be found
in hash table.

4ReDoS – Attacker creates evil regex that results in long time matching the expression.

38



Slow DoS Attacks

Internal Resources

Delayed Responses

External Resources

Client Application

Resource Manag. Socket Timeout

Request

Long Requests

Pending Requests Next Requests

Response

Long Responses

Server Application

Long Responses

Fig. 2.2: SDAs classification according attacked resource [1]

Management SDA. Examples of the attacks in this category are LoRDAS5 and Slow
Drop6 Then Pending Requests, Next Requests and Long Responses are categories
challenging victim’s application’s socket timeout. At Long Responses attacker can
affect also server application in tab. 2.1.

Pending Requests and Next Requests SDAs are types where attacker sends incom-
plete request to the target. These requests are filling the victim’s receiving queues.
They are prepared with incomplete protocol requests. And maintaining the attack
with repetitively sending requests, exploiting server’s timeout settings with limited
number of opened connections.

If there are only repetitive initial requests - Next Requests. For both phases
we have Pending Requests SDAs in tab. 2.1. Examples of Pending Requests are
Slowloris7 or Slow HTTP Post8.

Last category is Long Responses, where complete valid requests are being sent

5LoRDAS – Attacker tries to predict the moment, when the resources will be freed up and reuse
them again.

6Slow Drop – Attacker receives valid responses, but in given or random time period drops certain
amount of them.

7Slowloris – Attacker creates valid HTTP GET accompanied with connection holding request.
8Slow HTTP Post – Attacker uses HTTP POST request to simulate sending data to page form

with big content length parameter set during preparing phase. In the second phase attacker keeps
sending random parameters.

39



Attack category Attack Examples TCP/IP HTTP
Delayed Responses Apache Range Headers L4 HEAD

#DoS L4 POST
ReDoS L4 POST

Resource Management LoRDAS L3, L4 -
Slow Drop L3, L4 GET

Next Requests Slow Next L3, L4 HEAD
Pending Requests Slowloris L4 GET

Slow HTTP Post L4 POST
Long Responses Slow Read L3 -

Tab. 2.1: Categories of SDAs with examples

forcing victim to send responses in slow way. Attack example of this category is
Slow Read9.

Sometimes we can add a category of external (intermediary) devices such as
routers, switches, firewalls, modems that can be also affected by the SDA. [1] [25]
[28] [30]

2.1.1 Timeout Division of SDAs

Crucial parameter of SDAs is time. As all above categories relay on timeout settings
we have to introduce time parameters for application layer. We can generalize
timeouts as it does not depend on certain TCP/IP layer.

9Slow Read – Attacker sends legitimate HTTP requests with restricted size of receiving buffer
– TCP WINDOW SIZE parameter set to small value and reads the responses in slow way.

40



 

Client Server 

∆𝑠𝑡𝑎𝑟𝑡 

∆𝑟𝑒𝑞 

∆𝑑𝑒𝑙𝑎𝑦 

∆𝑟𝑒𝑠𝑝 

∆𝑛𝑒𝑥𝑡 

𝑡𝑖
𝑚
𝑒

 

Fig. 2.3: TCP connection time parameters

If a client tries to connect to the server, creates a request. The request is received
by the server. After period of time server sends response. This process is repeating
till the connection is closed or maintained alive in keep alive state. Client creates
two types of request: Initial request and Pending request. Initial request is send only
once in the beginning of the connection. Pending request is send multiple times if
set, till the maximal duration value expires or the connection is closed by the server.
Following time parameters can be extracted at one endpoint e. g. client (in fig. 2.3),
according the flow description in fig. 1.5:

• Δ𝑠𝑡𝑎𝑟𝑡 – time interval begins in 𝑡0 and ends with the begging of the request.
• Δ𝑟𝑒𝑞 – stands for the time between the beginning and ending of the request.
• Δ𝑑𝑒𝑙𝑎𝑦 – identifies the time between receiving the requests and the response

sending.
• Δ𝑟𝑒𝑠𝑝 – stands for the time between the beginning and ending of the response.
• Δ𝑛𝑒𝑥𝑡 – identifies the time between the end of the response and the beginning

of the next request.
These parameters are combined with stat parts and are listed in tab. A.1.
Some of the above mentioned attacks relay on the timeout settings. They can

41



be called Timeout Exploiting SDAs and mapped to previous categories in tab. 2.2.
Pending Requests can be matched with Δ𝑟𝑒𝑞 parameter. They exploits creation
process of requests. Incomplete requests are being sent. Delayed Responses cate-
gory can be matched with Δ𝑑𝑒𝑙𝑎𝑦 parameter. They exhausts internal resources of
victim, delaying the response sending for the time specified period of time. The last
important category is Long Responses that can be matched with Δ𝑟𝑒𝑠𝑝 parameter
exploiting the response creation time interval. We have to extend previous categories
for the Δ𝑠𝑡𝑎𝑟𝑡 and Δ𝑛𝑒𝑥𝑡 parameter. Δ𝑠𝑡𝑎𝑟𝑡 parameter introduces Lazy Requests cat-
egory and Δ𝑛𝑒𝑥𝑡 parameter introduces Next Requests category. This to categories
are interconnected. Only in the beginning of the attack is Δ𝑠𝑡𝑎𝑟𝑡 valid parameter.
Throughout the attack proceeds it changes into Δ𝑛𝑒𝑥𝑡 category. Example SDA of
the Next Requests is Slow Next10. [25] [31]

Timeout parameter Attack types
Δ𝑠𝑡𝑎𝑟𝑡 Lazy Requests
Δ𝑟𝑒𝑞 Pending Requests
Δ𝑑𝑒𝑙𝑎𝑦 Delayed Responses
Δ𝑟𝑒𝑠𝑝 Long requests
Δ𝑛𝑒𝑥𝑡 Next Requests

Tab. 2.2: Timeout Exploiting Slow DoS Attacks

Another important structure is the network queue. Whenever server has to send
a large file, it needs to convert it and then transport it through transport medium
using L1 of TCP/IP model. First it is buffered and then prepared for sending in the
sending queue. Sending queues has limited capacity. Whenever all request workers
are busy and another requests stay in the buffered memory, all functional workers
keeps sending the queued connection data on the TCP socket. If the size of the queue
is the big enough, web server in some point stops following set timeouts resulting in
connection being closed due to kernel limit of the space.11 [33]

10Slow Next – Attacker keep sending HTTP Head request with connection keep alive set.
11TCP Listen Backlog is the value that determines the number of fully acknowledged connections

to be accepted by the process. In other words it sets the size of the sending queue. For Apache
2.4 the default value is 511. It is possible to display backlogged connection with 𝑠𝑠:
$ 𝑠𝑠 − 𝑙𝑡𝑖′(𝑠𝑝𝑜𝑟𝑡 =: ℎ𝑡𝑡𝑝)′. [32]

42



3 Selected Slow DoS Attacks
This thesis is focused on attacks that are uneasy to detect, simulating legitimate
users with slow internet connection. So for that, 3 attacks from categories in sec. 2.1
were chosen. First attack – Slow Read is from Long Responses category focused on
filling victim’s sending queues. Second attack – Slow Drop is from Resource Man-
agement category, where attacker is randomly dropping receiving responses causing
server to send them again. The last attack – Slow Next is a member of Next Re-
quests category, where attacker sends valid request with parameter to be alive as
long as possible.

3.1 Slow Read Attack

This is the one of a few attacks directly targeting transport layer of TCP/IP model.
Attacker creates legitimate TCP connection with victim. Attacker sets parameter
of transport protocol size of window – WINDOW_SIZE to as low value as possible,
e. g. 4, 8, 16, 32, 64 B. 1 It means that the attacker proposes the number of bytes of
receiving queue that he can accept and process without dropping them. Usually it
is done by setting this value in the initial 3-way handshake request in TCP SYN. It
results in the victim’s slow responses sending. If there is a large image on the site,
it can take long period of time to be send. This basic attack can be followed by any
type of application layer protocol.

The behavior of Slow Read attack is specified in fig. 3.1. After the server receives
valid HTTP request, Δ𝑟𝑒𝑠𝑝 describes the time period where the server tries to send
response. Time period Δ𝑏𝑢𝑓𝑓𝑒𝑟 stands for the duration needed to exhaust resource
on the server side. TCP Analysis flag in this time period are TCP Window Full,
TCP Zero Window and TCP KeepAlive.

Server manifests that the receiver’s capabilities to receive data are low. TCP
Analysis flags that traffic with TCP Window Full and tries to send application data

1TCP WINDOW_SIZE is a field inside TCP header which can be set between 0 and 65535 B. It
is an advertisement value of how much data receiver is willing to get. For the connections, where
bandwidth * delay exceeds this value, receiver limits the amount of received data dropping them.
To mitigate the problem new WINDOW_SCALE was introduced allowing larger window sizes to be set.
It multiplies WINDOW_SIZE value to get real value. Maximum that can be set is limited to 14 bits.
So maximum real WINDOW_SIZE value can be 214 * 216 = 230 = 1073741824𝐵 = 1𝐺𝐵.

On the other hand low values close to 0 B can preheat overwhelmed receiver, potential connection
downsize or malicious behavior of SDA.

Server sends TCP segment confirming last successfully client-acknowledged data (TCP
𝑊𝑖𝑛𝑑𝑜𝑤𝐹𝑢𝑙𝑙) and responses with TCP 𝑍𝑒𝑟𝑜𝑊𝑖𝑛𝑑𝑜𝑤. Server waits in FIN_WAIT1 state. If the
client is available, sends TCP 𝑊𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑑𝑎𝑡𝑒 to server.[34]

43



with PSH set. Attacker responds with TCP Zero Window which means that he has
not capabilities to receive another data.

Then the DoS state happens. Attacker sends TCP segments that using TCP
Analysis are flagged as TCP Retransmission meaning that the server does not re-
spond to the requests.

This attack was firstly discovered by Sergey Sheykan from Qualsys Labs and
published in slowhttptest program available in Kali Linux distribution. [2]

 

Client Server 

∆𝑟𝑒𝑠𝑝 

∆𝑏𝑢𝑓𝑓𝑒𝑟 

∆𝐷𝑜𝑆 

Fig. 3.1: Slow Read Attack behavior

3.1.1 Slow Read SDA parameters

It is needed to introduce some important parameters that represents the behavior
of the attack and that can be useful for further detection:

• connections – number of opened TCP connections (connected sockets). It can
be described using general parameter FLOW_CONNS from tab. A.1.

• connection rate – speed of opening new TCP connections [𝑐𝑛𝑠/𝑠]. It can be
described using Inter-flow parameter FLOW_CONNS_R.

• duration – time of receiving valid responses. It can be described using
FLOW_DUR from tab. A.1.

44



• window size – the value of TCP WINDOW_SIZE parameter, read from initial
handshake or from TCP Analysis. It is described by FWD_TW_xxx_S and
BWD_TW_xxx_S parameters from tab. A.1.

• data sent – size and content of the data being sent. It is described using
FWD_PD_xxx_S and BWD_PD_xxx_S parameters.

3.1.2 Slow Read testing

For the testing purposes the script in python3 was created. It establishes TCP
connection with parameter of window size set to low value alongside with IP address
of victim and port to connect the created socket.

def establish_connection(ip, port, window_size):
"""Creates 1 synchronous TCP conenction."""
_get = f"GET /index.html HTTP/1.1\r\nHost: \
{ip}:{port}\r\n\r\n".encode('utf-8')
t_delay = 0.1
try:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, \
window_size) # sets receiver buffer size
s.connect((ip, port))
s.send(_get)
while True:

data = s.recv(window_size)
if not data:

break
time.sleep(t_delay) # t_delay parameter

except socket.error as soerr:
print("Socket closed!")
sys.exit(-1)

except KeyboardInterrupt:
s.close()
print("\nExiting...")

Listing 3.1: Slow Read attack connection setup

45



Other possible way to generate Slow Read Attack is using slowhttptest pro-
gram. 2

slowhttptest -X -c 2000 -r 200 -g -o slow_read -u \
http://<IP_web_server> -w 512 -y 1024 -z 32 -n 5 -k 3 -p 3

Listing 3.2: Example of the successful Slow Read Attack using slowhttptest [2]

Another way to create Slow Read attack is using pyslodos.py program proposed
in this thesis using: 3

(venv) python3 pyslowdos.py <IP_web_server> slow_read -r 24

Listing 3.3: Example of Slow Read Attack using pyslowdos.py

In attachment there is shell script tcp_window_size_test.sh that stands for
TCP window size testing of the server’s receiver buffer size. It generates index.html
file of random data and given size using generate_index.py script. Then it gen-
erates Slow Read Attack for 1 connection using tcp_window_size.py script and
tests it against web server for different sizes of receiver buffer. Then it gener-
ates capture_$RCV_BUFF_SIZE.pcap and out.csv file with following data: receiver
buffer size, last time (connection duration), capture size (size of the .pcap file) and
index file size. The last step is that it creates graph from .csv data available in
fig. D.1.

2Parameters of the slowhttptest settings are following:
• -X – Slow Read mode of the attack,
• -c <int> – maximal number of created TCP connections to the web server,
• -r <int> – specifies the connection rate,
• -g – specifies the output of the program to file,
• -o <string> – output file path,
• -l <int> – attack duration,
• -u <url> – victim URL (Uniform Resource Locator) address,
• -w <int> – lower bound of the TCP window size value,
• -y <int> – upper bound of the TCP window size value,
• -z <int> – specifies number of bytes being read from the receiver buffer,
• -n <int> – specifies interval between reading operations from the receiver buffer,
• -k <int> – number of requests per socket,
• -p <int> – time interval at which the server is declared unavailable.

3Optional parameter of pyslowdos.py in Slow Read mode is:
• -r <int> – value of TCP Window Size.

46



3.2 Slow Drop Attack
This is the type of SDA, where attacker simulates unreliable connection. It can mask
old wireless connection or dial up connection. Attacker sends legitimate requests
to the server. Server processes the requests and sends the response. Incoming
responses can be dropped during the transmission process or the attacker drops them
periodically or randomly. Also the ratio between acknowledge received responses and
dropped ones can be set, which hardens subsequent detection. Attacker can make
the process of detection even harder setting different requests with different user
agents specified in HTTP headers. [30]

The way response is resend relays on TCP implementation. Particularly on the
mechanism of the congestion and avoidance control. Different implementation of
TCP protocol results in different behavior.4 [35]

Packet dropping approach should simulate unreliable client environment. At-
tacker should be able to selectively drop TCP segments with PSH and ACK flags
set before the client interprets them. They can be dropped in transmission (using
network tap) or on the receiving host (before interpretation of client software).

One of the methods of dropping packets on the receiving host is using iptables.
Iptables is used as a stateless packet filter IPS that runs inside linux kernel. It
contains several chains of operation. Each chain specific certain rules that specify
what to do with captured packet. Iptables contains following tables: [36]

• filter – stands for default table that contains pre-built chains: INPUT (pack-
ets destined for local socket), OUTPUT (locally generated packets) and FORWARD
(packets routed through device).

• nat – used for network address translation. It contains following built-ins
PREROUTING, OUTPUT and POSTROUTING.

• mangle – used for specific packet alteration.
• raw – used for creating exemptions from connection tracking.

4Two possible TCP implementations are:
• TCP Tahoe – is a implementation which suggests slow start mechanism. After dropped

packets, server sets the congestion window to 1 and the for each ACK received it increases
the CWD (Current Window) by 1. It increases the CWD value exponentially till we loose
the packet that is the sign of the congestion. This mechanism is repeated. For congestion
avoidance it saves the half of the current CWD as a threshold value. After reaching that
value it stops increasing exponentially and start increasing slowly.

• TCP Reno – it stands on previous implementation some intelligence and the basic pipeline
is not emptied every time the congestion occurs. TCP Vegas – emphasizes the packet delay,
rather than packet loss. It detects the congestion in the early stage as RTT (Round Trip
Time) starts increasing. It heavily depends on the accurate calculation of the RTT.

47



 

Client Server 

∆𝑟𝑒𝑠𝑝 

∆𝐷𝑜𝑆 

Fig. 3.2: Slow Drop Attack behavior

Slow Drop Attack setup with iptables is composed of two steps:
1. Accept incoming traffic creating TCP socket. Following example allows TCP

packet with specific flags set to match an ACCEPT rule. The first parameter
sets the flags to be examined inside the packet. The second parameter stands
for the flags that must be set to match.

iptables -A INPUT -p tcp --tcp-flags SYN,ACK SYN,ACK -j ACCEPT

Listing 3.4: Iptables accept incoming connection initialization traffic

2. Randomly drop incoming traffic with set rate. It uses statistic module
that provides to match random with probability (drop rate) or n-th packets.
Matched packets are subsequently dropped.

iptables -A INPUT -p tcp --sport 80 -m statistic --mode random \
--probability 0.8 -j DROP

Listing 3.5: Iptables drop incoming packets with drop rate

48



If error or end of the attack occurs, Slow Drop attack needs to handle iptables
cleaning and connection and thread closures. Iptables can be cleaned using: [37]

1. Set accept policies for all available chains.

iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT

Listing 3.6: Iptables accept all policies

2. Delete all rules.

iptables -F

Listing 3.7: Iptables delete all rules

Slow Drop Attack was published by Dr. Enrico Cambiaso and others in 2019.

3.2.1 Slow Drop SDA parameters and testing

Slow Drop SDA proposes some distinctive parameters of the attack that can be
useful in further detection:

• drop rate – number of dropped packets. It can be measured with bigger oc-
currence of TCP segments with RCV_RTRSMN_F analysis flag.

• connections – number of opened TCP connections (connected sockets). It can
be described using general parameter FLOW_CONNS from tab. A.1.

• connection rate – speed of opening new TCP connections [𝑐𝑛𝑠/𝑠]. It can be
described using Inter-flow parameter FLOW_CONNS_R.

• duration – time of receiving valid responses. It can be described using
FLOW_DUR from tab. A.1.

• data sent – size and content of the data being sent. It is described using
FWD_PD_xxx_S and BWD_PD_xxx_S parameters.

49



For testing purposes we can use python script slowdrop_mazanek.py in lst. 3.8,
that generates the Slow Drop Attack. 5 [38]

(venv) python3 slowdrop_mazanek.py -url http://<IP_web_server> -d 0.85

Listing 3.8: Example of the Slow Drop Attack

Another way to create Slow Drop Attack is using pyslowdos.py program pro-
posed in this thesis using: 6

(venv) python3 pyslowdos.py <IP_web_server> slow_drop -D 0.65

Listing 3.9: Example of Slow Drop Attack using pyslowdos.py

3.3 Slow Next Attack
Slow Next is the type of SDA independent on application layer. Attacker establishes
legitimate TCP connection with victim and wait for the response. Server process
the requests and sends the response. After the response being sent, the connection
on the server side is in the FIN_WAIT1 state, waiting for certain period of time
for the other requests in fig. 3.3. This attack exploits Δ𝑛𝑒𝑥𝑡 parameter. After the
time interval (defined in KeepAliveTimeout timer) expires, the web server closes the
opened socket. If the attacker knows the setting of the web server, it can exploit the
behavior sending the valid maintaining requests before the timeout expires. [25]

Slow Next Attack was published by Dr. Enrico Cambiaso and other in 2015.
Any suggested implementation of the Slow Next SDA is not working with Apache

2.4.49 neither with Apache 2.4.29. This thesis propose own mode of pyslowdos.py
attack script generator to create Slow Next DoS Attack. 7

5Arguments of slowdrop_mazanek.py settings are following:
• -url <url> – victim URL address,
• -t <int> – number of threads generating HTTP GET requests,
• -tgs <int> – random delay between new thread is being created with upper bound set,
• -gn <int> – set the waiting interval if the previous responses were successfully delivered,
• -d <float> – drop rate.

6Optional parameter of pyslowdos.py in Slow Drop mode is:
• -D <float> – sets the drop rate.

7Optional parameter of pyslowdos.py in Slow Next mode is:
• -k <float> – sets the time interval between two consecutive requests.

50



 

Client Server 

𝑘𝑒𝑒𝑝_𝑎𝑙𝑖𝑣𝑒 

𝑘𝑒𝑒𝑝_𝑎𝑙𝑖𝑣𝑒 

Fig. 3.3: Slow Next Attack behavior

To reach a DoS attacker has to open a lot of TCP connections as the proposed
attack does not have implicit vulnerability. Every HTTP request occupies server
receiving buffer resources as it has to process the request. If client does not close the
connection, it waits for server closure. Client wants to send new connection 3-way
handshake before or right after the server closes the current connection.

For the opening connection before the previous one was terminated requires more
difficult mechanism. One possibility is to open new thread for a single connection
before KeepAliveTimeout expires. Other one can be implemented as is in fig. 3.4 and
way that the client sets socket to TIME_WAIT state using shutdown(socket.SHUT_RD)
function. It says that client doesn’t want to read the response and one-way closes
socket for incoming data. Before that attacker waits for the keep_alive period
similar or slightly smaller than KeepAliveTimeout or Δ𝑛𝑒𝑥𝑡 parameter on the server
side. Server keeps sending data till client hardly closes connection with RST flag. 8

Another implementation timeout is Δ𝑛𝑒𝑥𝑡𝑤𝑎𝑖𝑡 timeout which stands for the period
between RST flag was set and new connection being established. It should be set to
as low values as possible to simulate successful attack.

8Only issue is that if the keep_alive timeout is larger it will cause the receiving buffer full.
Server will send TCP Window Full.

51



 

Client Server 

𝑘𝑒𝑒𝑝_𝑎𝑙𝑖𝑣𝑒 

∆𝑛𝑒𝑥𝑡_𝑤𝑎𝑖𝑡 

Fig. 3.4: Slow Next Attack implementation behavior

3.3.1 Slow Next SDA parameters and testing

Parameters of the Slow Next SDA:
• connections – number of opened TCP connections (connected sockets). It can

be described using general parameter FLOW_CONNS from tab. A.1.
• connection rate – speed of opening new TCP connections [𝑐𝑛𝑠/𝑠]. It can be

described using Inter-flow parameter FLOW_CONNS_R.
• duration – time of receiving valid responses. It can be described using

FLOW_DUR from tab. A.1.
• data sent – size and content of the data being sent. It is described using

FWD_PD_xxx_S and BWD_PD_xxx_S parameters.
• keepalivetimeout – upper bound of the time interval between two consecutive

requests. It can be described using D_NEXT_xxx parameters.
Example of Slow Next Attack can be tested using pyslowdos.py script.

(venv) python3 pyslowdos.py <IP_web_server> slow_next -k 4.5

Listing 3.10: Example of Slow Next Attack using pyslowdos.py

52



4 Slow DoS Attack Generator
This part introduces python3 script providing arguments to create presented SDAs.
It provides subcommand to create custom SDA. As proposed attacks use HTTP
as an application protocol, the implementation uses HTTP as well. Application
protocol is a text payload inserted into TCP payload. So it is easy to replace HTTP
protocol with any other application layer protocol with complying syntax.

4.1 TCP connection with HTTP payload modeling
using available python3 modules

As an payload of TCP protocol can be any application protocol, represented as an
encoded string. In python3 there are several options how to create HTTP request-
response application. For example using requests module, that allows very simple
HTTP/1.1 request and response creation. Example in fig. 4.1.[39]

import requests

r = requests.get("http://<Target-IP>:<port>")

Listing 4.1: HTTP request-response with requests

Packet capture of such a communication is in fig. B.1, where there is 3-way
handshake, PSH packet with HTTP request and fragmented responses that are sub-
sequently reassembled to response and connection is closed with 4-way quitshake.

Another approach is with using urllib3 module, that is simple HTTP client
providing thread safeness, provides function for encoding, decoding, encryption and
decryption. Also provides proxy support. Example of HTTP request and response
in fig. 4.2. [40]

import urllib3

http = urllib3.PoolManager()
r = http.request('GET', 'http://<Target-IP>:<port>')

Listing 4.2: HTTP request-response with urllib3

The last approach is with using socket module, that is low-level networking
interface providing access to the BSD (Berkeley Software Distribution) socket in-
terface. It uses standard system call and library interface of C socket implementa-

53



tion with object oriented approach. Example of HTTP request and response is in
fig. 4.3.[41]

import socket

host = '<Target-IP>'
port = 80
request = f"GET / HTTP/1.1\r\nHost:{host}\r\n\r\n""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host, port))
s.send(request.encode())
#s.shutdown(socket.SHUT_WR)
while True:

response = s.recv(4096)
if not response:

break
s.close()

Listing 4.3: HTTP request-response with socket

TCP socket object is created using socket() function. It requires following
arguments: socket address family and socket type.

Socket address family depends on the operating system and and required build
options. It determines structure of the address. Examples of socket address families
are following:

• AF_INET – provides inter-process communication between different processes
using tuple (ℎ𝑜𝑠𝑡, 𝑝𝑜𝑟𝑡), where host is IPv4 address or hostname of the target.

• AF_INET6 – provides inter-process communication using IPv6 address.
• AF_UNIX – provides inter-process communication, where the address is repre-

sented by path string that is bounded to a file system entry.
Socket type are used to describe inter-process communication behavior. The

most commonly used are stream and datagram types. Examples of socket types:
• SOCK_STREAM – uses connection oriented protocol, where data are reliably de-

livered. This socket type uses TCP protocol for data transmission.
• SOCK_DGRAM – uses best-effort, connectionless data delivery. This socket type

uses UDP protocol for data transmission.
• SOCK_RAW – provides access to network layer protocol. It support socket ab-

straction. It can be used for custom transport protocol definition or for routing
protocol implementation.

54



Subsequently TCP socket is connected using connect() function to the target
and binary or encoded string data are send using send() function. [41]

4.1.1 TCP connection and attack closures

TCP socket can be closed in two ways that are summarized in tab. 4.1 and in fig. 4.1.
From the sender side or from the client side. Client side closure is done with close()
sokcet function. It is shown by TCP segment with RST flag immediately send. [41]
Another way of client-side closure is using kill() thread function that will kill the
socket handling thread. It will close opened connection as well.

Another socket closing function is shutdown() that can close one or both halves
of the connection. It is specified by how argument which can contain following values:

• SHUT_RD – no data are received.
• SHUT_WR – no data are send.
• SHUT_RDWR – no more data are send or received.
If client decides to stop sending data, he creates TCP segment with FIN flag for

one way connection closure. Once that happens, all further operations will fail.
Server can close the connection in two ways as well. First way is that server

decides to close the connection due to internal reason. It can be connection timeout
interval reached, server side issue, IPS prevents the system from intrusion or anti-
malware protection.

Another way is that server closes the connection standard way after all data has
been sent and no other requests to respond.

Side of closure TCP flag Reason of closure
Client RST connection
Client FIN standard
Server RST timeout
Server FIN standard

Tab. 4.1: Types of connection closure

Server side timeout closure

Next challenge to be solved is when server closes TCP connection in hard way.
HTTP server most often closes connection hard way when connection timeout has
been reached. If the socket exception handler does not catch server side closure, it
needs to be handled. One possibility is to kill the program manually. It will also
close one side opened connection. Another approach is to set the maximum attack
duration for each thread.

55



 

 Client Server 

One-way closure 

Standard closure 

Forced closure 

Timeout closure 

Fig. 4.1: TCP connection closures according the communicating sides

4.2 Multiple connections handling
If it is required to use more than one connection created and active, it needs to
think about multiple connection handling methods. For attack execution with one
connection the synchronous approach is sufficient, as in fig. 4.2.

 

Client Server 

Fig. 4.2: Synchronous communication

56



But if it is required to connect multiple connections, the execution can wait
for each and every connection to be successfully terminated. In other words one
connection blocks the application execution. Another approach must be chosen.

As the application is meant to work as a single process on a single processor
core, there is no need for parallel execution. Also multiprocessing approach, where
the application is divided into multiple separated processes, can be eliminated.

4.2.1 Concurrent execution

The next possibility of reaching concurrency is using specific framework with single
thread (sometimes called worker thread) or multiple threads called multithreading.
[42] Principle of concurrency is that two or more tasks are executed on single or
multiple threads taking advantage of CPU time-slicing feature. In the words of
communication, client can create multiple sessions, create and connect multiple
sockets independent on each other. Example of concurrent communication is in
fig. 4.3.

 

Client Server 

Fig. 4.3: Concurrent communication

Asynchronous modules

On of the methods of concurrent execution is asyncio python framework. It works in
seemingly concurrent manner. It allows to run operations that are normally blocked
by execution on single thread. Crucial concept is async and await. Code written
wiht async before definition of function is called by asyncio in asynchronous way.

57



Async code can run inside event loop and this code (also called coroutine functions)
has to use await that is waiting to corouting object to be executed. More in fig. 4.4.
Advantage of asynchronous approach is that it saves the memory space in contrary
with threads. [43]

import asyncio

async def func(args):
print("Starting task")
await asyncio.sleep(1)
print("Finishing task")

asyncio.run(func(args))

Listing 4.4: Python asynchronous example

Multithreading

Thread is a sequence of instructions running in the context of one process. To
execute multiple threads only one python process is enough. Disadvantage of such
execution is that the process memory is shared between the threads. So CPU-bound
tasks can’t be effectively solved in python using multiple threads.1 But for I/O
bound operations, such as network communication using sockets, is very useful.[45]

Python’s default module used for work with threads is threading. It is a high-
level interface on top of _thread low level interface. It provides additional functions
of the thread governance. [46] Thread can be created by making and instance of
Thread class and started, in fig. 4.5. Another important setting of the thread is to
decide whether it is a daemon thread or not. Daemon thread will shut down after
the main program finishes. While the thread is not a daemon thread, it waits to be
closed by execution or manually killed. Waiting for thread closing is with function
join(). Possible outcomes: [47]

• daemon=True – If there is no thread ending, with main program finishing,
daemon threads finishes (even before execution). Elsewhere main program
waits for children’s thread finish.

1The limitation is based on python’s GIL (Global Interpreter Lock). GIL secures that threads
of one process will not be executed at same time. It creates mutex that prevents multiple threads
from executing bytecodes at once. At any time only one thread can lock execution for specific
object. Solution is use multiple cores and one of multiprocessing modules.[44]

58



• daemon=False – If there is not thread ending, main program is separated with
daemon thread, that can finish after the main program ends. On the other
side it is the same as first example.

Running thread can be killed. If many threads are needed, it is possible to put
them to shared memory structure and run them from that. Another approach is to
use ThreadPoolExecutor that can create multiple threads and starts and finishes
the threads autonomously.

import threading
import time

thread_count = 5
threads = []

def task():
print("Starting task")
time.sleep(1)
print("Finishing task")

for _ in range(thread_count):
# create threads
thread = threading.Thread(target=task, daemon=True, args=())
threads.append(thread)
# start threads
thread.start()

# execute threads - wait to complete
for x in threads:

x.join()

Listing 4.5: Python threading example

4.3 Python SDA generator pyslowdos.py

Slow DoS Attack generator is created with python3 programming language using
object-oriented approach. It contains help page with required and optional argu-
ments and with available operational modes. Alongside the generator script there is
a requirements.txt file with required modules, README.md with installation hints,
generator usage and attack examples.

59



This thesis is using following modules:
• socket – module for low-level networking interface. Provides access to BSD

socket interface.[41]
• threading – module that allows code concurrency. It is appropriate module

for running multiple I/O (Input-output)-bound tasks simultaneously. [48]
• time – module that provides various time-related functions. [49]
• logging – module that provides classes and function for event or application

logging. It provides functions to create custom syslog-like logging. [50]
• argparse – module that provides to create user-friendly command-interface,

defines required arguments and parses them. It automatically generates help
and usage messages. [51]

• random – module that provides way to generate pseudo-random numbers for
various distributions. [52]

• os – module that provides access to operating system functions. [53]

4.3.1 Generator arguments and structure

Slow DoS Attack generator contains positional and optional arguments enclosed in
sec. C.2. There is only one required argument IP or URL address of the target.
Generator script requires operational mode of the attack to be set. It is used for
the SDA type selection. Other arguments are optional. They contain port number
(default is 80), number of opened connections during the attack2, maximum attack
duration3, maximum single connection duration, delay between threads creation and
logging level with logging file output possibility.

Closing option arguments are close and rec. If close is set, it stands for client
side closure if no valid data are being send. If rec is set, it means closed connection
(server or client side closure) inside valid duration period is reconnected (default
value is False).4

Generator modes are following:
• slow_read – stands for Slow Read Attack. It has only one optional argument

that is TCP window size value.
• slow_drop – stands for Slow Drop Attack. It has optional argument setting

drop rate.
2One connection is equal to one thread.
3Duration argument stands for a lower limit of the real attack duration if the connection recon-

nect is set. If not reconnect set attack can end before the duration period. If the attacker receiving
buffer is blocked with incoming requests, it waits for the server side closure, that can happen after
the attack duration period.

4If both closing arguments are set, generator will close the connection immediately after no
more data are received. But second argument will cause reopening of such closed connection.

60



• slow_next – stands for Slow Next Attack. It has optional argument setting
keep alive timeout.

• custom – stands for Custom Slow DoS Attack. It can contain optional ar-
guments from previous modes plus other optional arguments. They can set
sender and receiver buffer size with chunk sending or receiving interval. Then
it can has set delta time arguments. For application layer, custom mode pro-
vides initial HTTP request with headers and data. It can contain repeting
(pending) HTTP request with headers and data as well.

In Custom Slow DoS Attack mode client can send pending requests till the
server closes the connection (if not connection reconnect set). If client keeps sending
pending requests and has no incoming data, server keeps connection opened in
FIN_WAIT2 state. If no Δ𝑛𝑒𝑥𝑡 argument set client will keep pending request in quite
overwhelming way.

Custom mode requests and responses can be send or received in following manner:
• Request

– Initial
∗ Slow Sending – Is chosen if -s <int> parameter is set. It stands for

the size of sender buffer. It can be accompanied by -st <float>
parameter standing for interval between sending individual chunks.

∗ Normal Sending – Standard initial request sending.
– Pending

∗ Slow Sending – Is chosen if -s <int> parameter is set. It stands for
the size of sender buffer. It can be accompanied by -st <float>
parameter standing for interval between sending individual chunks.

∗ Normal Sending – Standard pending request sending. If pending
request is closed and -rec is set, it will keep sending pending requests.

• Response
– Initial

∗ Slow Reading – Is chosen if -r <int> parameter is set. It stands for
the size of receiver buffer. It can be accompanied by -rt <float>
parameter standing for interval between receiving individual chunks.

∗ Normal Reading – Standard response for initial request.
– Pending

∗ Slow Reading – Is chosen if -r <int> parameter is set. It stands for
the size of receiver buffer. It can be accompanied by -rt <float>
parameter standing for interval between receiving individual chunks.

∗ Normal Reading – Standard response for pending request. If pending
request is closed and -rec is set, it will keep sending pending requests.

61



If keep alive -k <float> is set. It means that the connection waits for the given
period and then client one-side closes connection for incoming data and resends
request.

Logging

Slow DoS Attack generator provides two types of logging events using messages.
One is standard output logging and another is file logging specified with the name
using parameter -log <string>. This application provides simplified version of
syslog protocol. Each log message contains following structure:

[timestamp] [thread] [module] [severity] [message]

Listing 4.6: Logging structure

This application does not provide all logging levels. It contains only following
severity levels set with the occurrence of the program parameter -l: [54]

• no occurrence of -l – Level 0 (ERROR) – Error message about program or
component malfunction. Normal functionality of the program is affected. It
is equal to Level 3 syslog severity.

• -l – Level 1 (WARNING) – Warning message about possible program or compo-
nent issue or incorrect user input that can cause application failure. Equivalent
to level 4 syslog severity.

• -ll – Level 2 (INFO) – Informational message about standard program func-
tioning. It is used for important events. It is equivalent of syslog level 5 and
6 severity level.

• -lll – Level 3 (DEBUG) – Debugging level shows extended information about
program execution, inputs, outputs. It is equivalent to syslog severity level 7.

62



5 Testing environment and data capture
Testing environment in fig. 5.1 composes of the attacker device, victim’s server and
interconnecting router. For the attacker purpose, Ubuntu 20.04.3 LTS operating
system was chosen running on the PC with Intel i7 4720 HQ CPU and 16 GB of
RAM. Attacker has IP address 10.0.0.200/24.

Server Dell PowerEdge T30 with 16 GB RAM and Intel Xeon E3-1225 CPU with
Ubuntu 20.04.3 LTS installed with default installation of Apache web server using
apt packaging software in version 2.4.49. Victim has the IP address 10.0.0.100/24
connected to default router with IP 10.0.0.1/24.

Router with armv7 CPU and operating system OpenWRT interconnects above
devices. As it is router with Linux OS, basic commands can be used to capture
traffic using tcpdump program that generates .pcapng files. These files are used for
further detection of the SDAs.

10.0.0.1/24

10.0.0.100/24 10.0.0.200/24

Fig. 5.1: Testing network

In the attachment of this thesis there is generate_index.py python3 script that
generates index.html file in given location (with optional argument -p <string>,
default: '/var/www/html/') with random data of given size (with required argu-
ment size <int>).

63



5.1 Web server
Default web server available in Ubuntu 20.04.3 LTS is Apache 2.4.49. It can be
installed by apt packaging software or directly built from source files. Generally,
Apache web server is based on modularity, which enables to configure core features
modules add different settings modules, security modules, working modules or net-
work modules to enhance web server functionality, performance and security.

Modules can be found inside the web server configuration folder:
/etc/apache2/mods-enabled/ and can be loaded with
Load Module <module_name> <path/to/module.so> using a2enmod program. The
Apache main configuration file apache2.conf is inside /etc/apache2/ enabling time
settings, requests settings, logging settings, includes module configuration, includes
list of ports to listen on, web server default directory and includes virtual host
configuration in lst. 5.1.
# ...
Timeout 300
# ...
MaxKeepAliveRequests 100
# ...
KeepAliveTimeout 5
# ...

Listing 5.1: Default timeout settings available from 𝑎𝑝𝑎𝑐ℎ𝑒2.𝑐𝑜𝑛𝑓 .

Timeout stands for the number of seconds Apache will wait to close connection.
MaxKeepAliveRequests means the maximum capacity to be handled during per-
sistent connection. If set to 0 allow unlimited amount. KeepAliveTimeout is one
of the crucial parameters. It proposes the number of seconds to wait for the next
request from the same opened connection.

One of the core networking modules is MPM (Multi-Processing Module), which
configures the settings of the network ports binding or use of child processes and
threads to handle requests. Apache offers 3 different MPMs:

• prefork – uses multiple non-threading child processes, where each process
servers single connection,

• worker – uses multiple threading child processes, where each thread handles
single connection,

• event – similar to worker but connections remaining in idle or keep alive state
handles differently. They are grouped and handled by a single thread allowing
to free up memory and server other threads. This is the default setting at
Apache web server from version 2.4. [55]

64



As being said above the default configuration to handle multiple connection is
MPM event available in /usr/lib/apache2/modules/mod_mpm_event.so.

<IfModule mpm_event_module>
StartServers 2
MinSpareThreads 25
MaxSpareThreads 75
ThreadLimit 64
ThreadsPerChild 25
MaxRequestWorkers 150
MaxConnectionsPerChild 0
</IfModule>

Listing 5.2: MPM event module parameters available from 𝑚𝑜𝑑_𝑚𝑝𝑚_𝑒𝑣𝑒𝑛𝑡.𝑠𝑜

StartServers is one of the parameters from lst. 5.2 determining the number of
starting processes, when the Apache web server is started. MinSpareThreads sets
the minimal number of working threads in spare or idle state during web server
operation. MaxSpareThreads set maximal value of working threads in idle state.
ThreadLimit sets the maximum value of server threads serving user requests. The
memory for these threads is always allocated. Otherwise ThreadsPerChild sets the
maximum number of threads created by each child process. It has to have lower
value than ThreadLimit. MaxRequestWorkers is the most important parameter.
For simplicity it sets the maximal value of established connections that the Apache
web server can handle instantly. In the end MaxConnectionsPerChild limits the
number of connections that child server process will handle during its life. After
reaching this value of connection, the child process will die. If set to 0, then the
process will never expire.[56]

Other way how to find Apache settings is with apachectl. It is open source
program designed to provide control of the Apache httpd daemon. It can start,
restart or stop web server from functioning or can be used for inserting environment
variables in lst. 5.3. [57]

#!/bin/bash
apachectl -V

Listing 5.3: Finding basic Apache server settings

65



One of the most common Apache modules is mod_security which deals with
security settings of the web server. This being set can protect web server from
various attacks especially flooding, DDoS attacks or against XSS and SQL injection.
Nowadays it stands as fully-fledged web application firewall. It can be configured
by OWASP (Open Web Application Security Project) ModSecurity Core Rule Set
that provides a set of generic rules to defend the web server against OWASP Top
10 attacks. This can be additionally installed. [58]

<IfModule reqtimeout_module>
# ...
RequestReadTimeout header=20-40,minrate=500
# ...
RequestReadTimeout body=10,minrate=500
</IfModule>

Listing 5.4: Request timeouts settings

One of the important default modules from Apache 2.4 is mod_reqtimeout avail-
able in /etc/apache2/mods-enabled/reqtimeout.conf and listed in lst. 5.4 pro-
vides different timeouts and minimum data rates for receiving requests. If the
configured timeout occurs or data rate is belong the set value, connection will be
closed by the server. It is basic protection against type of DoS attacks, where at-
tacker opens new TCP connections and no or low data flows (TCP SYN FLOOD).
RequestReadTimeout sets the maximum value of 20 seconds for the first byte of the
request. From that moment it requires a minimum data rate of 500 𝑏𝑦𝑡𝑒𝑠/𝑠 and if
that is not satisfied it will wait no longer than 40 𝑠 in total.
RequestReadTimeout sets the maximum waiting interval for the first byte of the
request body. [59]

Another Apache security module is mod_ratelimit available in
/etc/apache2/mods-enabled/reqtimeout.conf and listed in lst. 5.1 that provides
RATE_LIMIT filter limiting client bandwidth (or rate limiting). It is available from
Apache 2.4.24 and works correctly from 2.4.33. This mechanism is applied to every
HTTP response to the client. It can be applied to certain location (e. g. data
or upload path). It uses rate-limit variable to set connection speed in 𝐾𝑖𝐵/𝑠

or rate-initial-burst optional variable to set maximum amount of initial data
before connection is slowing down in 𝐾𝑖𝐵. [60]

66



<IfModule ratelimit_module>
<Location "/data">

SetOutputFilter RATE_LIMIT
SetEnv rate-limit 512
SetEnv rate-initial-burst 756

</Location>
</IfModule>

Listing 5.5: Ratelimit module example with output filter

Another possibility is to use custom created filters or specific modules. For exam-
ple mod_evasive module that monitors incoming server requests. If more requests
than set max limit income or more than 50 simultaneous connections are being cre-
ated or requests done from blacklisted IP addresses mod_evasive module detects
such behavior and responds with 403 error. [61]

In lst. 5.1 is default configuration from httpd.conf with following parameters:
• DOSHashTableSize – stands for the space that web server allocates.
• DOSPageCount – is the number of requests for individual page that trigger

blacklisting.
• DOSSiteCount – stands for the total number of requests for individual page

by one host (certain IP).
• DOSPageInterval – number of seconds for the requests can trigger blacklisting.
• DOSSiteInterval – number of seconds for the total number of requests for

individual page by one host.
• DOSBlockingPeriod – time that IP address is blacklisted.

<IfModule mod_evasive20.c>
DOSHashTableSize 3097
DOSPageCount 2
DOSSiteCount 50
DOSPageInterval 1
DOSSiteInterval 1
DOSBlockingPeriod 10

</IfModule>

Listing 5.6: Evasive module default configuration [3]

67



5.2 Data capture and dataset

For further detection or prevention it is possible to create own datasets by captur-
ing individual packets. They can be captured already filtered with tcpdump using
destination (host) and port number filter. This approach has some downsides as
privacy issues, large space for captured data or filtration mechanism.

timeout 60 tcpdump -i eth0 -nn host <IP-address>\
-nn port <port> -w output_file.pcapng

Listing 5.7: Traffic capture script on all interfaces restricted for 60 𝑠 duration

Other way is to use publicly available datasets. These data setsare usually the-
matically focused, providing any kind of network traffic with various anomalies or
cyber attacks. One of the first was the 1998 DARPA dataset. [62] It contains traffic
with 1000 hosts and more than 300 instances of 38 different attacks against UNIX
hosts.

Another important dataset was NSL-KDD. It is an improvement of the KDD99
dataset containing two training, one testing set and small verifying dataset. [63]

In the last few years Canadian Institute of Cybersecurity at the University of
New Brunswick started to creating very important datasets that are used around
the world for the training attack detection models, IDSs, IPSs, firewall rules etc.
[64]

The first important dataset is ISCX IDS dataset from 2012. It is a seven day In-
ternet stream capture containing various application protocols (FTP, HTTP, IMAP,
SMPTP or SSH). It contains normal and anomalous traffic that is labeled (e. g. us-
ing BENIGN or NORMAL and ATTACK). Before a lot of datasets were heavily anonymized
deleting payload. That would for example lead for impossibility of application layer
detection. This dataset contains 7 days of data capture resulting in the size of
84.42 𝐺𝐵 in total. [65]

Another important dataset is CIC DoS dataset from 2017. This is the first
dataset completely focused on application layer DoS attacks. It contains high-
volume attacks (HTTP GET flooding, DNS flooding, SIP INVITE flooding . . . )
and low-volume, low-rate or Slow DoS attacks. It is focused on universal type of
application Slow DoS attack in variation of slow sending and slow reading. It mixes
generated Slow DoS attacks with attack-free traffic from ISCX IDS dataset (2012).
It consists of 4 different types of Slow DoS attacks created with different tools,
obtaining 8 different captures towards 10 web server with higher amount of connec-
tion in parent dataset. Resulting datset contains of 24 ℎ of traffic with amount of
4.6 𝐺𝐵.[66]

68



Next dataset is Intrusion Detection Evaluation Dataset (CIC-IDS2017) from
2017. It consists of benign and malicious traffic. This dataset includes various types
of network devices (modems, firewalls, switches or routers). It contains various
application layer protocols (HTTP, HTTPS, FTP, SSH) and attacks (Brute force,
DoS, DDoS, Heart-bleed). It also includes .csv files that are created from network
captured files (.pcaps) and after network traffic analysis with CICFlowMeter and
labeled flows containing 80 flow features. 1

It contains 5 days of complete data capture on a testing network where each
day contains some implemented attacks or normal traffic. Monday capture has
11.0 𝐺𝐵 and includes only benign traffic. Tuesday capture has 11.0 𝐺𝐵 and includes
normal traffic with attacks. Wednesday has 13.0 𝐺𝐵 and includes normal traffic with
attacks. Thursday has 7.8 𝐺𝐵 and includes normal traffic with attacks and Friday
has 8.3 𝐺𝐵 and includes normal traffic with attacks as well. In total 51.1 𝐺𝐵. Traffic
feature and flow csv files are boldly smaller. Traffic feature csv files has 843 𝑀𝐵

and flow csv files has 1.12 𝐺𝐵. [68]
The last dataset is DDoS Evaluation Dataset (CIC-DDoS2019) from 2019. It

consists of benign and modern DDoS attacks traffic and csv files with labeled flow
data. It was created during 2 days. For each day it contains capture of raw network
traffic and event logs per each machine plus flow csv files per machine. [69]

Last approach is to combine a certain dataset with custom data. There are two
possibilities. One to merge raw captured data with original dataset or create flow
labeling of the custom data and subsequently merge it with original flowed dataset.
In this thesis the approach of merging csv data into original dataset was chosen.

5.2.1 Flow and dataset creation

To generate flow according the parameters described in sec. 1.2.1 it is needed to
create custom flow generator from captured network traffic. With CIC-IDS2017
dataset there was custom flow generator proposed – CICFlowMeter. [70] It creates
traffic flow with lower number of features. Also python3 implementation of such
generator exists – Python CICFlowMeter. [71] It creates flow with parameters
included in lst. D.3. It is used to create .csv files from original dataset and from
captured attack datasets.

Dataset CIC DoS (2017) with custom attack can be used further with Unsuper-
vised learning methods. CIC-IDS2017 contains labeled flows with custom attack
labeled flows can be used with Supervised learning methods.

1CICFlowMeter is an Ethernet traffic bi-flow generator and analyzer for anomaly detection. It
creates labeled flows based on time stamp, source and destination IPs, source and destination ports
and protocols. It is written in Java.[67]

69



Following steps has been taken:
1. Create labeled flow .csv files from network traffic captures using:

• Install Python CICFlowMeter:

git clone https://github.com/datthinh1801/cicflowmeter.git
cd cicflowmeter/
python3 -m venv venv
source venv/bin/activate
python3 setup.py install

Listing 5.8: Python CICFlowMeter download, instalation and activation

• Convert pcap files to flow csv files (for larger files it takes a few hours):

cicflowmeter -f slow_read.pcap -c slow_read.csv

Listing 5.9: Example of converting slow_read.pcap file into slow_read.csv file

2. Change timestamps of custom SDAs according to tab. D.1.

import pandas as pd
slow_read_time = 13800 # 230 minutes
# ...
original_file = 'original.csv'
slow_read = 'slow_read.csv'
# ...
df = pd.read_csv(slow_read)
rows = df.shape[0]
for i in range(rows):

df.loc[i,'timestamp'] += time
df.to_csv(file,index=False)

Listing 5.10: Example of incrementing flow time in csv file

3. Merge csv to single dataset csv file.

import pandas as pd
source = pd.read_csv(original_file)
to_merge = pd.read_csv(file)
result = pd.concat([source, to_merge])

result.to_csv(destination, index=False)

Listing 5.11: Example of two csv files merging

70



6 Slow DoS Attacks Detection
Various approaches to the detection can be applied. In this part the structure of
the attacks based on various protocols is strictly defined as follow:

• Application layer – HTTP protocol in version 1.1,
• Transport layer – TCP protocol creating TCP sockets.
Basic division of detection techniques is to real-time detection and subsequent

(offline) detection. Real time detection can be done with IDS (Intrusion Detection
System). This can be any hardware or software device placed in network or run as
a daemon on intermediary devices sniffing the network traffic. If the detection is
positive, any unusual activity detected is reported to SIEM (Security Information
and Event Management).

Detection can be focused on detection of incoming traffic inside the network.
IDS doing such job is called NIDS (Network Intrusion Detection Systems). On the
other side detection on the host side is called HIDS (Host-based Intrusion Detection
System). This monitors logs, files and folders, data and memory structures and
running processes inside the host’s operating system.

The further division that can be used for both above approaches is on:
• Signature-based detection – Detection mechanisms is looking for specific struc-

ture of the malicious traffic. It can be some specific repeating patterns, time
periods or known malicious data. Signature detection can be then used in
automated IDS and IPS (Intrusion Prevention System). Two best known ID-
S/IPS are Suricata and Snort. Signature of the attack can be created by the
defined rules. With this approach we can detect only known attacks listed in
common vulnerability databases or CVEs (Common Vulnerabilities and Ex-
posures systems). [72]

• Anomaly-based detection – Detection mechanisms is monitoring the resource
activity and classifying it to normal or anomalous. To distinguish the legit-
imate traffic from malicious we need the mechanisms of classification. This
usually contains two phases – training phase and testing phase. The purpose
of training phase it to create a model of legitimate traffic. On the other hand
in testing phase the malicious traffic with legitimate traffic is tested against
the training model. The deviations or anomalies are detected using machine
learning algorithms, artificial intelligence techniques, neural networks or sta-
tistical strict anomaly detection. The advantage of this approach is that it can
detect even unknown attacks. But the downside is that it can suffer from the
false positive detection results. (Legitimate traffic can be marked as malicious
and vice versa.) [73]

71



6.1 SDAs Signature Detection
Signatures can have various forms. It can be pattern in the protocol payload con-
taining malicious code, chain of commands that attacker tries to execute to take
profit, network behavior of threat actor or unauthorized network access. [74]

Signature detection can focus on single-packet detection (atomic signatures) that
is more resource intensive and time consuming or multiple-packet detection (com-
posite signatures) that requires less resources. [75]

Downside of signature detection is that it is used for predefined or static signa-
tures that represent given threat. If attacker changes something in the look, code
or approach it should evade the detection. So for that, combination of signature
detection with behavior or anomaly-based detection is required.

{
"name": string,
"initial_request": {

"content": "{METHOD} {PATH} HTTP/1.1",
"window_size": integer

},
"pending_request": {

"content": "{METHOD} {PATH} {DATA}",
"repeat": boolean,
"repeat_count": integer

},
"response": {

"status_code": integer,
"content": string,
"keep_alive": integer

},
"connection":{

"connections": integer,
"connection_rate": integer,
"threads": integer,
"sending_buffer": integer,
"retransmissions": integer

},
"timeouts": [{req}, {delay}, {resp}, {next}],

}

Listing 6.1: Host-based SDAs specification

72



{
"name": string,
"target": ip_address,
"port": integer,
"user_agent": string,
"initial_request": {

"content": "{METHOD} {PATH} HTTP/1.1",
"window_size": integer

},
"pending_request": {

"content": "{METHOD} {PATH} {DATA}",
"repeat": boolean,
"repeat_count": integer

},
"timeouts": [{req}, {delay}, {resp}, {next}],

}

Listing 6.2: Network-based SDAs specification

In lst. 6.1 and lst. 6.2, host-based and network-based signature specification of
SDAs is proposed for detection. The scheme of the attack is based on json structure
describing key parameters of the attack regardless the source of the attack.

Parameter name stands for the name of SDA. Parameter initial_request de-
termines the first request attacker has to send. It can consist of subparameters
or the only one string of HTTP request. Between subparameters are content
parameter, optional parameter of the TCP window size – window_size. Then
pending_request is one of the most important parameters determining mechanism
of the attack. Contains various subparameters as content, information of repeti-
tion repeat. If repeat set repeat_count is required. Next parameter is response
containing status_code informaiton, content parameter of the response and next
optional parameters (keep_alive). Then the basic volumetric parameters are set:
connection with connections specifying the number of opened connection at total.
Then connection_rate specifies the rate of the new connections opening. Threads
stands for the number of parallel threads operating the opened connections. Resend-
ing parameter retransmissions means the number of not acknowledged responses.
And sending_buffer determining the size of the response queue. The last field is
timeouts parameters containing timeout settings from sec. 2.1.1.

If we want to count the source information of the attacker alongside the detailed
information of the victim, we have to extend the specification in lst. 6.2.

73



Where extra parameters are target specifying the IP address of the victim
alongside the port and user_agent giving some information about attacker’s device.

Specification examples of the related SDA are lst. D.1 for Slow Read attack,
lst. D.2 for Slow Drop attacks and lst. D.3 for Slow Next attack.

6.2 SDAs Anomaly or Behavior-Based Detection
Anomaly detection creates a model of legitimate traffic and afterwards the malicious
traffic model is created. This model deviates from valid one. Between anomaly-
based methods we count statistical anomaly detection methods, wavelet analysis,
entropy-based methods, machine learning techniques and neural networks.

The goal of the statistical anomaly methods is to identify traffic parameters that
deviates from normal traffic. For each of the parameters we can compute statistical
properties as mean value, variance, distribution function etc. Then the statistical
tests are applied to determine the deviation from the normal profile. The traffic
that deviates from the normal traffic is evaluated with score, if that score exceeds
the threshold value we can consider such as a malicious traffic. [76]

The wavelet analysis can be used to analyze the edges (similar to images). The
edge can represent threshold value as in statistical anomaly methods. [77]

The entropy-based methods come from information theory introduced by Claud
Shannon, where entropy of a random variable is the average level of information.
The principle is that the more redundant data being sent, the lower the entropy
value so the compression is easier. Two types of compression algorithms can be
used: Dictionary based (Lempel-Ziv-Welch algorithm) and Model based (Huffman
Coding). If the distribution of the traffic belongs to certain class the entropy is
lower. If the entropy value is larger, the traffic belongs to many classes. [76]

The machine learning methods are used for legitimate and malicious attack dif-
ferentiation. Machine learning methods are divided to Supervised learning meth-
ods, Unsupervised learning methods and Semi-supervised learning methods. The
supervised methods are used for classification or categorization and prediction (re-
gression). It is based on two datasets – training dataset and testing dataset. The
training dataset consists of inputs and correct outputs to learn the model, sometimes
called learning with teacher. The accuracy of trained model is measured by error
function. The classification problem assigns testing data to limiting categories. On
the other side regression tries to find connection between dependent and independent
variable and predict future values. [78]

Whereas the unsupervised methods are used for clustering. They try to discover
hidden unknown patterns among unlabeled data. Process of learning is without ex-
ternal teacher. Semi-supervised methods are combination of the previous. Examples

74



of the supervised learning methods are Naïve Bayes, Decision Trees, Support Vector
Machines, K-nearest Neighbors, Linear Regression or Neural Networks (Multilayer
networks). Examples of the unsupervised learning methods are K-means Cluster-
ing, certain types of Neural Networks (Hopfield networks, Helmholtz network or
Autoencoder networks). [79]

75





7 Machine Learning SDA Detection
Machine learning (ML) is part of artificial intelligence that is used to create analyti-
cal models based on sample data. The idea of ML is that the system can learn from
data or identify important patterns or parameters without being explicitly told. It
can solve various problems where no algorithms are presented or only inefficient.
ML contains various approaches divided into following categories: [80]

• Supervised learning – Data that contains valid inputs and desired outputs
(classified and labelled) are called training data. They are used to create
mathematical model that is through iterative approach created and can be
used to predict the output of testing data (separated from training data).
Usually performance is measured by performance methods. Basic types of
supervised learning methods are classification and regression.
Classification is used to create or distinct categories. Classification tries to
create boundary between marked data, e. g. BENIGN vs ATTACK traffic. It can
not be strictly binary classification. ATTACK category may contain multiple
attack types.
Regression is used when outputs have numerical values in some interval. It
can be used for predicting future values or estimate output according the input
(depending) values.
Examples of supervised learning algorithms are Logistic regression, Support-
vector machine, Decision Trees and Random Forests.

• Unsupervised learning (Clustering) – Take a set of data that does not contain
classification. It contains only input data and the result of a process is to find
structure in that data. Algorithms create clusters according various features
and observers their associations. It is often used in Anomaly detection and
Examples of unsupervised learning algorithms are Neural networks or K-
means.

• Reinforcement learning – Is based on multiple simulation and rewarding func-
tion where the goal is to maximize a reward. Also for wrong or faulty behavior
can be assigned a penalty. It does not need labelled dataset.

7.1 ML methods

ML methods as described above are algorithms solving some learning challenges.
With supervised learning it is needed to have training dataset and testing dataset
to correct learning process. Then third dataset can be proposed to make predic-
tion for validation dataset. It should be completely new data. On the other hand

77



unsupervised learning requires only training dataset. It is faster than supervised
learning. Reinforcement learning is not taken in mind in this thesis.

7.1.1 Decision Trees

It is an algorithm of supervised learning. It is one of the most popular classifiers.
It uses trees where nodes contains decision statement and leaves contain result of
the decision. It can be value, label, category or class. It gives the unstructured big
data some meaning and structure. But this method is prone to overfit for complex
trees.[81]

7.1.2 Random Forest

It is an algorithm of supervised learning. It can be used for various tasks that
requires using multiple decision trees at training phase. It can be used for classifi-
cation where final class is determined by the majority of single decision trees. Or it
can be used for regression prediction of mean or average values in trees. It prevents
training from overfitting. [82]

7.2 ML performance methods
The most important method of ML classification is confusion matrix also known
as error matrix. It provides metric for evaluation performance of ML model. In
this thesis confusion matrix is used to evaluate the performance of classification
algorithm of supervised learning. Normal benign flow is marked as 𝑁 and attack
flow is marked as 𝐴.

Type Network Activity Detection Classification Result
True Negative (𝑇𝑁) Normal network traffic BENIGN (0)
True Positive (𝑇𝑃 ) Attack traffic ATTACK (1)
False Negative (𝐹𝑁) Normal network traffic ATTACK (1)
False Positive (𝐹𝑃 ) Attack traffic BENIGN (0)

Tab. 7.1: Results of detection – confusion matrix

Following classification metrics are used to determine success of classification:
• Accuracy (𝐴𝐶𝐶) – refers to the number of correct detection over all detection

made by classification or ML model. [83]

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁

𝐴 + 𝑁
= 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(7.1)

78



• Precision (𝑃𝑅) – refers to true classification of an attack. It says about the
detection method how precise is attack prediction in comparison with all clas-
sified data as an attack. [84]

𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7.2)

• Sensitivity (𝑆𝑁) – refers to true classification of an attack. It says about the
detection method how well it can detect an attack. [85]

𝑆𝑁 = 𝑇𝑃

𝐴
= 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7.3)

• F1 Score (𝐹1) – represents a harmonic mean of precision and sensitivity. It
can be used to measure detection method accuracy. [83]

𝐹1 = 𝑃𝑅 + 𝑆𝑁

2 = 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(7.4)

7.3 ML Implementation
Implementation of ML consists of following steps. First step is to collect data
that we want to process. This step is crucial. Without quality data there is no
machine learning reflecting the given problem. More quality data, more accurate is
machine learning model. [86] Next step is preprocessing that prepares the data
for training. In this step data are cleaned, not important columns are dropped
and all non-numerical data are converted to standardized numerical format. Next
part is feature selection that is process of selecting important features or columns
for further use in machine learning model. Unimportant feature are dropped. In
this part it is decided which ML strategy will be used. Next part is machine
learning model training where training data are used to train ML model. Next
part is evaluating ML model, tuning and selection which uses ML performance
methods or metrics to evaluate performance of ML model and tries different model
parameters to select best ML model.

Two approaches can be taken according to fig. 7.1. Different SDAs and benign
traffic can be classified into multiple categories. Or all Slow DoS Attacks and benign
traffic can be classified using binary classification. In first example feature extraction
can be done on each file separately or on one merged file. Next step of implementing
of ML algorithm is common for both paths. In this thesis second approch has been
chosen.

79



Data preprocessing

Different file for each DoS

Feature extraction for each 
attack

S
lo

w
 R

ea
d

S
lo

w
 D

ro
p

S
lo

w
 N

ex
t

S
lo

w
 

C
us

to
m

Implementing ML algorithm

Results

Label entire dataset with 
“Attack” and “Normal”

Feature extraction

Implementing ML algorithm

Fig. 7.1: Machine learning detection implementation

Modules

ML section is implemented in Jupyter Notebook web-based interactive environment
using python3. Other used libraries are:

• numpy – is a library that provides tools and support for large vectors, arrays
and matrices with mathematical functions to operate them.

• matplotlib – is a library that provides an API to plot graphs.
• scikit-learn – is a open-source machine learning library for python. It

provides implementation of various machine learning algorithms and tools.
• pandas – is a library that provides tools for data analysis and manipulation.
• seaborn – is a statistical data visualization library based on matplotlib.
• pickle – is a python module that implements tools for serializing and de-

serializing python objects. Python objects are converted to byte stream for
saving and reverse operation for loading. It can be used for ML model saving.

7.3.1 Data creating and collecting

In sec. 5.2.1 .csv file of captured traffic was created using Python CICFlowMeter.
CICIDS2017 has been chosen as an original dataset. From that dataset generated
and labelled flow .csv files has been used. Custom generated .csv files and from
dataset has different feature columns. As the goal of this section is to create single

80



file with original and custom data, different structure is an issue. It is done using
transfer map listed in lst. 7.3.1.

column_map = {
'Flow ID':'Flow ID',
' Source IP':'src_ip',
' Source Port':'src_port',
' Destination IP':'dst_ip',
' Destination Port':'dst_port',
' Protocol':'protocol',
' Timestamp':'timestamp',
' Flow Duration':'flow_duration',
' Total Fwd Packets':'tot_fwd_pkts',
' Total Backward Packets':'tot_bwd_pkts',
'Total Length of Fwd Packets':'totlen_fwd_pkts',
' Total Length of Bwd Packets':'totlen_bwd_pkts'
# ...

}

Listing 7.1: Transfer map between original and custom files

Custom dataset has missing 'Flow ID' column. Custom function that creates
flow identifier is created.

def flow_id(df,index,row):
return df.loc[index]['dst_ip']+'-'+df.loc[index]['src_ip']\
+'-'+str(df.loc[index]['dst_port'])+'-'\
+str(df.loc[index]['protocol'])

Listing 7.2: Flow ID generator function

For each custom file redundant columns 'src_mac' and 'dst_mac' are deleted.
Then columns of custom files are renamed and redistributed according to original
files. Then original files contain redundant column ' Fwd Header Length.1' that
is dropped subsequently.

In next part single supervised.csv file is created. It contains all original files
and 20 copies of each of custom attack files.

81



7.3.2 Preprocessing

In this section data are prepared and cleaned for next processing. supervised.csv
file contains 3178805 rows of data and 85 columns. In this part data that has no
Flow ID or Label are dropped. It is 288602 rows of data. Then data that has not
numerical values are processed:

• inf, -inf, nan records are replaced with −1.
• type('4') == str numerical records in other types are converted to integers

using pd.to_numeric function.
• String values that represents Flow ID, Source and Destination IP and Times-

tamp are replaced using LabelEncoder(). [87] It provides functionality to
replace data features that contains other values than numerical data with in-
tegers.

In the next part there is a need to check the ration between normal traffic records
and attack traffic records as well focus on SDAs has to be taken in mind. Ratio
between normal (benign) traffic to normal traffic is 0.7865. Otherwise ration between
complete attack traffic to normal traffic is 0.2135. Ratio between selected SDAs and
normal traffic is 0.0205 and attack traffic is 0.0963.

Fig. 7.2: Distribution of individual attacks

As the ratio should be balanced (aprox. 30% of attack traffic and aprox. 70% nor-
mal traffic) and SDAs does not require that condition, it is needed to crate balanced
dataset supervised_sda_balanced.csv. Maximum number records of normal traf-
fic satisfying above distribution is 138693 and number of Slow DoS records is 59440.

82



Probability to choose normal records labelled as BENIGN is 0.05278.
Final balanced dataset contains following data:

Flow label Number of records Numerical labels
BENIGN 119845 0
SLOW_READ 49420 1 (or 1)
SLOW_DROP 7020 1 (or 2)
SLOW_NEXT 3000 1 (or 3)

Tab. 7.2: supervised_sda_balanced.csv dataset record distribution with numer-
ical labeles

Next step is to prepare data for training. It is needed to replace string labels
of records with numerical values. For that there is needed a map between label
and numbers. According tab. 7.2 it depends what type of labeling is chosen. If
binary labeling is presented (BENIGN == 0 and SDA == 1) binary classifier will be
used. Otherwise multiple classes are presented. Another step is to drop columns that
should not influence result. Flow ID with columns that are forming flow identifier can
be dropped as the shape of the flow traffic is more important. Following column are
dropped Flow ID, Source IP, Source Port, Destination IP, Destination Port,
Protocol and Timestamp.

7.3.3 Feature selection

Feature selection is a process of selecting important features or columns from dataset
that are used for machine learning model construction. It provides several benefits
for machine learning. It simplifies models, makes model training times shorter or
reduce the dimension of the dataset. It tries to find redundant and not important
data between features. [88]

Simple algorithm is to test each possible subset of features against training
dataset and tries to minimize error rate. So for that it is crucial to select correct
evaluation metric that is divided into following categories:

• Wrappers – create models for every combination of subset from features and
select features that result is best according to performance metric. Use specific
machine learning algorithm to find optimal features. It takes a the most of
computational time to find optimal features. It has downside of overfitting.
Examples methods are Forward Selection, Backward Selection, Step-
wise selection or Recursive Feature Elimination (RFE).

• Filters – use statistical methods to evaluate relationship between features and
target variable (e. g. Label). These methods are faster in time complexity.

83



They are not prone to overfit. Examples methods are Correlation, Chi-
Square test, ANOVA.

• Embedded methods – are methods that performs feature selection during ma-
chine model construction process. Feature selection is done by observing each
iteration of model training phase. These methods are faster that wrappers.
These methods are used to solver overfitting using coefficient penalization.
Example methods are LASSO, Elastic Net or Ridge Regression.

First step is to create matrix 𝑋 which contains all data without labels and vector
𝑦 that contains only label values. Matrix is divided using train_test_split()
function into two submatrices in ratio (70:30) for training and testing. Vector is
divided as well. Next step is to create Decision tree using DecisionTreeClassifier.
Simple decision tree is created from 𝑋_𝑡𝑟𝑎𝑖𝑛 and 𝑦_𝑡𝑟𝑎𝑖𝑛 sets with maximum of 5
leaf nodes. To avoid overfitting it is crucial to validate model against testing data
that are separated from training data. It done using cross_val_score() evaluation
function with KFold cross-validator. [89]

The result is trained decision tree on given features. It is visualized in fig. 7.3.
It provides most important features and values as a decision statement which de-
termines final class of flow classification. Depending the index of the leaf value it
sorts classified flow to two classes. Index 0 classifies to normal flow, otherwise index
1 classifies to SDA flow.

Using confusion matrix the result of classification can be visualized. It correlates
with tab. 7.1 that determines if the classification was successful or not. Each row
determines real data in actual class, while data in rows represents instances in a
predicted class.

Following columns (features) has been choosen according the feature importance
from decision tree.

Feature name Importance value
FIN Flag Count 0.94592
Fwd Packet Length Mean 0.05404
Total Fwd Packets 0.00003353
Bwd IAT Min 0.00000239415

Tab. 7.3: Important features selected using decision tree

84



FIN Flag Count <= 0.5
gini = 0.443

samples = 125783
value = [84201, 41582]

gini = 0.0
samples = 82639
value = [82639, 0]

True

 Fwd Packet Length Mean <= 34.0
gini = 0.07

samples = 43144
value = [1562, 41582]

False

gini = 0.0
samples = 1561
value = [1561, 0]

 Bwd IAT Min <= 1324.5
gini = 0.0

samples = 41583
value = [1, 41582]

gini = 0.0
samples = 41568

value = [0, 41568]

 Total Fwd Packets <= 11.0
gini = 0.124

samples = 15
value = [1, 14]

gini = 0.0
samples = 1

value = [1, 0]

gini = 0.0
samples = 14

value = [0, 14]

Fig. 7.3: Decision tree on selected features for Slow DoS attacks

Fig. 7.4: Confusion matrix of decision tree classification

85



7.3.4 Machine learning model training

Next part is to combine multiple decision trees into random forest classifier machine
learning model using sub-samples of training set. The sub-sample size is defined by
max_samples parameter that stands for the number of samples that are drawn from
𝑋_𝑡𝑟𝑎𝑖𝑛 set to train each decision tree. Number of tress in the forest is determined
by n_estimators paramter. Default value is 100 decision trees.

Fig. 7.5: Important features for SDA selected using Random Forest

The most important feature is FIN Flag Count that correlates to decision tree
classification as the most important feature. Second parameter
Fwd Packet Length Mean is on the 13. place in random forest. Third parameter
Total Fwd Packets is on 21. place. Selected features for SDAs are in fig. 7.5. Con-
fusion matrix is the same as for decision tree. To find redundant feature, correlation
between columns in the dataset function corr() is used. Intersected values are not
selected for correlation. Correlation of columns show how dependent columns are on
each other. If the value of correlation coefficient is equal or close to 1 that column
are correlated and can be dropped. [90] Correlation matrix for SDAs is in fig. 7.6 as
a heat map.

Process of selecting correlated columns is following:
1. Create absolute value of correlated coefficients using abs() function.
2. Create upper triangular matrix of correlated coefficients using lst. 7.3.

upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape),\
k=1).astype(np.bool))

Listing 7.3: Process of creating upper trinagular matrix

86



Fig. 7.6: SDA feature correlation heatmap

3. Select column that is in upper trinagular matrix and has correlation coefficient
bigger than 0.95.

Following columns are correlated and therefore dropped. Whenever building IDS
it can provide lead to what columns should be focused on. Also highly correlated
columns provides redundant information that is not needed for SDA detection.

[' Average Packet Size',' Packet Length Variance',' Packet Length Std',
' Subflow Bwd Bytes',' Bwd Packet Length Mean',' Subflow Bwd Packets',
' Avg Bwd Segment Size',' Total Backward Packets',' Max Packet Length',
'Bwd Packet Length Max',' Total Fwd Packets','Subflow Fwd Packets',
'Total Length of Fwd Packets',' Avg Fwd Segment Size',
' Fwd Packet Length Mean']

Listing 7.4: Dropped correlated columns of SDA features

The final correlation heatmap is in fig. 7.7.

87



Fig. 7.7: SDA feature correlation heatmap after optimization

7.3.5 ML evaluating, selecting parametets, tunning and saving

To make the random forest classifier more precise it is needed to find correct pa-
rameters. It can be done using the hyper-parameter tuning methods. These search
all parameters combinations (GridSearchCV) or random samples from parameter
spaces (RandomizedSearchCV) to find best cross validation score. [91] As random
forest classifier selected most important features and finds correlated column it is
not needed to find better setting of random forest classifier.

Metric Results
Accuracy 1.0
Precision 1.0
Sensitivity 1.0
F1 Score 1.0

Tab. 7.4: ML model metrics

Machine learning model can be serialized using pickle library and saved as .pkl
file. Size of machine learning model sda_ml_detection_model.pkl is 453 𝐾𝐵.

88



Conclusion
This master thesis deals with the problematic of the Slow DoS Attacks. It proposes
some network communication parameters. Practical result of this thesis is python3
generator implementation of selected SDAs (Slow Read, Slow Drop and Slow Next)
and with possibility to create custom defined SDA. The next result is classification
of SDA using machine learning methods.

First chapter sums up basic TCP communication concepts. How to create TCP
socket, how to end TCP socket peacefully and violently. It compares closure meth-
ods depending the side (server and client). It contains description of application
layer communication and practical structure of HTTP protocol to be used later in
the generator. Following section describes communication measures and parameters
according the side of detection (client, server, network) that can be useful in IPS
or IDS creation process. Then there is focus on how the network flow is created.
Two types of flow identifiers are proposed. In following subsections there are flow
parameters discussed. General parameters describes standard network behavior,
Inter-flow parameters describe flow information and Intra-flow parameters show in-
formation about certain packets. Volume parameters size or rate information, time
parameters reflect time division of SDAs introduced in the next chapter. Feature
and TCP Analysis parameters describe information about the count of the TCP
and TCP Analysis flags inside the flow. Last category of parameters are application
layer parameters that abstract from the TCP flow.

In the second chapter there is DoS specification explained with division to DoS
and DDoS. DoS attacks are categorized to Flood-based DoS attacks and Exploit-
based attacks. Then the SDAs are proposed as part or subcategory of the DoS
Attacks. This thesis summarizes attack categorizes of SDAs and examples of such
attacks. Then there is a time division according the phases of TCP communication
with HTTP protocol as an application layer. In the last part of the second chapter
there is a matching table between SDAs attack types and timeout parameters.

Third chapter describes selected SDAs (Slow Read, Slow Drop and Slow Next).
For each attack communication schema is shown with important parameters defining
given attack. Next part sums up methods of generation of given attack with custom
generator settings.

In the fourth chapter generator of SDAs is proposed written in python3 script
language. At first python modules modeling HTTP payload are described where
socket library has been chosen and described. Then TCP connection and attack
closure possibilities were described with appropriate TCP flags. In the next part
multiple connection handling and methods of concurrent execution (asynchronous
vs multithreading) is described. In the next part very generator with modules,

89



arguments and structure is proposed. The behavior and modes of custom generator
are described. In the last part logging option is discussed.

Fifth chapter describes testing environment and ways to create dataset. In the
first part web server settings is describes with default Apache web server imple-
mentation and modules. Then another possible modules that can be activated or
imported to protect web server against various attacks are enclosed. Next part deals
with possibilities of real time packet capture against available dataset that should
be used. In the next section algorithm of creating traffic flow is described.

In the sixth chapter various approaches of detection are described. Two main
categories are signature-based detection and anomaly-based detection. Parame-
ters of signature-based detection are described for SDAs. Then anomaly-based and
behavior-based detection is discussed.

Seventh chapter deals with machine learning detection of SDAs. Three main
categories of ML detection are described: supervised learning, unsupervised learn-
ing and reinforcement learning. In the next section decision trees and random forest
supervised methods are described with performance methods for evaluation of suc-
cess of these methods. Next part deals with implementation of machine learning.
First part of ml is data crating and collecting. Then preprocessing of the data is
described. In the next part feature selection is proposed for a single decision tree.
Next part describes machine learning model training and the last part of this thesis
deals with ml evaluation, parameter selection, tuning and ml model saving.

One of the two main goals of this thesis was to implement SDA generator that
can create custom defined attacks as well as three specified SDAs (Examples are in
sec. C.4).

Second main goal was detection of modern SDAs. At first division of detection
methods to signature and anomaly-based detection was introduced. Theoretical
signature for selected SDAs was proposed as a json schema. The result of anomaly-
based detection is the supervised machine learning model (random forest) based
on decision trees suitable for offline detection of selected SDAs with 100% success
according measured parameters (Accuracy, Precision, Sensitivity and F1 Score).
With combination of network flow creating script it can be used in IDS.

For the future work, generator could be extended by application layer fuzzer as
well as module and socket function tests could be created. Flow meter script could
implement features introduced in this thesis (esp. TCP Analysis features). Machine
learning model can be extended by methods of unsupervised learning for important
feature selection using K-means algorithm or Autoencoder networks.

90



Bibliography
[1] Enrico Cambiaso, Gianluca Papaleo, Giovanni Chiola, and Maurizio Aiello.

Slow dos attacks: definition and categorisation. International Journal of Trust
Management in Computing and Communications, 1:300–319, 10 2013. doi:
10.1504/IJTMCC.2013.056440.

[2] Sergey Shekyan. Slowhttptest (1) - linux man pages. [online]. [cit. 5. 12. 2021].
URL: https://bit.ly/3DKyFsF.

[3] Apache evasive maneuvers module. [online]. [cit. 13. 5. 2022]. URL: https:
//github.com/jzdziarski/mod_evasive.

[4] Debbie Walkowski. What is the cia triad ?, 2019. URL: https://bit.ly/
3DPNjyE.

[5] Transport control protocol. [online], 2001-. [cit. 21. 3. 2022]. URL: https:
//en.wikipedia.org/wiki/Transmission_Control_Protocol.

[6] W. Richard Stevens. TCP/IP illustrated. Addison-Wesley Publishing Company,
Reading, 1994.

[7] Rashmi Bhardwaj. What is tcp fin packet? [online]. [cit. 21. 3. 2022]. URL:
https://ipwithease.com/what-is-tcp-fin-packet/.

[8] Rashmi Bhardwaj. Tcp rst flag. [online]. [cit. 21. 3. 2022]. URL: https://
ipwithease.com/tcp-rst-flag/.

[9] Charles Kozierok. The tcp/ip guide. [online]. [cit. 3. 4. 2022]. URL: http://
www.tcpipguide.com/free/t_HTTPEntitiesandInternetMediaTypes.htm.

[10] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys,
Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616, June 1999. URL: https://www.rfc-editor.org/info/rfc2616,
doi:10.17487/RFC2616.

[11] Flow network. [online], 2001-. [cit. 4. 4. 2022]. URL: https://en.wikipedia.
org/wiki/Flow_network.

[12] Protocol numbers. [online]. [cit. 17. 4. 2022]. URL: https://www.iana.org/
assignments/protocol-numbers/protocol-numbers.xhtml.

[13] Tony Fortunato. Network analysis: Tcp window size. [online].
[cit. 5. 4. 2022]. URL: https://www.networkcomputing.com/data-centers/
network-analysis-tcp-window-size.

91

https://doi.org/10.1504/IJTMCC.2013.056440
https://doi.org/10.1504/IJTMCC.2013.056440
https://bit.ly/3DKyFsF
https://github.com/jzdziarski/mod_evasive
https://github.com/jzdziarski/mod_evasive
https://bit.ly/3DPNjyE
https://bit.ly/3DPNjyE
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://ipwithease.com/what-is-tcp-fin-packet/
https://ipwithease.com/tcp-rst-flag/
https://ipwithease.com/tcp-rst-flag/
http://www.tcpipguide.com/free/t_HTTPEntitiesandInternetMediaTypes.htm
http://www.tcpipguide.com/free/t_HTTPEntitiesandInternetMediaTypes.htm
https://www.rfc-editor.org/info/rfc2616
https://doi.org/10.17487/RFC2616
https://en.wikipedia.org/wiki/Flow_network
https://en.wikipedia.org/wiki/Flow_network
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.networkcomputing.com/data-centers/network-analysis-tcp-window-size
https://www.networkcomputing.com/data-centers/network-analysis-tcp-window-size


[14] Maximum segment size. [online], 2001-. [cit. 5. 4. 2022]. URL: https://en.
wikipedia.org/wiki/Maximum_segment_size.

[15] Tcp analysis. [online]. [cit. 2. 5. 2022]. URL: shorturl.at/ixyX3.

[16] Tcp analyze sequence numbers. [online]. [cit. 3. 5. 2022]. URL: shorturl.at/
svGUW.

[17] Justin Baker. Tcp rtos: Retransmission timeouts & application performance
degradation. [online]. [cit. 3. 5. 2022]. URL: shorturl.at/vyE27.

[18] Abi Tyas Tunggal. What is an attack vector? 16 common attack vectors
in 2022. [online]. [cit. 9. 3. 2022]. URL: https://www.upguard.com/blog/
attack-vector.

[19] Att&ck matrix for enterprise. [online]. [cit. 9. 3. 2022]. URL: https://attack.
mitre.org/.

[20] What is a ddos attack ? [online]. [cit. 25. 11. 2021]. URL: https://bit.ly/
3ELORuV.

[21] Russia must be stopped! help ukraine win! [online]. [cit. 8. 3. 2022]. URL:
https://stop-russian-desinformation.near.page/.

[22] Denial-of-service attack. [online]. [cit. 22. 11. 2021]. URL: https://bit.ly/
3m1yfI7.

[23] Classification of dos attacks. [online]. [cit. 9. 3. 2022]. URL: https://www.
incibe-cert.es/en/blog/classification-dos-attacks.

[24] Denial-of-service attack. [online]. [cit. 9. 3. 2022]. URL: https://en.
wikipedia.org/wiki/Denial-of-service_attack.

[25] Enrico Cambiaso, Gianluca Papaleo, Maurizio Aiello, and Giovanni Chiola.
Designing and modeling the slow next dos attack. 06 2015. doi:10.1007/
978-3-319-19713-5_22.

[26] Xiao ming LIU, Gong CHENG, Qi LI, and Miao ZHANG. A comparative
study on flood dos and low-rate dos attacks. The Journal of China Universities
of Posts and Telecommunications, 19:116–121, 2012. URL: https://bit.ly/
3IJuvEY, doi:10.1016/S1005-8885(11)60458-5.

[27] Enrico Cambiaso, Gianluca Papaleo, and Maurizio Aiello. Taxonomy of
slow dos attacks to web applications. volume 335, 10 2012. doi:10.1007/
978-3-642-34135-9_20.

92

https://en.wikipedia.org/wiki/Maximum_segment_size
https://en.wikipedia.org/wiki/Maximum_segment_size
shorturl.at/ixyX3
shorturl.at/svGUW
shorturl.at/svGUW
shorturl.at/vyE27
https://www.upguard.com/blog/attack-vector
https://www.upguard.com/blog/attack-vector
https://attack.mitre.org/
https://attack.mitre.org/
https://bit.ly/3ELORuV
https://bit.ly/3ELORuV
https://stop-russian-desinformation.near.page/
https://bit.ly/3m1yfI7
https://bit.ly/3m1yfI7
https://www.incibe-cert.es/en/blog/classification-dos-attacks
https://www.incibe-cert.es/en/blog/classification-dos-attacks
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://doi.org/10.1007/978-3-319-19713-5_22
https://doi.org/10.1007/978-3-319-19713-5_22
https://bit.ly/3IJuvEY
https://bit.ly/3IJuvEY
https://doi.org/10.1016/S1005-8885(11)60458-5
https://doi.org/10.1007/978-3-642-34135-9_20
https://doi.org/10.1007/978-3-642-34135-9_20


[28] Slowloris. [online]. [cit. 1. 12. 2021]. URL: https://bit.ly/3DSfay6.

[29] Vasilios A. Siris and Fotini Papagalou. Application of anomaly detection algo-
rithms for detecting syn flooding attacks. In GLOBECOM, 2004.

[30] Enrico Cambiaso, Giovanni Chiola, and Maurizio Aiello. Introducing the
slowdrop attack. Computer Networks, 150:234–249, 2019. URL: https:
//bit.ly/31QsuGk, doi:10.1016/j.comnet.2019.01.007.

[31] Enrico Cambiaso, Maurizio Aiello, Maurizio Mongelli, and Ivan Vaccari. De-
tection and classification of slow dos attacks targeting network servers. pages
1–7, 08 2020. doi:10.1145/3407023.3409198.

[32] Apache mpm common directives. [online]. [cit. 7. 12. 2021]. URL: https://
bit.ly/3m2cuYJ.

[33] Ryan Frants. Apache tcp backlog. [online]. [cit. 7. 12. 2021]. URL: https:
//bit.ly/31Ltzzu.

[34] David Borman, Robert T. Braden, Van Jacobson, and Richard Scheffenegger.
TCP Extensions for High Performance. RFC 7323, September 2014. URL:
https://rfc-editor.org/rfc/rfc7323.txt, doi:10.17487/RFC7323.

[35] A comparative analysis of tcp tahoe, reno, new-reno, sack and vegas. [online].
[cit. 7. 12. 2021]. URL: https://bit.ly/3dJEMTm.

[36] Iptables(8) - linux man page. [online]. [cit. 9. 5. 2022]. URL: https://linux.
die.net/man/8/iptables.

[37] How to reset iptables to the default settings. [online].
[cit. 8. 5. 2022]. URL: https://kerneltalks.com/virtualization/
how-to-reset-iptables-to-default-settings/.

[38] Pavel Mazánek. Modelování a detekce útoku slowdrop. [online], 2020.
[cit. 7. 12. 2021]. URL: http://hdl.handle.net/11012/189192.

[39] Requests: Http for humans. [online]. [cit. 21. 3. 2022]. URL: https://docs.
python-requests.org/en/latest/.

[40] Urllib3 1.26.9. [online]. [cit. 23. 4. 2022]. URL: https://pypi.org/project/
urllib3/.

[41] Socket – low-level networking interface. [online]. [cit. 6. 5. 2022]. URL: https:
//docs.python.org/3/library/socket.html.

93

https://bit.ly/3DSfay6
https://bit.ly/31QsuGk
https://bit.ly/31QsuGk
https://doi.org/10.1016/j.comnet.2019.01.007
https://doi.org/10.1145/3407023.3409198
https://bit.ly/3m2cuYJ
https://bit.ly/3m2cuYJ
https://bit.ly/31Ltzzu
https://bit.ly/31Ltzzu
https://rfc-editor.org/rfc/rfc7323.txt
https://doi.org/10.17487/RFC7323
https://bit.ly/3dJEMTm
https://linux.die.net/man/8/iptables
https://linux.die.net/man/8/iptables
https://kerneltalks.com/virtualization/how-to-reset-iptables-to-default-settings/
https://kerneltalks.com/virtualization/how-to-reset-iptables-to-default-settings/
http://hdl.handle.net/11012/189192
https://docs.python-requests.org/en/latest/
https://docs.python-requests.org/en/latest/
https://pypi.org/project/urllib3/
https://pypi.org/project/urllib3/
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html


[42] Vipin Jain. What is the difference between concurrency, parallelism and asyn-
chronous methods? [online]. [cit. 29. 3. 2022]. URL: shorturl.at/jwNPU.

[43] Asyncio (superseded by async page). [online]. [cit. 29. 3. 2022]. URL: https:
//cheat.readthedocs.io/en/latest/python/asyncio.html.

[44] Globalinterpreterlock. [online]. [cit. 30. 3. 2022]. URL: https://wiki.python.
org/moin/GlobalInterpreterLock.

[45] Giorgos Myrianthous. Multi-threading and multi-processing in python.
[online]. [cit. 30. 3. 2022]. URL: https://towardsdatascience.com/
multithreading-multiprocessing-python-180d0975ab29.

[46] Threading — thread-based parallelism. [online]. [cit. 30. 3. 2022]. URL: https:
//docs.python.org/3/library/threading.html.

[47] Jim Anderson. An intro to threading in python. [online]. [cit. 31. 3. 2022]. URL:
https://realpython.com/intro-to-python-threading/.

[48] Threading – thread-based parallelism. [online]. [cit. 8. 5. 2022]. URL: https:
//docs.python.org/3/library/threading.html.

[49] Time – time access and conversions. [online]. [cit. 8. 5. 2022]. URL: https:
//docs.python.org/3/library/time.html.

[50] Logging – logging facility for python. [online]. [cit. 8. 5. 2022]. URL: https:
//docs.python.org/3/library/logging.html.

[51] Argparse – parser for command-line options, arguments and sub-commands.
[online]. [cit. 8. 5. 2022]. URL: https://docs.python.org/3/library/
argparse.html.

[52] Random – generate pseudo-random number. [online]. [cit. 9. 5. 2022]. URL:
https://docs.python.org/3/library/random.html.

[53] Os – miscellaneous operating system interfaces. [online]. [cit. 8. 5. 2022]. URL:
https://docs.python.org/3/library/os.html.

[54] Syslog. [online], 2001-. [cit. 25. 4. 2022]. URL: https://en.wikipedia.org/
wiki/Syslog.

[55] Apache http server version 2.4. [online]. [cit. 5. 12. 2021]. URL: https://bit.
ly/3dNzaYk.

94

shorturl.at/jwNPU
https://cheat.readthedocs.io/en/latest/python/asyncio.html
https://cheat.readthedocs.io/en/latest/python/asyncio.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://towardsdatascience.com/multithreading-multiprocessing-python-180d0975ab29
https://towardsdatascience.com/multithreading-multiprocessing-python-180d0975ab29
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://realpython.com/intro-to-python-threading/
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/os.html
https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/Syslog
https://bit.ly/3dNzaYk
https://bit.ly/3dNzaYk


[56] Jason Potter. Apache performance tuning: Mpm directives. [online].
[cit. 6. 12. 2021]. URL: https://bit.ly/3pTPTik.

[57] Apachectl - apache http server control interface. [online]. [cit. 6. 12. 2021]. URL:
https://bit.ly/3rZcyMP.

[58] Securing apache 2 with modsecurity. [online]. [cit. 6. 12. 2021]. URL: https:
//bit.ly/3yodStW.

[59] Apache module mod_reqtimeout. [online]. [cit. 6. 12. 2021]. URL: https://
bit.ly/3m2WB4t.

[60] Apache module mod_ratelimit. [online]. [cit. 13. 5. 2022]. URL: shorturl.at/
bqBX1.

[61] Defend against dos & ddos on apache with mod_evasive. [online].
[cit. 13. 5. 2022]. URL: https://phoenixnap.com/kb/apache-mod-evasive.

[62] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung,
D. Weber, S.E. Webster, D. Wyschogrod, R.K. Cunningham, and M.A. Ziss-
man. Evaluating intrusion detection systems. Proceedings DARPA Informa-
tion Survivability Conference and Exposition. DISCEX’00, pages 12–26, 1999.
[cit. 4. 4. 2022]. doi:10.1109/DISCEX.2000.821506.

[63] Nsl-kdd dataset. [online]. [cit. 4. 4. 2022]. URL: https://www.unb.ca/cic/
datasets/nsl.html.

[64] Datasets. [online]. [cit. 19. 5. 2022]. URL: https://www.unb.ca/cic/
datasets/index.html.

[65] Intrusion detection evaluation dataset (icxids2012). [online]. [cit. 4. 4. 2022].
URL: https://www.unb.ca/cic/datasets/ids.html.

[66] Cic dos dataset (2017). [online]. [cit. 13. 5. 2022]. URL: https://www.unb.ca/
cic/datasets/dos-dataset.html.

[67] Cicflowmeter. [online]. [cit. 14. 5. 2022]. URL: https://github.com/
ahlashkari/CICFlowMeter.

[68] Intrusion detection evaluation dataset (cic-ids2017). [online]. [cit. 13. 5. 2022].
URL: https://www.unb.ca/cic/datasets/ids-2017.html.

[69] Ddos evaluation dataset (cic-ddos2019). [online]. [cit. 13. 5. 2022]. URL: https:
//www.unb.ca/cic/datasets/ddos-2019.html.

95

https://bit.ly/3pTPTik
https://bit.ly/3rZcyMP
https://bit.ly/3yodStW
https://bit.ly/3yodStW
https://bit.ly/3m2WB4t
https://bit.ly/3m2WB4t
shorturl.at/bqBX1
shorturl.at/bqBX1
https://phoenixnap.com/kb/apache-mod-evasive
https://doi.org/10.1109/DISCEX.2000.821506
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/dos-dataset.html
https://www.unb.ca/cic/datasets/dos-dataset.html
https://github.com/ahlashkari/CICFlowMeter
https://github.com/ahlashkari/CICFlowMeter
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html


[70] Cicflowmeter (formerly iscxflowmeter). [online]. [cit. 15. 5. 2022]. URL: https:
//www.unb.ca/cic/research/applications.html#CICFlowMeter.

[71] Python cicflowmeter. [online]. [cit. 15. 5. 2022]. URL: https://github.com/
datthinh1801/cicflowmeter.

[72] Bricata. Layers of cybersecurity: Signature detection vs. network behavioral
analysis. [online]. [cit. 12. 12. 2021]. URL: https://bit.ly/31WUuYC.

[73] What is a intrusion detection system? [online]. [cit. 12. 12. 2021]. URL: https:
//bit.ly/3dNz96I.

[74] What are signatures and how does signature-based detection work? [online].
[cit. 16. 5. 2022]. URL: https://home.sophos.com/en-us/security-news/
2020/what-is-a-signature.

[75] Ids and ips characteristics. [online]. [cit. 19. 4. 2022]. URL: https://
contenthub.netacad.com/netsec/11.1.4.

[76] Christian Callegari. Statistical approaches for network anomaly detection. [on-
line]. [cit. 13. 12. 2021]. URL: https://bit.ly/3oY2y4F.

[77] Alberto Dainotti, Antonio Pescapè, and Giorgio Ventre. Wavelet-based detec-
tion of dos attacks. 11 2006. doi:10.1109/GLOCOM.2006.279.

[78] Supervised learning. [online]. [cit. 13. 12. 2021]. URL: https://ibm.co/
3m0Y1w5.

[79] Unsupervised learning. [online]. [cit. 13. 12. 2021]. URL: https://ibm.co/
3GUY1pN.

[80] Machine learning. [online]. [cit. 16. 5. 2022]. URL: https://en.wikipedia.
org/wiki/Machine_learning.

[81] Decision tree learning. [online]. [cit. 17. 5. 2022]. URL: https://en.wikipedia.
org/wiki/Decision_tree_learning.

[82] Random forest. [online]. [cit. 17. 5. 2022]. URL: https://en.wikipedia.org/
wiki/Random_forest.

[83] Performance metrics for classification problems in machine learning. URL:
shorturl.at/fjBJ8.

[84] Precision and recall. [online], 2001-. [cit. 20. 4. 2022]. URL: https://en.
wikipedia.org/wiki/Precision_and_recall.

96

https://www.unb.ca/cic/research/applications.html#CICFlowMeter
https://www.unb.ca/cic/research/applications.html#CICFlowMeter
https://github.com/datthinh1801/cicflowmeter
https://github.com/datthinh1801/cicflowmeter
https://bit.ly/31WUuYC
https://bit.ly/3dNz96I
https://bit.ly/3dNz96I
https://home.sophos.com/en-us/security-news/2020/what-is-a-signature
https://home.sophos.com/en-us/security-news/2020/what-is-a-signature
https://contenthub.netacad.com/netsec/11.1.4
https://contenthub.netacad.com/netsec/11.1.4
https://bit.ly/3oY2y4F
https://doi.org/10.1109/GLOCOM.2006.279
https://ibm.co/3m0Y1w5
https://ibm.co/3m0Y1w5
https://ibm.co/3GUY1pN
https://ibm.co/3GUY1pN
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
shorturl.at/fjBJ8
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall


[85] Sensitivity and specificity. [online], 2001-. [cit. 20. 4. 2022]. URL: https://en.
wikipedia.org/wiki/Sensitivity_and_specificity.

[86] Matthew Mayo. Frameworks for approaching the machine learning pro-
cess. [online]. [cit. 16. 5. 2022]. URL: https://www.kdnuggets.com/2018/05/
general-approaches-machine-learning-process.html.

[87] How to convert string categorical variables into numerical variables using label
encoder in python. [online]. [cit. 17. 5. 2022]. URL: shorturl.at/czIY7.

[88] Feature selection. [online]. [cit. 17. 5. 2022]. URL: https://en.wikipedia.
org/wiki/Feature_selection.

[89] 3.1. cross-validation: evaluating estimator performance. [online].
[cit. 18. 5. 2022]. URL: https://scikit-learn.org/stable/modules/
cross_validation.html.

[90] Pandas.dataframe.corr. [online]. [cit. 18. 5. 2022]. URL: https://pandas.
pydata.org/docs/reference/api/pandas.DataFrame.corr.html.

[91] 3.2. tuning the hyper-parameters of an estimator. [online]. [cit. 18. 5. 2022].
URL: https://scikit-learn.org/stable/modules/grid_search.html.

97

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://www.kdnuggets.com/2018/05/general-approaches-machine-learning-process.html
https://www.kdnuggets.com/2018/05/general-approaches-machine-learning-process.html
shorturl.at/czIY7
https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Feature_selection
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
https://scikit-learn.org/stable/modules/grid_search.html




Symbols and abbreviations

BSD Berkeley Software Distribution
IoT Internet of Things
CIA Confidentiality, Integrity and Availability
IDS Intrusion Detection System
DoS Denial of Service
DNS Domain Name System
DHCP Dynamic Host Configuration protocol
ISO/OSI International Organization for Standardization – Open Systems Inter-

connection model
ISP Internet Service Provider
DDoS Distributed Denial-of-Service
MAC Medium Access Control
GIL Global Interpreter Lock
ICMP Internet Control Management Protocol
SDAs Slow DoS Attacks
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
QoE Quality of Experience
IAT Inter-arrival time
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ASCII American Standard Code for Information Interchange
SMTP Simple Mail Transfer Protocol
FTP File Transfer Protocol
I/O Input-output
SSH Secure Shell Protocol
MPM Multi-Processing Module
OWASP Open Web Application Security Project
API Application Programming Interface
URL Uniform Resource Locator
URI Uniform Resource Identifier
CWD Current Window
RTT Round Trip Time
IDS Intrusion Detection System
SIEM Security Information and Event Management
NIDS Network Intrusion Detection Systems
HIDS Host-based Intrusion Detection System

99



CVEs Common Vulnerabilities and Exposures systems
IPS Intrusion Prevention System
NTP Network Time Protocol
IANA Internet Assigned Numbers Authority
SVM Support Vector Machines
CNN Convolutional Neural Network
RTO Retransmission timeout
𝐺, 𝑉 , 𝐸 Graph 𝐺 = (𝑉, 𝐸), where 𝑉 are vertices and 𝐸 edges.
𝑁 Number of valid packets
𝐴 Number of attack packets

100



List of appendices

A Communication and flow parameters 103

B Examples of generated TCP traffic 111
B.1 HTTP traffic using different modules . . . . . . . . . . . . . . . . . . 111

B.1.1 HTTP GET . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 Connection closures . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C Slow DoS Attacks Generator 113
C.1 Generator flowcharts . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.2 Generator arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.3 UML diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.4 Examples of generated SDAs . . . . . . . . . . . . . . . . . . . . . . 116

D Examples of SDAs detection 119
D.1 Signature-based detection . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2 Slow Read Attack testing . . . . . . . . . . . . . . . . . . . . . . . . 121
D.3 Flow features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
D.4 AppDDos.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E Content of the electronic attachment 125

101





A Communication and flow parameters

Parameter Type Unit Description
Common communication parameters

IP_SRC ip − Source IP address
IP_DST ip − Destination IP address
TCP_DST int − Destination TCP port
PROTO int − Packet protocol number
TIMESTAMP time 𝑠 Packet or flow beginning timestamp
FLAG int − Type of event (flow)
ATTACK_TYPE string − Attack type if flagged as an attack

Inter-flow parameters
General parameters
FLOW_ID flow id − Flow identifier
EXT_FLOW_ID flow id − Extended Flow identifier
FLOW_DUR time 𝑠 Flow duration
FLOW_CONNS int − Number of connections inside the flow
FLOW_CONNS_R float 𝑐𝑛𝑠/𝑠 Connection flow rate inside the flow
FWD_RCV_R float − Ratio between sent and received packets

in the flow
Volume parameters
FWD_TOT_C int 𝑝𝑘𝑡𝑠 Total number of sent packets per flow
RCV_TOT_C int 𝑝𝑘𝑡𝑠 Total number of received packets per flow
FWD_FTH_TOT_R int 𝑝𝑘𝑡𝑠/𝑠 Total packet throughput in the forwarding flow
RCV_FTH_TOT_R int 𝑝𝑘𝑡𝑠/𝑠 Total packet throughput in the receiving flow
FWD_FTH_MAX_R float 𝑝𝑘𝑡𝑠/𝑠 Maximal packet throughput

in the forwarding flow
RCV_FTH_MAX_R float 𝑝𝑘𝑡𝑠/𝑠 Maximal packet throughput

in the receiving flow
FWD_FTH_MIN_R float 𝑝𝑘𝑡𝑠/𝑠 Minimal packet throughput

in the forwarding flow
RCV_FTH_MIN_R float 𝑝𝑘𝑡𝑠/𝑠 Minimal packet throughput

in the receiving flow
FWD_FTH_MEANR float 𝑝𝑘𝑡𝑠/𝑠 Mean packet throughput in the forwarding flow
RCV_FTH_MEANR float 𝑝𝑘𝑡𝑠/𝑠 Mean packet throughput in the receiving flow
FWD_FTH_STD_R float 𝑝𝑘𝑡𝑠/𝑠 Standard deviation of the packet throughput

in the forwarding flow
RCV_FTH_STD_R float 𝑝𝑘𝑡𝑠/𝑠 Standard deviation of the packet throughput

in the receiving flow
FWD_TOT_S int 𝐵 Total flow size of sent packets

103



RCV_TOT_S int 𝐵 Total flow size of received packets
FWD_MAX_S int 𝐵 Flow size of the biggest sent packet
FWD_MIN_S int 𝐵 Flow size of the smallest sent packet
FWD_MEAN_S float 𝐵 Flow mean size of the sent packets
FWD_STD_S float 𝐵 Flow standard deviation size of the sent packets
RCV_MAX_S int 𝐵 Flow size of the biggest received packet
RCV_MIN_S int 𝐵 Flow size of the smallest received packet
RCV_MEAN_S float 𝐵 Flow mean size of the received packets
RCV_STD_S float 𝐵 Flow standard deviation of the received packets
FWD_HDR_TOT_S int 𝐵 Flow total size of the sent headers length
RCV_HDR_TOT_S int 𝐵 Flow total size of the received headers length
FWD_HDR_MAX_S int 𝐵 Flow maximal size of the sent headers length
RCV_HDR_MAX_S int 𝐵 Flow maximal size of the received headers length
FWD_HDR_MIN_S int 𝐵 Flow minimal size of the sent headers length
RCV_HDR_MIN_S int 𝐵 Flow minimal size of the received headers length
FWD_HDR_MEANS float 𝐵 Flow mean size of the sent headers length
RCV_HDR_MEANS float 𝐵 Flow mean size of the received headers length
FWD_HDR_STD_S float 𝐵 Flow standard deviation size of the

sent headers lengths
RCV_HDR_STD_S float 𝐵 Flow standard deviation size of the

received headers lengths
FWD_INIT_S int 𝑝𝑘𝑡𝑠 Flow total number of sent packets

in the initial window
FWD_INIT_C int 𝐵 Flow size of sent packets

in the initial window
RCV_INIT_S int 𝑝𝑘𝑡𝑠 Flow total number of received packets

in the initial window
RCV_INIT_C int 𝐵 Flow size of received packets

in the initial window
FWD_TW_MAX_S int 𝐵 Forwarding flow maximal TCP window size value
RCV_TW_MAX_S int 𝐵 Receiving flow maximal TCP window size value
FWD_TW_MIN_S int 𝐵 Forwarding flow minimal TCP window size value
RCV_TW_MIN_S int 𝐵 Receiving flow minimal TCP window size value
FWD_TW_MEAN_S float 𝐵 Forwarding flow mean TCP window size value
RCV_TW_MEAN_S float 𝐵 Receiving flow mean TCP window size value
FWD_TW_STD_S float 𝐵 Forwarding flow standard deviation of

TCP window size value
RCV_TW_STD_S float 𝐵 Receiving flow standard deviation of

TCP window size value
FWD_WSF_MAX_S int 𝐵 Maximal value of the TCP window size scale

104



factor in forwarding flow
RCV_WSF_MAX_S int 𝐵 Maximal value of the TCP window size scale

factor in receiving flow
FWD_WSF_MIN_S int 𝐵 Minimal value of the TCP window size scale

factor in forwarding flow
RCV_WSF_MIN_S int 𝐵 Minimal value of the TCP window size scale

factor in receiving flow
FWD_WSF_MEANS float 𝐵 Mean value of the TCP window size scale

factor in forwarding flow
RCV_WSF_MEANS float 𝐵 Mean value of the TCP window size scale

factor in receiving flow
FWD_WSF_STD_S float 𝐵 Standard deviation value of the TCP

window size scale factor in forwarding flow
RCV_WSF_STD_S float 𝐵 Standard deviation value of the TCP

window size scale factor in receiving flow
FWD_MSS_MAX_S int 𝐵 Maximal value of maximum segment size

in the forwarding flow
RCV_MSS_MAX_S int 𝐵 Maximal value of maximum segment size

in the receiving flow
FWD_MSS_MIN_S int 𝐵 Minimal value of maximum segment size

in the forwarding flow
RCV_MSS_MIN_S int 𝐵 Minimal value of maximum segment size

in the receiving flow
FWD_MSS_MEANS float 𝐵 Mean value of maximum segment size

in the forwarding flow
RCV_MSS_MEANS float 𝐵 Mean value of maximum segment size

in the receiving flow
FWD_MSS_STD_S float 𝐵 Standard deviation value of maximum segment

size in the forwarding flow
RCV_MSS_STD_S float 𝐵 Standard deviation value of maximum segment

size in the receiving flow
FWD_BB_MAX_R int 𝐵/𝑏𝑙𝑘 Maximal bytes bulk rate in the forwarding flow
RCV_BB_MAX_R int 𝐵/𝑏𝑙𝑘 Maximal bytes bulk rate in the receiving flow
FWD_BB_MIN_R int 𝐵/𝑏𝑙𝑘 Minimal bytes bulk rate in the forwarding flow
RCV_BB_MIN_R int 𝐵/𝑏𝑙𝑘 Minimal bytes bulk rate in the receiving flow
FWD_BB_MEAN_R float 𝐵/𝑏𝑙𝑘 Mean bytes bulk rate in the forwarding flow
RCV_BB_MEAN_R float 𝐵/𝑏𝑙𝑘 Mean bytes bulk rate in the receiving flow
FWD_BB_STD_R float 𝐵/𝑏𝑙𝑘 Standard deviation of bytes bulk rate

in the forwarding flow
RCV_BB_STD_R float 𝐵/𝑏𝑙𝑘 Standard deviation of bytes bulk rate

105



in the receiving flow
FWD_PB_MAX_R int 𝑝𝑠/𝑏𝑙𝑘 Maximal packets bulk rate in the forwarding flow
RCV_PB_MAX_R int 𝑝𝑠/𝑏𝑙𝑘 Maximal packets bulk rate in the receiving flow
FWD_PB_MIN_R int 𝑝𝑠/𝑏𝑙𝑘 Minimal packets bulk rate in the forwarding flow
RCV_PB_MIN_R int 𝑝𝑠/𝑏𝑙𝑘 Minimal packets bulk rate in the receiving flow
FWD_PB_MEAN_R float 𝑝𝑠/𝑏𝑙𝑘 Mean packets bulk rate in the forwarding flow
RCV_PB_MEAN_R float 𝑝𝑠/𝑏𝑙𝑘 Mean packets bulk rate in the receiving flow
FWD_PB_STD_R float 𝑝𝑠/𝑏𝑙𝑘 Standard deviation of packets bulk rate

in the forwarding flow
RCV_PB_STD_R float 𝑝𝑠/𝑏𝑙𝑘 Standard deviation of packets bulk rate

in the receiving flow
FWD_PD_TOT_S int 𝐵 Total TCP payload size in the forwarding flow
RCV_PD_TOT_S int 𝐵 Total TCP payload size in the receiving flow
FWD_PD_MAX_S int 𝐵 Maximal TCP payload size in the forwarding flow
RCV_PD_MAX_S int 𝐵 Maximal TCP payload size in the receiving flow
FWD_PD_MIN_S int 𝐵 Minimal TCP payload size in the forwarding flow
RCV_PD_MIN_S int 𝐵 Minimal TCP payload size in the receiving flow
FWD_PD_MEAN_S int 𝐵 Mean TCP payload size in the forwarding flow
RCV_PD_MEAN_S int 𝐵 Mean TCP payload size in the receiving flow
FWD_PD_STD_S int 𝐵 Standard deviation of the TCP payload size

in the forwarding flow
RCV_PD_STD_S int 𝐵 Standard deviation of the TCP payload size

in the receiving flow
FWD_PLD_C int − Number of sent packets with

at least 1𝐵 payload in the flow
RCV_PLD_C int − Number of received packets with

at least 1𝐵 payload in the flow
Time parameters
FWD_IAT_TOTAL int 𝑠 Flow total time between all sent packets
FWD_IAT_MAX int 𝑠 Flow maximal time between two sent packets
FWD_IAT_MIN int 𝑠 Flow minimal time between two sent packets
FWD_IAT_MEAN float 𝑠 Flow mean time between two sent packets
FWD_IAT_STD float 𝑠 Flow standard deviation of the time between two

sent packets
RCV_IAT_TOTAL int 𝑠 Flow total time between all received packets
RCV_IAT_MAX int 𝑠 Flow maximal time between two received packets
RCV_IAT_MIN int 𝑠 Flow minimum time between two received packets
RCV_IAT_MEAN float 𝑠 Flow mean time between two received packets
RCV_IAT_STD float 𝑠 Flow standard deviation of the time between two

received packets

106



ACT_MAX time 𝑠 Maximum time the flow was active
before becoming idle

ACT_MIN time 𝑠 Minimum time the flow was active
before becoming idle

ACT_MEAN time 𝑠 Mean time the flow was active
before becoming idle

ACT_STD time 𝑠 Standard deviation time the flow was active
before becoming idle

IDLE_MAX time 𝑠 Maximum time the flow was idle
before becoming active

IDLE_MIN time 𝑠 Minimum time the flow was idle
before becoming active

IDLE_MEAN time 𝑠 Mean time the flow was idle
before becoming active

IDLE_STD time 𝑠 Standard deviation time the flow was idle
before becoming active

Feature and TCP Analysis Parameters
FWD_PSH_C int − Number of PSH flags set in flow forwarding way
FWD_URG_C int − Number of URG flags set in flow forwarding way
FWD_ACK_C int − Number of ACK flags set in flow forwarding way
FWD_RST_C int − Number of RST flags set in flow forwarding way
FWD_SYN_C int − Number of SYN flags set in flow forwarding way
FWD_FIN_C int − Number of FIN flags set in flow forwarding way
RCV_PSH_C int − Number of PSH flags set in flow receiving way
RCV_URG_C int − Number of URG flags set in flow receiving way
RCV_ACK_C int − Number of ACK flags set in flow receiving way
RCV_RST_C int − Number of RST flags set in flow receiving way
RCV_SYN_C int − Number of SYN flags set in flow receiving way
RCV_FIN_C int − Number of FIN flags set in flow receiving way
FWD_ACKUN_F int − Number of packets that was not previously

captured in the forwarding flow
RCV_ACKUN_F int − Number of packets that was not previously

captured in the receiving flow
FWD_PRVLST_F int − Number of packets with bigger sequence number

than expected in the forwarding flow
RCV_PRVLST_F int − Number of packets with bigger sequence number

than expected in the receiving flow
FWD_RTRSMN_F int − Number of retransmitted packets

in the forwarding flow
RCV_RTRSMN_F int − Number of retranmitted packets

107



in the receiving flow
FWD_DUPACK_F int − Number of duplicate packets

in the forwarding flow
RCV_DUPACK_F int − Number of duplicate packets

in the receiving flow
FWD_OOO_F int − Number of packets with sequence number

out of order in the forwarding flow
RCV_OOO_F int − Number of packets with sequence number

out of order in the receiving flow
FWD_KEEPAL_F int − Number of packets forcing other part to send

acknowledgement in the forwarding flow
RCV_KEEPAL_F int − Number of packets forcing other part to send

acknowledgement in the receiving flow
FWD_KALACK_F int − Number of acknowledgement responses to

KeepAlive packets in the forwarding flow
RCV_KALACK_F int − Number of acknowledgement responses to

KeepAlive packets in the receiving flow
FWD_ZEROW_F int − Number of packets indicating impossibility of

receiver getting other data in the forwarding flow
RCV_ZEROW_F int − Number of packets indicating impossibility of

receiver getting other data in the receiving flow
FWD_WINFLL_F int − Number of packets indicating receiver’s full

buffer in the forwarding flow
RCV_WINFLL_F int − Number of packets indicating receiver’s full

buffer in the receiving flow
FWD_WINUP_F int − Number of packets where receiver indicates the

free size of his buffer in the forwarding flow
RCV_WINUP_F int − Number of packets where receiver indicates the

free size of his buffer in the receiving flow
FWD_ZWINP_F int − Number of testing packet if the receiver’s zero

window is in place in the forwarding flow
RCV_ZWINP_F int − Number of testing packet if the receiver’s zero

window is in place in the receiving flow
FWD_ZWINPA_F int − Number of packet acknowledging zero window

probe in the forwarding flow
RCV_ZWINPA_F int − Number of packet acknowledging zero window

probe in the receiving flow
FWD_ZWINVIL_F int − Number of packet where the sender ignores zero

window condition in the forwarding flow
RCV_ZWINVIL_F int − Number of packet where the sender ignores zero

108



window condition in the receiving flow
Application layer parameters
D_START_MAX time 𝑚𝑠 Flow maximal time of the application layer

data start forwarding
D_START_MIN time 𝑚𝑠 Flow minimal time of the application layer

data start forwarding
D_START_MEAN time 𝑚𝑠 Flow mean time of the application layer

data start forwarding
D_START_STD time 𝑚𝑠 Flow standard deviation time of the

application layer data start forwarding
D_REQ_MAX time 𝑚𝑠 Flow maximal time for application request
D_REQ_MIN time 𝑚𝑠 Flow minimal time for application request
D_REQ_MEAN time 𝑚𝑠 Flow mean time for application request
D_REQ_STD time 𝑚𝑠 Flow standard deviation time for

application request
D_DELAY_MAX time 𝑚𝑠 Flow maximal time to start receiving response
D_DELAY_MIN time 𝑚𝑠 Flow minimal time to start receiving response
D_DELAY_MEAN time 𝑚𝑠 Flow mean time to start receiving response
D_DELAY_STD time 𝑚𝑠 Flow standard deviation time to start

receiving the application response
D_RESP_MAX time 𝑚𝑠 Flow maximal time to receive response
D_RESP_MIN time 𝑚𝑠 Flow minimal time to receive response
D_RESP_MEAN time 𝑚𝑠 Flow mean time to receive response
D_RESP_STD time 𝑚𝑠 Flow standard deviation time to receive

the application response
D_NEXT_MAX time 𝑚𝑠 Flow maximal time from the end of the response

to the beginning of the new one
D_NEXT_MIN time 𝑚𝑠 Flow minimal time from the end of the response

to the beginning of the new one
D_NEXT_MEAN time 𝑚𝑠 Flow mean time from the end of the response

to the beginning of the new one
D_NEXT_STD time 𝑚𝑠 Flow standard deviation time from the end

of the response to the beginning of the new one
Intra-flow parameters

TCP_SRC int − Source TCP port
TCP_WND_S int 𝐵 Window size value
TCP_WND_SSF int 𝐵 Window size scale factor value
TCP_HDRS int 𝐵 Size of TCP headers
PACKET_L int 𝐵 Packet size
TCP_PAYLOAD int 𝐵 TCP payload size

109



TCP_PSH_F bool − PSH flag set
TCP_URG_F bool − URG flag set
TCP_ACK_F bool − ACK flag set
TCP_RST_F bool − RST flag set
TCP_SYN_F bool − SYN flag set
TCP_FIN_F bool − FIN flag set
TCP_CWR_F bool − CWR flag set
TCP_ECE_F bool − ECE flag set

Tab. A.1: Flow parameters

110



B Examples of generated TCP traffic

B.1 HTTP traffic using different modules

B.1.1 HTTP GET

Fig. B.1: Example of HTTP GET traffic using module requests

Fig. B.2: Example of HTTP GET traffic using module urllib3

Fig. B.3: Example of HTTP GET traffic using module socket

111



B.2 Connection closures

Fig. B.4: Example of one-side standard client closure

Fig. B.5: Example of forced client closure

Fig. B.6: Example of server timeout closure with RST flag

Fig. B.7: Example of server timeout closure with RST flag

112



C Slow DoS Attacks Generator

C.1 Generator flowcharts

HTTP Request

Custom Attack

Argument Parser

Multithreaded 
Connections

Attack End

Initial Request

Pending 
Request

HTTP Response

Pending 
Request

YES NO

NO

Fig. C.1: Flowchart of Custom Slow DoS Attack

C.2 Generator arguments

Common arguments:
• Positional arguments:

– TARGET – URL or IP address of the victim
• Optional arguments:

– -p <int> – TCP port of target application (default: 80)
– -c <int> – number of TCP connections (default: 1 𝑐𝑜𝑛𝑛)
– -d <float> – duration of the attack (default: 60 𝑠)
– -open <float> – duration of connected TCP socket (default: 0 𝑠)
– -rec – option to reconnect closed TCP connections (default: 𝐹𝑎𝑙𝑠𝑒)
– -close – option to close connection if no data are incoming (default:

𝐹𝑎𝑙𝑠𝑒)

113



– -tdelay <float> – delay between thread creation, if negative it chooses
random value (default: 0.0)

– -l – number of arguments stands for the logging level (default: 0 – error
logging level)

– -log <string> – logging type set as file logging, (default: 𝑐𝑚𝑑𝑙𝑖𝑛𝑒 –
default bash logging)

Slow DoS Attack generator modes:
• slow_read

– -r <int> – size of receiver buffer, TCP window size (default: 24)
• slow_drop

– -D <float> – response drop rate (default: 0.6)
• slow_next

– -k <float> – time interval between two consecutive requests (default:
4.5 𝑠)

• custom
– -r <int> – size of receiver buffer, TCP window size (default: −1 – not

set)
– -rt <float> – receiving chunk time interval, time interval between re-

ceiving data (default: 0.0 𝑠)
– -s <int> – size of sender buffer (default: −1 – not set)
– -st <float> – sending chunk interval (default: 0.0 𝑠)
– -dstart <float> – value of Δ𝑠𝑡𝑎𝑟𝑡 parameter (default: 0.0 𝑠)
– -dreq <float> – value of Δ𝑟𝑒𝑞 parameter (default: 0.0 𝑠)
– -ddelay <float> – value of Δ𝑑𝑒𝑙𝑎𝑦 parameter (default: 0.0 𝑠)
– -dresp <float> – value of Δ𝑟𝑒𝑠𝑝 parameter (default: 0.0 𝑠)
– -dnext <float> – value of Δ𝑛𝑒𝑥𝑡 parameter (default: 0.0 𝑠)
– -http_request <string> – custom http request with structure (

METHOD REQUEST-URL HTTP-VERSION CRLF) (default: 𝑁𝑜𝑛𝑒)
– -http_headers <string> – custom http request headers (default:

𝑁𝑜𝑛𝑒)
– -http_data <string> – custom http request data (default: 𝑁𝑜𝑛𝑒)
– -pending_request <string> – custom http pending request (default:

𝑁𝑜𝑛𝑒)
– -pending_headers <string> – custom http pending headers (default:

𝑁𝑜𝑛𝑒)
– -pending_data <string> – custom http pending data (default: 𝑁𝑜𝑛𝑒)
– -D <float> – response drop rate (default: 0.0)
– -k <float> – time interval between two consecutive requests (default:

0.0 𝑠)

114



C.3 UML diagram

Fig. C.2: Slow DoS Generator UML diagram

115



C.4 Examples of generated SDAs

Fig. C.3: Slow DoS Generator output in Slow Read mode

116



Fig. C.4: Slow DoS Generator output in Slow Drop mode

Fig. C.5: Slow DoS Generator output in Slow Next mode

117



Fig. C.6: Slow DoS Generator output in Custom mode

118



D Examples of SDAs detection

D.1 Signature-based detection

{
"name": "Slow Read",
"initial_request" {

"content": "GET / HTTP/1.1",
"window_size": 16

},
"response": {

"status_code": 200,
"content": "Keep-Alive",
"keep_alive": 5

},
"connection": {

"connections": 250,
"connection_rate": 70,
"threads": 10,
"sending_buffer": 100000

},
"timeouts": [0,3,0,0]

}

Listing D.1: Specification example of Slow Read attack

119



{
"name": "Slow Drop",
"initial_request": "GET / HTTP/1.1",
"connection": {

"connections": 200,
"connection_rate": 100,
"threads": 5,
"sending_buffer": 100000,
"retransmissions": 180

},
"timeouts": [0,0,0,10]

}

Listing D.2: Specification example of Slow Drop attack

{
"name": "Slow Next",
"initial_request": "HEAD / HTTP/1.1",
"response": {

"status_code": 200,
},
"timeouts": [0,0,0,4]

}

Listing D.3: Specification example of Slow Next attack

120



D.2 Slow Read Attack testing

Fig. D.1: Connection duration for different sizes of receiver buffer size

121



D.3 Flow features

features=["src_ip", "dst_ip","src_port","dst_port","src_mac",
"dst_mac","protocol","timestamp","flow_duration","flow_byts_s",
"flow_pkts_s","fwd_pkts_s","bwd_pkts_s","tot_fwd_pkts",
"tot_bwd_pkts","totlen_fwd_pkts","totlen_bwd_pkts","fwd_pkt_\
len_max","fwd_pkt_len_min","fwd_pkt_len_mean","fwd_pkt_len_std",
"bwd_pkt_len_max","bwd_pkt_len_min","bwd_pkt_len_mean",
"bwd_pkt_len_std","pkt_len_max","pkt_len_min","pkt_len_mean",
"pkt_len_std","pkt_len_var","fwd_header_len","bwd_header_len",
"fwd_seg_size_min","fwd_act_data_pkts","flow_iat_mean",
"flow_iat_max","flow_iat_min","flow_iat_std","fwd_iat_tot",
"fwd_iat_max","fwd_iat_min","fwd_iat_mean","fwd_iat_std",
"bwd_iat_tot","bwd_iat_max","bwd_iat_min","bwd_iat_mean",
"bwd_iat_std","fwd_psh_flags","bwd_psh_flags","fwd_urg_flags",
"bwd_urg_flags","fin_flag_cnt","syn_flag_cnt","rst_flag_cnt",
"psh_flag_cnt","ack_flag_cnt","urg_flag_cnt","ece_flag_cnt",
"down_up_ratio","pkt_size_avg","init_fwd_win_byts","init_bwd\
_win_byts","active_max","active_min","active_mean","active_std",
"idle_max","idle_min","idle_mean","idle_std","fwd_byts_b_avg",
"fwd_pkts_b_avg","bwd_byts_b_avg","bwd_pkts_b_avg",
"fwd_blk_rate_avg","bwd_blk_rate_avg","fwd_seg_size_avg",
"bwd_seg_size_avg","cwe_flag_count","subflow_fwd_pkts",
"subflow_bwd_pkts","subflow_fwd_byts","subflow_bwd_byts"]

Listing D.4: Flow features generated by Python CICFlowMeter

122



D.4 AppDDos.txt

Attack Target After [ℎ] After [𝑚𝑖𝑛]
slowbody2 75.127.97.72 00:53 53
slowread 75.127.97.72 01:58 118
ddossim 75.127.97.72 02:22 142
goldeneye 75.127.97.72 02:50 170
slowheaders 74.63.40.21 02:57 177
rudy 75.127.97.72 03:08 188
ddossim 97.74.144.108 03:28 208
rudy 208.113.162.153 03:29 209
*slow_read 10.0.0.100 03:50 230
hulk 69.84.133.138 04:38 278
slowheaders 67.220.214.50 06:00 360
goldeneye 97.74.144.108 07:06 426
slowbody2 69.192.24.88 08:13 493
slowbody2 97.74.144.108 09:03 543
slowbody2 203.73.24.75 09:09 549
rudy 97.74.144.108 09:20 560
*slow_drop 10.0.0.100 10:00 600
slowread 74.55.1.4 11:02 662
slowheaders 97.74.104.201 11:27 687
*slow_next 10.0.0.100 12:10 730
hulk 74.55.1.4 13:33 813
hulk 69.192.24.88 13:47 827
slowloris 97.74.144.108 15:20 920
slowheaders 97.74.144.108 15:47 947
slowloris 75.127.97.72 16:33 993
slowheaders 75.127.97.72 17:13 1033
goldeneye 69.192.24.88 19:23 1163
rudy 74.55.1.4 20:59 1259
TOTAL - 23:59 1439

Tab. D.1: Extended CIC DoS dataset from 2017 attack time distribution

123





E Content of the electronic attachment

/
utils ......................................................... utility modules

generate_index.py ........................... creates custom size index file
tests

tcp_window_size_test.sh..............server test on Slow Read connection
tcp_window_size.py
tcp_window_graph.py

pyslowdos..........................................Slow DoS attack generator
requirements.txt ......................... required modules to be installed
slowargparse.py...............module for custom system argument parsing
pyslowdos.py ............................... main program of the generator
slowread.py
slowdrop.py
slownext.py
slowcustom.py
README.md

supervised.ipynb..............Jupyter notebook that implements ML methods
sda_ml_detection_model.pkl ....... machine learning model for SDA detection

125


	Introduction
	Network communication
	Application layer communication
	Communication measures and parameters
	Flow classification and parameters


	DoS Attacks – Specification and Classification
	Slow DoS Attacks
	Timeout Division of SDAs


	Selected Slow DoS Attacks
	Slow Read Attack
	Slow Read SDA parameters
	Slow Read testing

	Slow Drop Attack
	Slow Drop SDA parameters and testing

	Slow Next Attack
	Slow Next SDA parameters and testing


	Slow DoS Attack Generator
	TCP connection with HTTP payload modeling using available python3 modules
	TCP connection and attack closures

	Multiple connections handling
	Concurrent execution

	Python SDA generator pyslowdos.py
	Generator arguments and structure


	Testing environment and data capture
	Web server
	Data capture and dataset
	Flow and dataset creation


	Slow DoS Attacks Detection
	SDAs Signature Detection
	SDAs Anomaly or Behavior-Based Detection

	Machine Learning SDA Detection
	ML methods
	Decision Trees
	Random Forest

	ML performance methods
	ML Implementation
	Data creating and collecting
	Preprocessing
	Feature selection
	Machine learning model training
	ML evaluating, selecting parametets, tunning and saving


	Conclusion
	Bibliography
	Symbols and abbreviations
	List of appendices
	Communication and flow parameters 
	Examples of generated TCP traffic 
	HTTP traffic using different modules 
	HTTP GET 

	Connection closures 

	Slow DoS Attacks Generator 
	Generator flowcharts 
	Generator arguments 
	UML diagram 
	Examples of generated SDAs 

	Examples of SDAs detection 
	Signature-based detection 
	Slow Read Attack testing 
	Flow features 
	AppDDos.txt 

	Content of the electronic attachment 

