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Abstract. Point clouds are commonly used in many areas of technical practice. Nowadays,
the common applications are in area of autonomous cars and 3D terrain or object modelling.
During the scanning process, the scanning device or object is moving. So, the problem of
precise point cloud registration arises. In this article, we describe Iterative Closest Point (ICP)
algorithm that is suitable for fine registration. We introduce some of the improvements that
leads to higher precision, speed computation and efficiency. We also tested the ICP algorithm
on the noisy point clouds to process the registration.
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1 Introduction
We currently see substantia arise of point clouds applications in a large number of technical disci-
plines. The most significant applications include the use of 3D scanning technology to describe the
environment (roads, city parts, forests, etc.). Nowadays, we can see the progress of scanning and
processing technologies in area of autonomous vehicles [20]. For this purpose is often used LiDAR
technology (Light Detection and Ranging, [3] [12]). It is a surveying method that measures distance
to a target by illuminating that target with a pulsed laser light, and measuring the reflected pulse with
a sensor. In engineering applications, the optical 3D scanners are widely employed. The result of both
scanning principles is a point cloud that can be described as a set of data points in some coordinate
system, usually defined by x, y, z coordinates.

When a sensing device or a scanned object moves, the resulting cloud of points is partially overlaid.
The main task is to assemble these partial scans together to form the final object. This process is
usually called point registration.

Due to [4], we can divide the registration process into two main parts: coarse and fine matching.
In the coarse matching part, we find the corresponding points with detectors and (or) descriptors.
There is a huge number of detector and descriptor methods, e.g. Maximally Stable Volumes [14],
MeshDoG, Instrinsic Shape Signatures [22], Point Signature descriptor [9] and Spin Image [10]. This
part determines the coarse matching of the scans. In our article, we deal with to second part – fine
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matching that align these two point clouds precisely. The most powerful algorithm Iterative Closest
Points is presented in Sec. 2 and the results are described in Sec. 3 in details.

Fig. 1. Point cloud registration, source [4].

In our article, we introduce Iterative Closest Point (ICP) algorithm that is one of the common used
algorithms in practice. The algorithm was firstly described in [8], [1]. The basis of the algorithm
is to find an optimal mapping consisting of a translation and a rotation that minimizes the distance
between the corresponding points in the least squares sense.

The authors in [1] formulated the problem as:

“Given 3-D data in a sensor coordinate system, which describes a data shape that may correspond to
a model shape, and given a model shape in a model coordinate system in a different geometric shape
representation, estimate the optimal rotation and translation that aligns, or registers, the model shape
and the data shape minimizing the distance between the shapes and thereby allowing determination
of the equivalence of the shapes via a mean-square distance metric.”

2 ICP algorithm
2.1 Theoretical background

In this section, we briefly describe the mathematical background of the ICP algorithm. For more
details, see e.g. [2]. This algorithm is very popular because of its simplicity and clarity. However,
the basic algorithm works only in ideal cases, leading to its further modifications and improvements,
which will be described in 2.3.

Generally, let M,S are two finite sets in finite dimensional real vector space Rd that contains M ,
resp. N points. We want to determine the rigid or non-rigid transformation T : Rd −→ Rd that
minimize the distance between given sets:

distg(T (M),S) =
∑

m∈T (M)

∑
s∈S

g((m− s)2) (1)

Also Root Mean Square Distance (RMSD) can be used to comparison of T (M) and S:

RMSD(T (M),S) =

∑
m∈T (M)

∑
s∈S |m− s|2

n
(2)

In the case that the setsM,S contain the outliers, i.e. points that are not in both sets, we can compute
partial overlapping only. In these cases, it is suitable to set the threshold parameter thr that eliminates
the mistakes. For a set of pairs of points C = (mi, sj), where mi ∈M, sj ∈ S must hold:

∀sk ∈ S : dist(mi, sk) ≥ dist(mi, sj), dist(mi, sj) < thr (3)

The Eq. (2) can be written as:

RMSD(T (M), µ(S)) =

∑
C dist(mi, T (sj)

2

|C|
,mi, sj ∈ C (4)
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where distance T (mj) and si is minimal and |C| is cardinality of the set C.

2.2 ICP overview

Let S andM are input point clouds where source point cloud is S andM is model point cloud. We
are looking for the rigid transformation which satisfies the best correspondence between given point
clouds. The following steps describes the ICP algorithm:

1. compute the nearest point in the set S for every point (part of the points) in the setM using
e.g. Euclidean distance:

di = min{
√
m2

i − s2j} j = 1, . . . , NS (5)

2. if the distance di > treshold, remove a given pair of points

3. add the weights to pairs of points: implicitly wij = 1, we can set the weights in the dependence
of the direction of normal vectors as their dot product:

wij = ninj (6)

4. compute the rotation matrix R and translation vector t using the least square method for dis-
tance minimization that is described in Eq. (9)-(13)

5. compute the transformation of the set S using computed values – Rsj + t,

6. compute the error E(R, t) using Eq.(7), iterate until we reach to required accuracy.

The pseudocode of the algorithm ICP:

AlgorithmICP (M,S)

θ := θ0

while not registered:
X := ∅

for mi ∈ T (M, θ)

ŝj := closest point in S to mi

X := X + 〈mi, ŝj〉
θ = least squares(X) using SVD

return θ

In the pseudocode the symbol θ means the rotation matrix R and translation vector t. The initial
values θ0 are: identity matrix R and zero translation vector t. The set X contains all the pairs that
cover the closest points in set S to points in the setM.

In the next step, we calculate the new transformation θ = (R, t) using SVD and Eq.(9)-(13). Then,
the transfromation θ is applied to the model pointsM and the error is computed. We iterate this setup
until required accuracy.

878



2.2.1 Mathematical description of the ICP

LetM,S are the finite sets with NM and NS points. Firstly, we compute the nearest point in the set
S for every points in the set M. It is possible to use all of the points or we can choose the points
randomly. The ICP algorithm suppose that corresponding points are the nearest ones. For these pairs,
we compute the rotation matrix and translation. We try to minimize the error:

E(R, t) =

NM∑
i=1

NS∑
i=1

wij‖mi − (Rsj + t)‖2 (7)

where wij are the weights for corresponding points. If point mi is the nearest point to dj , we set the
weights as wij = 1, otherwise the weight is equal to zero.

The Eq. 7 can be rewritten as:

E(R, t) ∝ 1

N

N∑
i=1

‖mi − (Rsi + t)‖2 (8)

where

N =

NM∑
i=1

NS∑
i=1

wij

and corresponding matrix of wij is substituted by the sum of corresponding points.

The optimization step (find (R, t)) is based on Singular Value Decomposition (SVD). For the com-
putation of SVD, we need centroid alignment. We compute the centroids of both point sets as:

CM =
1

N

N∑
i=1

mi (9)

CS =
1

N

N∑
i=1

si (10)

Subsequently, we align all of the points ofM,S using corresponding centroid and we get:

M′ = {m′
i = mi − CM}1,...,N

S ′ = {s′i = si − CS}1,...,N

For these values, it is easy to compute covariance matrix H =M′S ′T and make the SVD as:

H = UΛV T (11)

The matrix of rotation is given by:
R = V UT (12)

and vector of translation can be computed by:

t = CS −RCM (13)

First iteration consists of the transformation of the cloud points using rotation matrixR and translation
vector t. Subsequently, we compute the error and if the error is higher then given threshold, the
iteration continues.
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2.3 The improvement methods of ICP

The previous section outlines the basic steps and theoretical background of the ICP algorithm. Nev-
ertheless, there is the amount of the improvements that try to satisfy better convergence and improve
the computation time. The overview can be find in e.g. [17] in details. In this part, we show some of
the possible way how to optimize the ICP algorithm.

k-d tree K-d trees are a special case of binary space partitioning trees that are often used as suitable
structure in many applications, such as searches involving a multidimensional search key (e.g. range
searches and nearest neighbor searches). ICP algorithm computation can be efficiently accelerated
with its usage. Authors [11] declare that the usage of k-d tree can improve the speed of registration
10 times.

Corresponding points The original work [1] works with all the points in both cloud points. Certain
enhancements have been made to the use of uniform sub-sampling of given points and random sam-
pling [13]. The problem occurs in the case of noise or high curvature shapes, where these methods do
not select enough reference points (see Figure 2, left). The solution is to use the normals for sampling
[6]. The detection of corresponding points using normals is on Figure 2, right.

Fig. 2. Random sampling (left) and sampling with normals (right), source [17].

Point matching The algorithm [1] is based on the calculation of the Euclidean distance between
points. However, this leads to significant computational demands, in the worst case, the algorithm
has order O(NMNS) of time complexity and average time complexity is O(NM logNS). The use of
point sorting in kd-tree leads to time complexity equal to O( logN).

There are a number of methods to speed up the distance computation. The work [18] covers the
most of possibilities of point matching methods. The normal method [8] is based on minimizing
the distance not only of two points, but the approximate distance of the point from the plane. This
computation reduces the number of iteration but the method is not so robust.

Another group of methods is based on projection of points from the original cloud (model) to the
second cloud. The center of the projection can be given as the position of the camera that scans or
generally. Then you can select a point of intersection or work with to points depending on the distance
or intensity [19] or the color [16]. It is also possible to use the Hausdorff distance as in [5] that studies
some theoretical results using Hausdorff distance in ICP.

It is also possible to use the SIFT feature point is used as corresponding point in the process of the
improved ICP algorithm in order to reduce the error corresponding points. The reducing of the closest
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point search improves the accuracy and efficiency of the ICP algorithm as described the authors in
[21].

Point weighting The trivial weighting is that every point has same weight. However, it is more
appropriate to use the distance of points as a measure of suitability. Depending on the distance of the
points, we can either totally eliminate the pair if it exceeds a predetermined threshold or add a weight
to the pair according to the formula [7]:

Weight = 1− dist(P1P2)

distmax

(14)

We can also assign the weights in dependence to the direction of normal vectors. If they are parallel
at both points, the scalar product is large number. With increasing size of angle-normal we get the
scalar product smaller (the perpendicular vectors have a scalar product equal to zero). The weight
assignment can be performed as:

Weight = n1n2 (15)

Correspondence between points The point clouds often contain the noise points and outliers. To
avoid misalling of the scans, criteria are added to eliminate or at least decrease this problem. The
usual recommendation is to remove pairs of points that contain points at the borders if one of the
skins exceeds the other (Fig. 3).

Another option is to remove points that have a greater distance than a given threshold, to remove a
certain percentage of points depending on the metric, or to remove points whose distance is greater
than a given multiple of the standard deviation of the distance.

Fig. 3. The elimination of overlapping pairs, source [17].

3 Results
We tested the algorithm on the model point cloud in software Matlab, version 2017b [15]. We gen-
erated point clouds with random sets and we also added a noise. Tested point clouds have 3 sizes:
1000, 10 000 and 25 000 points. Then, we applied our algorithm ICP in Matlab. In Fig. 4, we can see
the initial position of input point clouds and the registered position after application of ICP algorithm.
The computation time and number of iterations is in Table 3.

Number of points 1000 10 000 25 000
Number of iteration 22 32 35

Time (s) 1.552 6.348 22.502

Tab. 1. Point cloud registration on tested point clouds.
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Fig. 4. Testing point cloud before (left) and after registration (right).

The implementation in Matlab consists of the steps described in 2.2. Matlab is suitable tool for ICP
programming because of the easy use of matrices. We can also use the implemented functions as svd,
pdist (Euclidean distance), etc. In implementation, we can choose the distance metrics (Euclidean,
normal), threshold for ejecting noise points, type of weighting. The comparison of different param-
eters is difficult. It depends on the type of point clouds – their size, noise, overlapping region and
shape. We also have different requirements on the result, we can prefer computation speed, precision
or robustness. For example, the usage of normal distance computing increase the precision but it also
decrease the robustness. Only the usage of k-d tree storage is strongly recommended. It can speed up
the computation more than 10 times. Other parameters are optional and it depends on the input point
clouds and future use of results.

4 Conclusion
Iterative closest point algorithm is the essential method of the point cloud registration. It is used for
fine matching to ensure the best results. We present the overview of this method and also described
the possible improvements of the algorithm. We tested the basic algorithm on the data. In future
work, we would like to implement the possible improvements and compare the results.
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