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An algorithm using the differential transformation which is convenient for finding numerical solutions to initial value problems
for functional differential equations is proposed in this paper. We focus on retarded equations with delays which in general are
functions of the independent variable. .e delayed differential equation is turned into an ordinary differential equation using the
method of steps. .e ordinary differential equation is transformed into a recurrence relation in one variable using the differential
transformation. Approximate solution has the form of a Taylor polynomial whose coefficients are determined by solving the
recurrence relation. Practical implementation of the presented algorithm is demonstrated in an example of the initial value
problem for a differential equation with nonlinear nonconstant delay. A two-dimensional neutral system of higher complexity
with constant, nonconstant, and proportional delays has been chosen to show numerical performance of the algorithm. Results are
compared against Matlab function DDENSD.

1. Introduction

Functional differential equations (FDEs) are used to
model processes and phenomena which depend on past
values of the modelled entities. Indicatively, we mention
models describing machine tool vibrations [1], predator-
prey type models [2], and models used in economics [3].
Further models and details can be found for instance in
[4, 5] or [6].

Differential transformation (DT), a semianalytical ap-
proach based on Taylor’s theorem, has been proved to be
efficient in solving a variety of initial value problems (IVPs),
ranging from ordinary to functional, partial, and fractional
differential equations [7–11]. However, there is no publi-
cation about systematic application of DT to IVP for

differential equations with nonconstant delays which are
functions of the independent variable.

In this paper, we present an extension of DT to a class of
IVPs for delayed differential equations with analytic right-
hand side. Albeit the analyticity assumption seems to be
quite restrictive, it is reasonable to develop theory for such
class of equations [12, 13].

.e paper is organised as follows. In Section 2, we define
the subject of our study and briefly describe the methods we
combine to solve the studied problem, including recalling
necessary results of previous studies. Section 3 contains the
main results of the paper, including algorithm description,
new theorems, examples, and comparison of numerical
results. In Section 4, we briefly summarise what has been
done in the paper.
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2. Methods

2.1. Problem Statement. .e problem studied in this paper is
to find a solution on a given finite interval [t0, T] ⊂ [0,∞) to
an IVP for the following system of p functional differential
equations of n-th order withmultiple delays α1(t), . . . , αr(t):

u(n)
(t) � f t, u(t), u′(t), . . . , u(n− 1)

(t), u1 α1(t)( 􏼁, . . . , ur αr(t)( 􏼁􏼐 􏼑,

(1)

where u(n)(t) � (u
(n)
1 (t), . . . , u(n)

p (t))T ,u(k)(t) � (u
(k)
1 (t),

. . . , u(k)
p (t)), k � 0, 1, . . . , n − 1, and f � (f1, . . . , fp)T are

p-dimensional vector functions, ui(αi(t)) �

(u(αi(t)), u′(αi(t)), . . . , u(mi)(αi(t))) are (mi · p)-dimen-
sional vector functions, mi ≤ n, i � 1, 2, . . . , r, r ∈ N, and
fj: [t0, T) are real functions for j � 1, 2, . . . , p, where
ω � 􏽐

r
i�1mi.

We assume that each αi(t) � t − τi(t), where
τi(t)≥ τi0 > 0 for t ∈ [t0, T], i � 1, 2, . . . , r, is in general a real
function, that is, a time-dependent or time-varying delay.
Constant and proportional delays are considered as special
cases. In case that some αi is a proportional delay, we do not
require the condition τi(t)≥ τi0 > 0 to be valid at 0 if t0 � 0.

Let t∗ � min1≤i≤r inf t∈[t0 ,T](αi(t))􏽮 􏽯 and m � max m1,􏼈

m2, . . . , mr}; hence, t∗ ≤ t0 and m≤ n. If m< n, we have a
retarded system (1); otherwise, if m � n, we call the system
neutral. Furthermore, if t∗ < 0, initial vector functionΦ(t) �

(ϕ1(t), . . . , ϕp(t))T must be prescribed on the interval
[t∗, t0].

DT algorithm for the case t∗ � t0 � 0 with all delays
being proportional is described in [14]. DTalgorithm for the
case t∗ < t0 when all delays are constant is introduced in [15].
In this paper, we develop the algorithm for the case t∗ < t0
when at least one delay is nonconstant.

To have a complete IVP, we consider system (1) together
with initial conditions:

u t0( 􏼁 � v0,

u′ t0( 􏼁 � v1, . . . , u(n− 1)
t0( 􏼁 � vn− 1,

(2)

and, since t∗ < t0, also subject to initial vector function Φ(t)

on interval [t∗, t0] such that

Φ t0( 􏼁 � u t0( 􏼁, . . . ,Φ(n− 1)
t0( 􏼁 � u(n− 1)

t0( 􏼁. (3)

We consider the IVPs (1)–(3) under the following
hypotheses:

(H1) We assume that all the functions ϕj(t), j �

1, . . . , p, are analytic in [t∗, t0], the functions αi(t), i �

1, . . . , r, are analytic in [t0, T] and the functions fj, j �

1, . . . , p, are analytic in an open set containing [t0,

T] × [u(t0), u(T) ]× . . . ×[ur(αr(t0)), ur(αr(T))].
(H2) If αi(t) � qit and mi � n in fj for some
i ∈ 1, . . . , r{ } and j ∈ 1, . . . , p􏼈 􏼉, that is, jth equation is
neutral with respect to the proportional delay αi, we
assume that u

(n)
l (αi(t)) ≡ 0 for l ∈ 1, . . . , p􏼈 􏼉, l≠ j. .is

hypothesis is included since if it is not fulfilled, the
existence of unique solution of IVP could be violated.

We note that these assumptions imply that the IVP
(1)–(3) has a unique solution in the interval [t0, T].

2.2. Method of Steps. .e basic idea of our approach is to
combine DT and the general method of steps. .e method
of steps enables us to replace the terms including delays with
initial vector function Φ(t) and its derivatives. .en, the
original IVP for the delayed or neutral system of differential
equations is turned into IVP for a system of ordinary dif-
ferential equations.

For the sake of clarity, we include a simple explanatory
example. Suppose that we have a system with three delays,
one of each type considered: α1(t) � t − τ1(t),
α2(t) � t − τ2, and α3(t) � q3t. We have to distinguish two
cases:

(a) If t0 � 0, applying the method of steps turns system
(1) into

u(n)
(t) � f t, u(t), . . . ,u(n− 1)

(t),􏼐

Φ1 t − τ1(t)( 􏼁,Φ2 t − τ2( 􏼁, u3 q3t( 􏼁􏼁,
(4)

while

(b) If t0 > 0, system (1) is simplified to

u(n)
(t) � f t, u(t), . . . ,u(n− 1)

(t),􏼐

Φ1 t − τ1(t)( 􏼁,Φ2 t − τ2( 􏼁,Φ3 q3t( 􏼁􏼁,
(5)

where

Φ1 t − τ1(t)( 􏼁 � 􏼒Φ t − τ1(t)( 􏼁,Φ′ t − τ1(t)( 􏼁, . . . ,

Φ m1( ) t − τ1(t)( 􏼁􏼓,

Φ2 t − τ2( 􏼁 � Φ t − τ2( 􏼁,Φ′ t − τ2( 􏼁, . . . ,Φ m2( ) t − τ2( 􏼁􏼒 􏼓,

u3 q3t( 􏼁 � u q3t( 􏼁, u′ q3t( 􏼁, . . . , u m3( ) q3t( 􏼁􏼒 􏼓,

Φ3 q3t( 􏼁 � Φ q3t( 􏼁,Φ′ q3t( 􏼁, . . . ,Φ m3( ) q3t( 􏼁􏼒 􏼓,

(6)

and ml ≤ n for l � 1, 2, 3, 4. More details on the general
method of steps can be found, for instance, in monographs
[4] or [6].

Continuation of the method of steps algorithm for
equations with constant delays τ1, . . . , τr is described in [15].
Briefly summarised, the interval [t0, T] is divided into
subintervals Il � [tl− 1, tl], l � 1, . . . , K, where tK � T and tl,
l � 1, . . . , K − 1, are the principal discontinuity points which
is the set of points tρ,σ , such that t0,1 � t0 and for ρ, σ ≥ 1, tρ,σ
are the minimal roots with odd multiplicity of r equations:

tρ,(σ− 1)r+μ − τμ � tρ− 1,σ, μ � 1, . . . , r. (7)
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If nonconstant nonproportional delays αi appear in
system (1), the principal set of discontinuity points is defined
as follows:

Definition 1. .e principal discontinuity points for the
solutions of system (1) are given by the set of points tρ,σ , such
that t0,1 � t0 and for ρ, σ ≥ 1, tρ,σ are the minimal roots with
odd multiplicity of r equations:

αμ tρ,(σ− 1)r+μ􏼐 􏼑 � tρ− 1,σ, μ � 1, . . . , r. (8)

Similar to the case of constant delays, we break the
interval [t0, T] into subintervals Il � [tl− 1, tl], l � 1, . . . , K.
We start with the mesh grid t0, . . . , tK􏼈 􏼉 formed by the
principal discontinuity points calculated using Definition 1.
To improve convergence or performance of the algorithm,
there is a possibility to refine the mesh grid by inserting
other points into it. For more details on the principal
discontinuity points and mesh grid, we refer to the
monograph [16].

2.3. Differential Transformation

Definition 2. Differential transformation of a real function
u(t) at a point t0 ∈ R is D u(t){ }[t0] � U(k)[t0]􏼈 􏼉

∞
k�0, where

U(k)[t0], k − th component of the differential transforma-
tion of the function u(t) at t0, k ∈ N0, is defined as

U(k) t0􏼂 􏼃 �
1
k!

dku(t)

dtk
􏼢 􏼣

t�t0

, (9)

provided that the original function u(t) is analytic in a
neighbourhood of t0.

Definition 3. Inverse differential transformation of
U(k)[t0]􏼈 􏼉

∞
k�0 is defined as

u(t) � D
− 1

U(k) t0􏼂 􏼃􏼈 􏼉
∞
k�0􏼈 􏼉 t0􏼂 􏼃 � 􏽘

∞

k�0
U(k) t0􏼂 􏼃 t − t0( 􏼁

k
.

(10)

In applications, the function u(t) is expressed by a finite
sum

u(t) � 􏽘
N

k�0
U(k) t0􏼂 􏼃 t − t0( 􏼁

k
. (11)

As we can observe in (10), DT is based on Taylor series;
hence, any theorem about convergence of Taylor series may
be used. However, we would like to point out the paper [17]
where the finest general explicit a priori error estimates are
given.

.e following formulas are listed, e.g., in [18] and will be
used in Section 3.3.

Lemma 1. Assume that F(k)[t0] and U(k)[t0] are differ-
ential transformations of functions f(t) and u(t),
respectively:

If f(t) �
dnu(t)

dtn
, then F(k) t0􏼂 􏼃 �

(k + n)!

k!
U(k + n) t0􏼂 􏼃.

If f(t) � t
n
, then F(k)[0] � δ(k − n),

where δ(k − n) � δkn is the Kronecker delta.

If f(t) � eλt
, then F(k)[0] �

λk

k!
.

(12)

Remark 1. Similar formulas can be obtained using nu-
merical approach called Functional Analytical Technique
based on Operator .eory [19, 20].

.e main disadvantage of many papers about DT is that
there are almost no examples of equations with non-
polynomial nonlinear terms containing unknown function
u(t) like, for instance, f(u) �

�����
1 + u35

√
or f(u) � e

���
sin u

√

.
However, DT of components containing nonlinear terms
can be obtained in a consistent way using the algorithm
described in [21].

Theorem 1. Let g and f be real functions analytic near t0
and g(t0), respectively, and let h be the composition
h(t) � (f ∘g)(t) � f(g(t)). Denote D g(t)􏼈 􏼉[t0] �

G(k){ }
∞
k�0, D f(t)􏼈 􏼉[g(t0)] � F(k){ }

∞
k�0, and D (f ∘g)􏼈

(t)}[t0] � H(k){ }
∞
k�0 as the differential transformations of

functions g, f, and h at t0, g(t0), and t0, respectively.Cen, the
numbers H(k) in the sequence H(k){ }

∞
k�0 satisfy the relations

H(0) � F(0) and

H(k) � 􏽘
k

l�1
F(l) · 􏽢Bk,l(G(1), . . . , G(k − l + 1)), for k≥ 1,

(13)

where 􏽢Bk,l(􏽢x1, . . . , 􏽢xk− l+1) are the partial ordinary Bell
polynomials.

.e following Lemma proved in [21] is useful when
calculating partial ordinary Bell polynomials.

Lemma 2. Ce partial ordinary Bell polynomials
􏽢Bk,l(􏽢x1, . . . , 􏽢xk− l+1), l � 1, 2, . . . , k≥ l, satisfy the recurrence
relation

􏽢Bk,l 􏽢x1, . . . , 􏽢xk− l+1( 􏼁 � 􏽘
k− l+1

i�1

i · l

k
􏽢xi

􏽢Bk− i,l− 1 􏽢x1, . . . , 􏽢xk− i− l+2( 􏼁,

(14)

where 􏽢B0,0 � 1 and 􏽢Bk,0 � 0 for k≥ 1.

3. Results and Discussion

3.1. Algorithm Description. Recall system (1)

u(n)
(t) � f t, u(t),u′(t), . . . , u(n− 1)

(t), u1 α1(t)( 􏼁, . . . , ur αr(t)( 􏼁􏼐 􏼑,

(15)

with initial conditions
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u t0( 􏼁 � v0,u′ t0( 􏼁 � v1, . . . ,u(n− 1)
t0( 􏼁 � vn− 1, (16)

and initial vector function Φ(t) on interval [t∗, t0]

satisfying

Φ t0( 􏼁 � u t0( 􏼁, . . . ,Φ(n− 1)
t0( 􏼁 � u(n− 1)

t0( 􏼁. (17)

Further recall that in Section 2.2, we broke the interval
[t0, T] into subintervals Il � [tl− 1, tl], l � 1, . . . , K. Define
I0 � [t∗, t0].

.en, we are looking for a solution u(t) of the IVP
(1)–(3) in the form

u(t) �

uI1
(t), t ∈ I1,

uI2
(t), t ∈ I2,

⋮

uIK
(t), t ∈ IK,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

where solution uIj
in the jth interval Ij is obtained in the

following way. We solve the following equation:

u(n)
Ij

(t) � f t, uIj
(t), uIj
′ (t), . . . , u(n− 1)

Ij
(t),􏼒

uj,1 α1(t)( 􏼁, . . . ,uj,r αr(t)( 􏼁􏼑,

(19)

where

uj,i αi(t)( 􏼁 � uIl
αi(t)( 􏼁,uIl

′ αi(t)( 􏼁, . . . ,u mi( )
Il

αi(t)( 􏼁􏼒 􏼓,

(20)

if αi(t) ∈ Il, for t ∈ Ij, l ∈ 1, . . . , j􏼈 􏼉, j ∈ 1, . . . .K{ }.

In case that αi(t) ∈ I0 � [t∗, t0] for t ∈ Ij, then again

uj,i αi(t)( 􏼁 � ϕ αi(t)( 􏼁,ϕ′ αi(t)( 􏼁, . . . , ϕ mi( ) αi(t)( 􏼁􏼒 􏼓.

(21)

Application of DTat tj− 1 to equation (19) yields a system
of recurrence algebraic equations:

UIj
(k + n) tj− 1􏽨 􏽩 � F k,UIj

(k),UIj
(k + 1), . . . ,UIj

(k + n − 1)􏼒 􏼓,

(22)

where the function F is the DT of the righthand side of
equation (19) and involves application of .eorem 1.

Next, we transform the initial conditions (2). Following
Definition 2, we derive

UIj
(k) tj− 1􏽨 􏽩 �

1
k!
u(k)

Ij
tj− 1􏼐 􏼑, for k � 0, 1, . . . , n − 1, j ∈ 1, . . . , K{ }.

(23)

Using (22) with (23) and then inverse transformation
rule, we obtain approximate solution to (19) in the form of
Taylor series:

uIj
(t) � 􏽘

∞

k�0
UIj

(k) tj− 1􏽨 􏽩 t − tj− 1􏼐 􏼑
k
, t ∈ Ij, (24)

for all j ∈ 1, . . . , K{ }.
To transform (20) correctly, we need the following

theorem.

Theorem 2. Let αi(t) ∈ Il for t ∈ Ij, where l ∈ 1, . . . , j − 1􏼈 􏼉.
Let p ∈ N. Denote D αi(t)􏼈 􏼉[tj− 1] � Ai(k)[tj− 1]􏽮 􏽯

∞
k�0. Cen,

D u
(p)

Il
αi(t)( 􏼁􏽮 􏽯 tj− 1􏽨 􏽩

� 􏽘
k

y�0

(y + p)!

y!
UIl

(y + p) αi tj− 1􏼐 􏼑􏽨 􏽩

⎧⎪⎨

⎪⎩

· 􏽢Bk,y Ai(1) tj− 1􏽨 􏽩, . . . , Ai(k − y + 1) tj− 1􏽨 􏽩􏼐 􏼑
⎫⎬

⎭

∞

k�0

,

(25)

where 􏽢B0,0 � 1, 􏽢Bk,0 � 0 for k≥ 1, and

UIl
(y) αi tj− 1􏼐 􏼑􏽨 􏽩 � 􏽘

∞

x�0

x + y

x
􏼠 􏼡 αi tj− 1􏼐 􏼑 − tl− 1􏼐 􏼑

x

· UIl
(x + y) tl− 1􏼂 􏼃,

(26)

for y≥ 0.

Proof. Toprove (25) withp � 0, we use.eorem1withf(t) �

uIl
(t),g(t) � αi(t), and h(t) � (f ∘g)(t).We immediately get

H(k) tj− 1􏽨 􏽩 � 􏽘
k

y�1
UIl

(y) αi tj− 1􏼐 􏼑􏽨 􏽩

· 􏽢Bk,y Ai(1) tj− 1􏽨 􏽩, . . . , Ai(k − y + 1) tj− 1􏽨 􏽩􏼐 􏼑,

(27)

for k≥ 1. For k � 0, .eorem 1 yields H(0) [tj− 1] �

UIl
(0)[αi(tj− 1)] � UIl

(0)[αi(tj− 1)] · 􏽢B0,0(Ai(1)[tj− 1]). Now,
(25) for p> 0 is a consequence of Lemma 1 and it remains to
prove (26). We recall that

uIl
(t) � 􏽘

∞

k�0
UIl

(k) tl− 1􏼂 􏼃 t − tl− 1( 􏼁
k
, t ∈ Il. (28)

As the assumption was that αi(tj− 1) ∈ Il, we may apply
Definition 2 to (28) and obtain

UIl
(y) αi tj− 1􏼐 􏼑􏽨 􏽩 �

1
y!

dyuIl
(t)

dty
􏼢 􏼣

t�t0

1
y!

􏽘

∞

z�y

z!

(z − y)!
UIl

(z) tl− 1􏼂 􏼃

· t0 − tl− 1( 􏼁
z− y

.

(29)

Substituting t0 � αi(tj− 1) and z � x + y gives (26). □
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3.2. New DT Formulas. In the applications, we also use the
following DT formulas.

Theorem 3. Assume that F(k)[t0] is the differential
transformation of the function f(t) and r ∈ R:

(a) If f(t) � tr, then F(k)[t0] �
r

k
􏼠 􏼡tr− k

0 for all t such
that |t − t0|< |t0|,

where r

k
􏼠 􏼡 � r(r − 1) . . . (r − k + 1)/k! � (r)k/k!

and (r)k is the Pochhammer symbol.
(b) If f(t) � ln(t), then F(k)[t0] � (− 1)k− 1/(k · tk

0) for
k≥ 1.

Proof

(a) Recall the Newton’s generalisation of the binomial
formula: if x and y are real numbers with |x|> |y|,
and r is any complex number, one has

(x + y)
r

� 􏽘
∞

k�0

r

k
􏼠 􏼡x

r− k
y

k
, (30)

where r

k
􏼠 􏼡 � r(r − 1) . . . (r − k + 1)/k!. Let us rewrite tr as

tr � (t − t0 + t0)
r � (t0 + (t − t0))

r. Applying (30) yields

t
r

� 􏽘
∞

k�0

r

k
􏼠 􏼡t

r− k
0 t − t0( 􏼁

k
. (31)

(b) We start by proving the formula

(ln(t))
(k)

�
(− 1)k− 1(k − 1)!

tk
, (32)

by induction. For k � 1, we have (ln(t))′ � 1/t; hence, (32) is
valid. Suppose that (32) holds for k. .en,

(ln(t))
(k+1)

� (ln(t))
(k)

􏼐 􏼑′ �
(− 1)k− 1(k − 1)!

tk
􏼠 􏼡

′

� (− 1)
k− 1

(k − 1)! t
− k

􏼐 􏼑′

� (− 1)
k− 1

(k − 1)!(− k)t
− k− 1

�
(− 1)kk!

tk+1 .

(33)

.us, formula (32) is valid for all k ∈ N. Now by Definition 2,

F(k) t0􏼂 􏼃 �
1
k!

dk ln(t)

dtk
􏼢 􏼣

t�t0

�
1
k!

(− 1)k− 1(k − 1)!

tk
􏼢 􏼣

t�t0

�
(− 1)k− 1

k · tk
0

.

(34)
□

3.3. Applications. In this section, we introduce two test
problems and show how the practical implementation
of the presented algorithm looks like in concrete
examples. Comparison of numerical results is given in
Section 3.4.

As the first test problem, we choose an IVP for a scalar
equation with one nonconstant delay where the exact
solution is known to be the exponential function et.
.e purpose of including this example is to compare
results obtained by DT against values of the exact
solution and also against results obtained by Matlab
function DDENSD which has been designed to approx-
imate solutions to IVP for neutral delayed differential
equations.

Example 1. Consider the delayed equation:

u′(t) � u(t) − t + u(ln(t)), (35)

with the initial condition

u(1) � e, (36)

and with the initial function

ϕ(t) � e
t
, t ∈ [0, 1]. (37)

First we find the differential transform of the initial
condition (36) which is U(0)[1] � e. Further denote
D et􏼈 􏼉[0] � E(k)[0]{ }

∞
k�0 as the transformation of the ex-

ponential function with the center at 0 and D ln(t){ }[1] �

F(k)[1]{ }
∞
k�0 as the transformation of the logarithmic

function at 1, respectively. .en, Lemma 1 and .eorem 3
yield

E(k)[0] �
1
k!

,

F(k)[1] �
(− 1)k− 1

k
, for k≥ 1.

(38)

For t ∈ [1, e], equation (35) is transformed into

(k + 1)U(k + 1)[1] � U(k)[1] − δ(k) − δ(k − 1) + H(k)[1],

(39)

where

H(k)[1] � 􏽘
k

l�1
E(l)[0]􏽢Bk,l(F(1)[1], . . . , F(k − l + 1)[1]),

for k≥ 1,

H(0)[1] � E(0)[0] � 1.

(40)

We have
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U(1)[1] � e − 1 − 0 + 1 � e,

H(1)[1] � E(1)[0] · F(1)[1] � 1 · 1 � 1,

U(2)[1] �
1
2

(U(1)[1] − 0 − 1 + H(1)[1])

�
1
2

(e − 1 + 1) � e ·
1
2
,

H(2)[1] � E(1)[0] · F(2)[1] + E(2)[0] · (F(1)[1])
2

� 1 · −
1
2

􏼒 􏼓 +
1
2

· 1 � 0,

U(3)[1] �
1
3

(U(2)[1] + H(2)[1]) �
1
3

· e ·
1
2

� e ·
1
3!

,

⋮
(41)

Using the inverse transformation, we see that for
t ∈ [1, e],

u(t) � e 1 +(t − 1) +
(t − 1)2

2
+

(t − 1)3

3!
. . .􏼠 􏼡 � e · e

t− 1
� e

t
,

(42)

which corresponds to the exact solution to the IVPs
(35)–(37).

In the second step of the method of steps, i.e., in the
interval t ∈ [e, ee], we know that u(t) � et for t ∈ [1, e] and
equation (35) is transformed into

(k + 1)U(k + 1)[e] � U(k)[e] − eδ(k) − δ(k − 1) + H(k)[e],

(43)

where

H(0)[e] � U(0)[1],

H(k)[e] � 􏽘
k

l�1
U(l)[1]􏽢Bk,l(F(1)[e], . . . , F(k − l + 1)[e]),

for k≥ 1.

(44)

Here, F(k)[e], according to .eorem 3, are coefficients
of Taylor series of logarithmic function with the center at e:

F(0)[e] � 1,

F(k)[e] �
(− 1)k− 1

k · ek
, for k≥ 1.

(45)

Taking the values calculated in the first step and
substituting them into the recurrence formulas (43) and
(44), we obtain

U(0)[e] � u(e) � e
e
,

U(1)[e] � U(0)[e] − eδ(0) − δ(− 1) + H(0)[e]

� e
e

− e − 0 + e � e
e
,

H(1)[e] � U(1)[1] · F(1)[e] � e ·
1
e

� 1,

U(2)[e] �
1
2

(U(1)[e] − 0 − 1 + H(1)[e])

�
1
2

e
e

− 1 + 1􏼂 􏼃 �
1
2
e

e
,

H(2)[e] � U(1)[1] · 􏽢B2,1(F(1)[e], F(2)[e])

+ U(2)[1] · 􏽢B2,2(F(1)[e])

� e · F(2)[e] +
e

2
· (F(1)[e])

2

� e ·
1
2

− 1
e2

􏼒 􏼓 +
e

2
·

1
e

􏼒 􏼓
2

� 0,

U(3)[e] �
1
3

(U(2)[e] + H(2)[e]) �
1
3!

e
e
,

H(3)[e] � U(1)[1] · 􏽢B3,1(F(1)[e], F(2)[e], F(3)[e])

+ U(2)[1] · 􏽢B3,2(F(1)[e], F(2)[e]) + U(3)[1]

· 􏽢B3,3(F(1)[e])

� e · F(3)[e] +
e

2
· 2 · F(1)[e] · F(2)[e] +

e

3!
(F(1)[e])

3

� e ·
2
e3

1
3!

+ e ·
1
e

·
(− 1)

e2
·
1
2

+
e

6
·
1
e3

�
1
e2

1
3

−
1
2

+
1
6

􏼒 􏼓 � 0,

U(4)[e] �
1
4

(U(3)[e] + H(3)[e]) �
1
4!

e
e
.

(46)

Hence, for t ∈ [e, ee], we have

u(t) � e
e

+ e
e
(t − e) +

1
2
e

e
(t − e)

2
+
1
3!

e
e
(t − e)

3

+
1
4!

e
e
(t − e)

4
+ . . .

� e
e 1 +(t − e) +

(t − e)2

2
+

(t − e)3

3!
+

(t − e)4

4!
+ . . .􏼠 􏼡

� e
e

· e
t− e

� e
t
,

(47)

which again coincides with the exact solution to problems
(35)–(37).

In the second application, we have chosen an IVP for a
nonlinear system of neutral delayed differential equations
taken from the fully open access paper [18]..ere are several
reasons to test the proposed algorithm on the particular
problem. .e first is that the problem involves a nonlinear
system of neutral equations of high complexity whose exact
solution is unknown. Secondly, the proposed algorithm is a
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complete differential transform version of the algorithm
presented in [18] where modified Adomian formula has
been used. Furthermore, the calculations done in [18] are
shown only for the first step of the method of steps up to the
first principal discontinuity point, whereas we continue
calculations beyond that point in this paper. Last but not
least, we want to verify performance and reproduce values
obtained by DTand published in [18]. Rebenda et al. [18] has
been submitted 4 years ago for the first time, and since that
time, the Maple source code has been lost.

Example 2. Consider a nonlinear system of neutral delayed
differential equations:

u
‴
1 � u
‴
1 (t − 2)u1

t

3
􏼒 􏼓 +

�������

u1(t)( 􏼁
23

􏽱

+ u2′ t −
1
2

e
− t

􏼒 􏼓,

u
‴
2 �

1
2
u
‴
2

t

2
􏼒 􏼓 + u2′(t − 1)u1

t

3
􏼒 􏼓,

(48)

with initial functions

ϕ1(t) � e
t
,

ϕ2(t) � t
2
,

(49)

for t ∈ [− 2, 0], and initial conditions

u1(0) � 1,

u2′(0) � 1,

u1″(0) � 1,

u2(0) � 0,

u2′(0) � 0,

u2″(0) � 2.

(50)

For t ∈ [0, t1], where t1 ≈ 0, 351734 is the minimal root
of t − (1/2)e− t � 0, using the method of steps, we obtain

u
‴
1 � e

(t− 2)
u1

t

3
􏼒 􏼓 +

�������

u1(t)( 􏼁
23

􏽱

+ 2t − e
− t

,

u
‴
2 �

1
2
u
‴
2

t

2
􏼒 􏼓 + 2(t − 1)u1

t

3
􏼒 􏼓.

(51)

Weneed to find the differential transformof the considered
problem. We notice that system (2) contains nonlinear term

h(t) �

�������

(u1(t))2
3

􏽱

. To get DT of this term, D h(t){ }[0] �

H1(k)[0]􏼈 􏼉
∞
k�0, and we apply.eorem 1. First, applying DT to

system (2) at t0 � 0, we get the recurrent system:
(k + 1)(k + 2)(k + 3) U1(k + 3)[0]

� e
− 2

􏽘
l�0

k 1
l!

1
3

􏼒 􏼓
k− l

U1(k − l)[0] + H1(k)[0] + 2δ(k) −
(− 1)k

k!
,

(52)

(k + 1)(k + 2)(k + 3) 1 −
1

2k+1􏼒 􏼓 U2(k + 3)[0]

� 2
1
3

􏼒 􏼓
k− 1

U1(k − 1)[0] −
2
3k

U1(k)[0].

(53)

Denote g(t) � t2/3; then, h(t) � (g ∘ u1)(t), and fol-
lowing .eorem 1, we obtain

H1(0)[0] � G1(0)[1],

H1(k)[0] � 􏽘

k

l�1
G1(l)[1]􏽢Bk,l U1(1)[0], . . . , U1(k − l + 1)[0]( 􏼁,

(54)

for k≥ 1, whereD g(t)􏼈 􏼉[1] � G1(k)[1]􏼈 􏼉
∞
k�0 and,.eorem 3

being applied, G1(k)[1] �
2/3
k

􏼠 􏼡 for k≥ 0. Furthermore,

the transformed initial conditions are

U1(0)[0] � 1,

U1(1)[0] � 1,

U1(2)[0] �
1
2
,

U2(0)[0] � 0,

U2(1)[0] � 0,

U2(2)[0] � 1.

(55)

Using them, we compute the first three coefficients of the
nonlinear term h(t):

H1(0)[0] � G1(0)[1] � 1,

H1(1)[0] � G1(1)[1] · B1,1 U1(1)[0]( 􏼁 �
2
3

· 1 �
2
3
,

H1(2)[0] � G1(1)[1] · B2,1 U1(1)[0], U1(2)[0]( 􏼁

+ G1(2)[1] · B2,2 U1(1)[0]( 􏼁 �
2
3

·
1
2

−
1
9

· 1 �
2
9
.

(56)

Solving recurrent systems (52) and (53), we get

k � 0: U1(3)[0] �
1
6

e
− 2

U1(0)[0] + H1(0)[0] + 1􏼐 􏼑

�
2 + e− 2

6
,

U2(3)[0] �
1
3

− 2U1(0)[0]( 􏼁 � −
2
3
.

k � 1: U1(4)[0] �
e− 2

24
1
3

U1(1)[0] + U1(0)[0]􏼒 􏼓

+
1
24

H1(1)[0] + 1( 􏼁 �
4e− 2 + 5

72
,

U2(4)[0] �
1
18

2U1(0)[0] −
2
3

U1(1)[0]􏼒 􏼓 �
2
27

.

k � 2: U1(5)[0] �
e− 2

60
1
9

U1(2)[0] +
1
3

U1(1)[0]􏼒

+
1
2

U1(0)[0]􏼓 +
1
60

H1(2)[0] −
1
2

􏼒 􏼓

�
16e− 2 − 5
1080

,

U2(5)[0] �
2
105

2
3

U1(1)[0] −
2
9

U1(2)[0]􏼒 􏼓 �
2
189

.

(57)

Using the inverse DT (Definition 3), we get approximate
solution for the IVPs (48)–(50) on the interval [0, t1]:
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u1,I1
(t) � 1 + t +

1
2
t
2

+
2 + e− 2

6
t
3

+
4e− 2 + 5

72
t
4

+
16e− 2 − 5
1080

t
5

+ . . . ,

u2,I1
(t) � t

2
−
2
3
t
3

+
2
27

t
4

+
2
189

t
5

+ . . . ,

(58)

which is exactly the same approximate solution which has
been obtained in [18].

.e second step brings us to solving the given IVP on the
interval [t1, t2], where t2 is the minimal root of
t − (1/2)e− t � t1, t2 ≈ 0, 620556. Now taking into account
that both proportional delays q1t � (1/3)t and q2t � (1/2)t

and also the time-dependent delay t − τ1(t) � t − (1/2)e− t

map the interval [t1, t2] into the interval [0, t1], system (2)
becomes

u
‴
1 � e

(t− 2)
u1,I1

t

3
􏼒 􏼓 +

�������

u1(t)( 􏼁
23

􏽱

+ u2,I1
′ t −

1
2
e

− t
􏼒 􏼓,

u
‴
2 �

1
2
u
‴
2,I1

t

2
􏼒 􏼓 + 2(t − 1)u1,I1

t

3
􏼒 􏼓.

(59)

Denote D h(t){ }[t1] � H2(k)[t1]􏼈 􏼉
∞
k�0 and D f(t)􏼈 􏼉

[t1] � F2(k)[t1]􏼈 􏼉
∞
k�0, where f(t) � u2′(t − (1/2)e− t). By

application of.eorem 2 to corresponding terms, system (2)
transformed at t0 � t1 reads as

(k + 1) (k + 2) (k + 3) U1 (k + 3) t1􏼂 􏼃

� e
− 2

􏽘

k

l�0

et1

l!

1
3

􏼒 􏼓
k− l

􏽘

∞

x�0

x + k − l

x
􏼠 􏼡U1(x + k − l)[0]

t1

3
􏼒 􏼓

x

+ H2(k) t1􏼂 􏼃 + F2(k) t1􏼂 􏼃,

(60)

(k + 1) (k + 2) (k + 3) U2 (k + 3) t1􏼂 􏼃

�
1
2

􏼒 􏼓
k+1

(k + 3)(k + 2)(k + 1) 􏽘
∞

x�0

x + k + 3
x

􏼠 􏼡

· U2(x + k + 3)[0]
t1

2
􏼒 􏼓

x

+ 2􏽘

k

l�0
t1 − 1( 􏼁δ(l) + δ(l − 1)􏼂 􏼃

·
1
3

􏼒 􏼓
k− l

􏽘

∞

x�0

x + k − l

x
􏼠 􏼡U1(x + k − l)[0]

t1

3
􏼒 􏼓

x

.

(61)

Now denote D g(t)􏼈 􏼉[u1(t1)] � G2(k)[u1(t1)]􏼈 􏼉
∞
k�0;

then, according to .eorem 3, G2(k)[u1(t1)] �

2/3
k

􏼠 􏼡(u1(t1))
2/3− k for k≥ 0 and .eorem 1 implies

H2(0) t1􏼂 􏼃 � G2(0) u1 t1( 􏼁􏼂 􏼃 �

������

u1 t1( 􏼁
23

􏽱

,

H2(k) t1􏼂 􏼃 � 􏽘
k

l�1
G2(l) u1 t1( 􏼁􏼂 􏼃 · 􏽢Bk,l U1(1) t1􏼂 􏼃, . . . ,(

U1(k − l + 1) t1􏼂 􏼃􏼁, for k≥ 1.

(62)

Further denote e(t) � t − (1/2)e− t and
D e(t){ }[t1] � E2(k)[t1]􏼈 􏼉

∞
k�0. .en, f(t) � (u2′ ∘ e)(t) and,

since e(t1) � 0, .eorem 1 in combination with Lemma 1
yields

E2(k) t1􏼂 􏼃 � t1 · δ(k) + δ(k − 1) −
1
2

·
e− t1(− 1)k

k!
, k≥ 0,

F2(0) t1􏼂 􏼃 � U2(1)[0] � 0,

F2(k) t1􏼂 􏼃 � 􏽘
k

l�1
(l + 1)U2(l + 1)[0] · 􏽢Bk,l E2(1) t1􏼂 􏼃, . . . ,(

E2(k − l + 1) t1􏼂 􏼃􏼁, for k≥ 1.

(63)

To get the initial data U1(k)[t1] and U2(k)[t1] for
k � 0, 1, 2, we have to transform

ui(t) � Ui(0)[0] + Ui(1)[0]t + Ui(2)[0]t
2

+ Ui(3)[0]t
3

+ . . . ,
(64)

at t1, i � 1, 2. For k � 0, 1, 2, we have

Ui(k) t1􏼂 􏼃 � Ui(0)[0] + Ui(1)[0]
1
k

􏼠 􏼡t
1− k
1

+ Ui(2)[0]
2
k

􏼠 􏼡t
2− k
1 + Ui(3)[0]

3

k
􏼠 􏼡t

3− k
1 + . . . ,

(65)

i.e.,

Ui(0) t1􏼂 􏼃 � 􏽘
∞

k�0
Ui(k)[0]t

k
1,

Ui(1) t1􏼂 􏼃 � 􏽘
∞

k�0
(k + 1)Ui(k + 1)[0]t

k
1,

Ui(2) t1􏼂 􏼃 � 􏽘
∞

k�0

k + 2
2

􏼠 􏼡Ui(k + 2)[0]t
k
1.

(66)

.e initial values at t1 will be approximated by taking
finite sums in computer evaluations of the infinite sums
above. Observe that u1(t1) � U1(0)[t1].

Now let us compute the first few values of H2(k)[t1].
Denote 􏽢Bk,l � 􏽢Bk,l(U1(1)[t1], . . . , U1(k − l + 1)[t1]). .en,
the first values of 􏽢Bk,l are
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􏽢B0,0 � 1,

􏽢B1,1 � U1(1) t1􏼂 􏼃 · 􏽢B0,0 � U1(1) t1􏼂 􏼃,

􏽢B2,1 �
1
2
U1(1) t1􏼂 􏼃 · 􏽢B1,0 + U1(2) t1􏼂 􏼃 · 􏽢B0,0 � U1(2) t1􏼂 􏼃,

􏽢B2,2 � U1(1) t1􏼂 􏼃 · 􏽢B1,1 � U1(1) t1􏼂 􏼃( 􏼁
2
,

(67)

and the coefficients H2 for k � 0, 1, 2 are

H2(0) t1􏼂 􏼃 � u1 t1( 􏼁,

H2(1) t1􏼂 􏼃 �
2
3

u1 t1( 􏼁( 􏼁
− 1/3

· 􏽢B1,1 �
2
3

u1 t1( 􏼁( 􏼁
− 1/3

· U1(1) t1􏼂 􏼃,

H2(2) t1􏼂 􏼃 �
2
3

u1 t1( 􏼁( 􏼁
− 1/3

· 􏽢B2,1 −
1
9

u1 t1( 􏼁( 􏼁
− 4/3

· 􏽢B2,2

�
2
3

u1 t1( 􏼁( 􏼁
− 1/3

· U1(2) t1􏼂 􏼃 −
1
9

u1 t1( 􏼁( 􏼁
− 4/3

· U1(1) t1􏼂 􏼃( 􏼁
2
.

(68)

Let us turn our attention to the first few values of
F2(k)[t1]. Starting with E2(k)[t1],

E2(0) t1􏼂 􏼃 � t1 −
1
2
e

− t1 � 0,

E2(1) t1􏼂 􏼃 � 1 +
1
2
e

− t1 � 1 + t1,

E2(2) t1􏼂 􏼃 � −
1
2

·
e− t1

2
� −

t1

2
.

(69)

Now, 􏽢Bk,l are 􏽢Bk,l(E2(1)[t1], . . . , E2(k − l + 1)[t1]):

􏽢B0,0 � 1,

􏽢B1,1 � E2(1) · 􏽢B0,0 � 1 + t1,

􏽢B2,1 �
1
2
E2(1) · 􏽢B1,0 + E2(2) · 􏽢B0,0 � −

t1

2
,

􏽢B2,2 � E2(1) · 􏽢B1,1 � 1 + t1( 􏼁
2
.

(70)

Finally, coefficients F2 for k � 0, 1, 2 are

F2(0) t1􏼂 􏼃 � U2(1)[0] � 0,

F2(1) t1􏼂 􏼃 � 2U2(2)[0] · 􏽢B1,1 � 2 1 + t1( 􏼁,

F2(2) t1􏼂 􏼃 � 2U2(2)[0] · 􏽢B2,1 + 3U2(3)[0] · 􏽢B2,2

� − t1 − 2 1 + t1( 􏼁
2
.

(71)

At this moment, we substitute H2 and F2 into systems
(60) and (61). .e next three coefficients at t1 for U1 are

k � 0: U1(3) t1􏼂 􏼃 �
1
6

e
− 2

e
t1 · u1

t1
3

􏼒 􏼓 + u1 t1( 􏼁􏼒 􏼓,

k � 1: U1(4) t1􏼂 􏼃 �
1
24

e
− 2

e
t1 ·

1
3

· 􏽘
∞

x�0
(x + 1)U1(x + 1)[0]

t1
3

􏼒 􏼓
x

⎛⎝⎛⎝

+ e
t1 · u1

t1

3
􏼒 􏼓􏼓 +

2
3

· u1 t1( 􏼁( 􏼁
− 1/3

· U1(1) t1􏼂 􏼃

+ 2 1 + t1( 􏼁􏼁,

k � 2: U1(5) t1􏼂 􏼃 �
1
60

e
− 2

e
t1

1
3

􏼒 􏼓
2

· 􏽘
∞

x�0

x + 2

x
􏼠 􏼡U1(x + 2)[0]⎛⎝

·
t1

3
􏼒 􏼓

x

+ e
t1 ·

1
3

· 􏽘
∞

x�0
(x + 1)U1(x + 1)[0]

t1

3
􏼒 􏼓

x

+
et1

2
· u1

t1

3
􏼒 􏼓􏼡 +

1
60

2
3

u1 t1( 􏼁( 􏼁
− 1/3

· U1(2) t1􏼂 􏼃( 􏼁􏼒

−
1
9

u1 t1( 􏼁( 􏼁
− 4/3

· U1(1) t1􏼂 􏼃( 􏼁
2

− t1 − 2 1 + t1( 􏼁
2
􏼓,

(72)

and for U2, we obtain

k � 0: U2(3) t1􏼂 􏼃 �
1
2

􏽘
∞

x�0

x + 3
x

􏼠 􏼡U2(x + 3)[0]
t1
2

􏼒 􏼓
x

⎛⎝ ⎞⎠

+
1
3

t1 − 1( 􏼁 · u1
t1

3
􏼒 􏼓,

k � 1: U2(4) t1􏼂 􏼃 �
1
4

􏽘
∞

x�0

x + 4

x
􏼠 􏼡U2(x + 4)[0]

t1
2

􏼒 􏼓
x

⎛⎝ ⎞⎠

+
1
12

t1 − 1( 􏼁 ·
1
3

· 􏽘
∞

x�0
(x + 1)U1(x + 1)[0]

t1
3

􏼒 􏼓
x

⎛⎝

+ u1
t1

3
􏼒 􏼓􏼡,

k � 2: U1(5) t1􏼂 􏼃 �
1
8

􏽘
x�0

∞ x + 5
x

􏼠 􏼡U2(x + 5)[0]
t1
2

􏼒 􏼓
x

⎛⎝ ⎞⎠

+
1
30

t1 − 1( 􏼁 ·
1
9

· 􏽘
∞

x�0

x + 2
x

􏼠 􏼡U1(x + 2)[0]
t1

3
􏼒 􏼓

x
⎛⎝

+
1
3

􏽘
∞

x�0
(x + 1)U1(x + 1)[0]

t1
3

􏼒 􏼓
x
⎞⎠·

(73)

Using the inverse DT, again we get approximate so-
lution for the IVPs (48), (49), and (50) on the interval
[t1, t2]:
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u1,I2
(t) � U1(0) t1􏼂 􏼃 + U1(1) t1􏼂 􏼃 t − t1( 􏼁 + U1(2) t1􏼂 􏼃

· t − t1( 􏼁
2

+ U1(3) t1􏼂 􏼃 t − t1( 􏼁
3

+ . . . ,

u2,I2
(t) � U2(0) t1􏼂 􏼃 + U2(1) t1􏼂 􏼃 t − t1( 􏼁 + U2(2) t1􏼂 􏼃

· t − t1( 􏼁
2

+ U2(3) t1􏼂 􏼃 t − t1( 􏼁
3

+ . . . .

(74)

As the calculations are getting more complicated, all the
calculations have been done numerically only.

3.4. Numerical Results and Discussion. Table 1 shows
comparison of results for Example 1 obtained by DT al-
gorithm with the orders of Taylor polynomials of the
approximate solution N � 5, 10, 25 to results of Matlab
function DDENSD in the interval [1, e]. Since the exact
solution is known, absolute errors illustrate precision of
each algorithm setting. All numbers are rounded to four
decimal places. We see that DDENSD performs satis-
factory well and DT for N � 10, 25 does even better,
whereas DT for N � 5 does not show satisfactory
precision.

Table 2 brings the same comparison in the second in-
terval [e, ee]. We can observe a fast growth rate of the
function values of the exact solution, which leads to the
growth of absolute errors and loss of precision in all settings.
It indicates that at the end of the considered interval [e, ee],
the rate of precision would be better seen using relative
errors.

Implementation of DT in Matlab in case of Example 2
produces numerical results which are listed in Table 3. .e
results of DTwith order of the Taylor polynomial N � 10 are
compared to values obtained by DTcombined with modified
Adomian formula in [18] and to values produced by Matlab
function DDENSD.

First, we should say that the function DDENSD had
difficulty at 0 where the value of the delayed argument t/2

was equal to the argument itself. Hence, to make
DDENSD work, we replaced t/2 by t/2 − 10− 16 in the
second equation of (2). Our hypothesis is that the reason
of the DDENSD failure is a combination of two facts: the
second equation is neutral with respect to a proportional
delay and the interval where the problem is considered
contains 0.

Second, we should mention that the numerical results
for DDENSD were obtained by looking for approximate
solutions on the whole interval [0, t2]. When trying to
follow the method of steps, i.e., using DDENSD on [0, t1]

and then on [t1, t2], the results on the second interval
[t1, t2] did not correspond to reality: there was a dis-
continuity in u2 at t1.

Furthermore, we recall that the values taken from [18]
have been computed using symbolic software
Maple and the source code of the computation has been
lost.

Now, we can see a very good concordance of all al-
gorithms in numerical values of the second component u2,
while we observe a growing distance between the values of
the first component u1 computed by presented DT al-
gorithm and values computed by the other two algo-
rithms. As u1 has exponential characteristics, we interpret
the growing distance as growing lack of precision of DT
algorithm which is based on approximation by Taylor
polynomials. We suppose that dividing the intervals [0, t1]

and [t1, t2] into smaller subintervals, i.e., refining the mesh
grid, and applying the DT algorithm on those smaller
intervals consecutively will improve the performance of
the presented algorithm.

Although it seems that the algorithm used in [18] shows
better performance than the one presented in this paper, we
cannot claim it with certainty as the source code got lost and
we are not able to reproduce the data. Moreover, the ap-
proach used in [18] involves calculations of symbolic de-
rivatives which makes it difficult to implement in numerical
software like Matlab.

Table 1: Example 1, error analysis of u in [1, e].

Exact solution DT 5 DT 10 DT 25 Matlab DDENSD
t et |u − et| |u − et| |u − et| |u − et|

1 2.7183 0 0 0 0
1.4296 4.1769 0.0000 6.4890E − 12 8.8818E − 16 1.6976E − 5
1.8591 6.4182 0.0017 1.0381E − 8 8.8818E − 16 3.6095E − 5
2.2887 9.8622 0.0211 1.2409E − 6 3.5527E − 15 9.3438E − 5
e 15.1543 0.1273 3.0578E − 5 1.2861E − 12 1.4012E − 4

Table 2: Example 1, error analysis of u in [e, ee].

Exact solution DT 5 DT 10 DT 25 Matlab DDENSD
t et |u − et| |u − et| |u − et| |u − et|

e 15.1543 3.5527E − 15 3.5527E − 15 3.5527E − 15 0
5.8273 339.4331 32.3491 1.333 2.2737E − 13 0.0743
8.9363 7.6028E+ 3 4.4755E+ 3 397.5509 2.2638E − 5 3.1741
12.0453 1.7029E+ 5 1.5373E+ 5 5.6777E+ 4 0.9751 112.2467
ee 3.8143E+ 6 3.7554E+ 6 2.6576E+ 6 2.0358E+ 3 3.1395E+ 3
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4. Conclusion

In the paper, we presented an algorithm which makes use of
the differential transformation to initial value problems for
systems of delayed or neutral differential equations with
nonconstant delays. Two examples have been chosen to
validate and test the algorithm. Numerical comparison of the
presented semianalytical approach to Matlab function
DDENSD brought interesting and promising results.

Example 1 showed expected and reliable behaviour of the
differential transform in the first step of the method of steps
and expected deviation in the numerical results from values
of the exact solution in the second step. Furthermore, we
could observe a good concordance between the presented
algorithm and DDENSD.

After facing difficulties with DDENSD in Example 2, we
could confirm a very good concordance of both differential
transform and DDENSD in values of the component u2
which has a polynomial character on the considered in-
tervals. On the other hand, we observed a growing dis-
crepancy between the two methods in values of the
component u1 which has an exponential character. Our
conclusion is that the disagreement is caused by large lengths
of the intervals where the approximate solution is computed
using the differential transform and that refining the mesh
grid is necessary to obtain better performance.

Further investigation will be focused on experimenting
with different densities of mesh grids and studying con-
vergence of the algorithm to find the optimal mesh grid.
Numerical experiments will be focused on tuning the per-
formance on problems with high complexity whose exact
solutions are known and subsequently on applications to
nonartificial real-life problems whose exact solutions are
unknown.
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