
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering and Communication

Department of Mathematics

Mgr. Hana Halfarová
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Weakly delayed linear planar systems of discrete equations

1 Introduction

As most of the time measurements involving variables are discrete, the observed evolution
phenomena can be expressed naturally in terms of difference equations and, thus, such
equations are important mathematical models in their own right. Difference equations
have an important role in the study of discretization methods for differential equations,
too. The theory of difference equations is much richer than the corresponding theory of
differential equations. For example, a simple difference equation obtained from a first-
order differential equation may involve phenomena that can only occur for higher-order
differential equations. Thus, the theory of difference equations is interesting by itself and,
therefore, likely to take on greater importance in the near future.

The application of the theory of difference equations is rapidly increasing in various fields
such as numerical analysis, control theory, finite mathematics, and computer science.

The fundamentals of the theory of difference equations are well described for example in
books by S. Elaydi [17], by I. Győri, G. Ladas [19], by V. L. Kocić, G. Ladas [25] and by
R. P. Agarwal, M. Bohner, S. R. Grace, D. O’Regan [1].
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1.1 Current State

The difference equations have recently been an object of intensive research. Monographs
summarizing some outcomes were mentioned above.

Every month, numerous new papers are published on the qualitative theory of difference
equations. Some interesting results have been published on the representations of solutions
of linear discrete systems with delay, e.g., [11,12,23], on the existence of positive solutions
of discrete equations, e.g., [2–5, 27], on the oscillation of solutions of discrete equations,
e.g., [21, 28, 29], on the stability of solutions of discrete systems, e.g., [6, 14, 20, 24, 26]
and on the asymptotic properties of solutions of the discrete equations and systems such
as [7–10,15,16,18,37].

1.2 Aims of the thesis

The thesis is concened with planar systems of weakly delayed equations

x(k + 1) = Ax(k) +
n∑

l=1

Blxl(k −ml) (1)

where m1,m2, . . . ,mn are constant integer delays, 0 < m1 < m2 < · · · < mn, k ∈ Z∞0 ,
A,B1, ..., Bn are constant 2× 2 matrices, A = (aij), B

l = (blij), i, j = 1, 2, l = 1, 2, . . . , n
and x : Z∞−mn

→ R2. In the thesis, we construct general solutions of such systems. Further,
we show that, after several steps, the dimension of the space of all solutions is reduced to
a less-dimensional space. Moreover, we discuss the stability of the system.

Methodically, we follow the paper [13] where a planar weakly delayed linear discrete
system

x(k + 1) = Ax(k) +Bx(k −m), (2)

is considered with m ≥ 0 being a fixed integer, k ∈ Z∞0 , A = (aij), B = (bij) constant
2× 2 matrices, and x : Z∞−m → R2. A general solution of (2) is constructed and results on
the dimensionality of the space of solutions are derived.

Some of the results obtained are published in [38,39]. In [38], a system (1) with n = 2
is considered. The results published in [39] concern system (1) and generalize the results
published in [13].

1.3 Preliminary notions and properties

We use the following notation: for integers s, q, s ≤ q, we define Zq
s := {s, s + 1, . . . , q}

where s = −∞ or q =∞ are admitted, too. Throughout this dissertation, using notation
Zq

s, we always assume s ≤ q. In the thesis, we deal with the discrete planar systems (1)

x(k + 1) = Ax(k) +
n∑

l=1

Blxl(k −ml)
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where m1,m2, . . . ,mn are constant integer delays, 0 < m1 < m2 < · · · < mn, k ∈ Z∞0 ,
A,B1, ..., Bn are constant 2× 2 matrices, A = (aij), B

l = (blij), i, j = 1, 2, l = 1, 2, . . . , n
and x : Z∞−mn

→ R2. Throughout the dissertation, we assume that

Bl 6= Θ (3)

where l = 1, 2, . . . , n and Θ is 2× 2 zero matrix. Together with equation (1), we consider
an initial (Cauchy) problem

x(k) = ϕ(k) (4)

where k = −mn,−mn + 1, . . . , 0 with ϕ : Z0
−mn
→ R2. The existence and uniqueness of

the solution of the initial problem (1), (4) on Z∞−mn
is obvious. We recall that the solution

x : Z∞−mn
→ R2 of (1), (4) is defined as an infinite sequence

{x(−mn) = ϕ(−mn), x(−mn + 1) = ϕ(−mn + 1), . . . ,

x(0) = ϕ(0), x(1), x(2), . . . , x(k), . . . }

such that, for any k ∈ Z∞0 , equality (1) holds.

The space of all initial data (4) with ϕ : Z0
−mn
→ R2 is obviously 2(mn+1)-dimensional.

Below, we describe the fact that, among the systems (1), there are such systems that their
space of solutions, being initially 2(mn +1)-dimensional, on a reduced interval turns into a
space having a dimension less than 2(mn + 1). The problem under consideration (pasting
property of solutions) is exactly formulated in Part 1.4.

1.4 Weakly delayed systems

We consider the system (1) and look for a solution having the form x(k) = ξλk where
k ∈ Z∞−mn

, λ = const with λ 6= 0 and ξ = (ξ1, ξ2)
T is a nonzero constant vector. The usual

procedure leads to a characteristic equation

D := det

(
A+

n∑
l=1

λ−mlBl − λI

)
= 0 (5)

where I is the unit 2× 2 matrix. Together with (1), we consider a system with the terms
containing delays omitted

x(k + 1) = Ax(k) (6)

and its characteristic equation

det (A− λI) = 0. (7)

Definition 1.1. The system (1) is called a weakly delayed system if the characteristic
equations (5), (7) corresponding to systems (1) and (6) are equal, i.e. if, for every λ ∈
C \ {0},

D = det

(
A+

n∑
l=1

λ−mlBl − λI

)
= det (A− λI) . (8)
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We consider a linear transformation

x(k) = Sy(k) (9)

with a nonsingular 2× 2 matrix S. Then, the discrete system for y is

y(k + 1) = ASy(k) +
n∑

l=1

Bl
Sy(k −ml) (10)

with AS = S−1AS, Bl
S = S−1BlS where l = 1, 2, . . . , n. We show that a system’s property

of being one weakly delayed is preserved by every nonsingular linear transformation.

Lemma 1.2. If the system (1) is a weakly delayed system, then its arbitrary linear non-
singular transformation (9) again leads to a weakly delayed system (10).

1.5 Necessary and sufficient conditions determining weakly de-
layed systems

In the below theorem, we give conditions, in terms of determinants, indicating whether a
system is weakly delayed.

Theorem 1.3. System (1) is a weakly delayed system if and only if the following 3n +
n(n− 1)/2 conditions hold simultaneously:

bl11 + bl22 = 0, (11)∣∣∣∣bl11 bl12

bl21 bl22

∣∣∣∣ = 0, (12)

∣∣∣∣a11 a12

bl21 bl22

∣∣∣∣+

∣∣∣∣bl11 bl12

a21 a22

∣∣∣∣ = 0, (13)

∣∣∣∣bl11 bl12

bv21 bv22

∣∣∣∣+

∣∣∣∣bv11 bv12

bl21 bl22

∣∣∣∣ = 0 (14)

where l, v = 1, 2, . . . , n and v > l.

Lemma 1.4. Conditions (11)–(14) are equivalent to

trBl = detBl = 0,

det(A+Bl) = detA,

det(Bl +Bv) = 0,

where l, v = 1, 2, . . . , n and v > l.
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1.6 Problem under consideration

The aim of this thesis is to give explicit formulas for the solutions of weakly delayed
systems. This is done in Chapter 2. Moreover, we show (in Chapter 3) that, after several
steps, the dimension of the space of all solutions, being initially equal to the dimension
2(mn + 1) of the space of initial data (4) generated by discrete functions ϕ, is reduced
to a dimension less than the initial one on an interval of the form Z∞s with s > 0. In
other words, we will show that the 2(mn + 1)-dimensional space of all solutions of (1) is
pasted to a less-dimensional space of solutions on Z∞s . This problem is solved directly by
explicitly computing the corresponding solutions of the Cauchy problems with each of the
cases arising being considered. The underlying idea for such investigation is simple. If (1)
is a weakly delayed system, then the corresponding characteristic equation has only two
eigenvalues instead of 2(mn + 1) eigenvalues in the case of systems with non-weak delays.
This explains why the dimension of the space of solutions becomes less than the initial
one. The final results (Theorems 3.1 – 3.4 below) provide the dimension of the space of
solutions. Our results (published in [38] and [39]) generalize the results in [13]. Paper [38]
considers the system (1) with n = 2 and, in [39], a general case (1) is treated. From
explicit formulas we deduce (in Chapter 4) stability and so-called conditional stability of
the system (1).

1.7 Auxiliary formula

Recall one explicit formula (see e.g. [17]) for the solutions of linear scalar discrete non-
delayed equations used in this thesis. We consider initial - value problem for the first
order linear discrete nonhomogeneous equation

w(k + 1) = aw(k) + g(k), w(k0) = w0, k ∈ Z∞k0

with a ∈ C and g : Z∞k0
→ C. Then, it is easy to verify that unique solution of this problem

is

w(k) = ak−k0 w0 +
k−1∑
r=k0

ak−1−rg(r), k ∈ Z∞k0+1. (15)

Throughout this thesis, we adopt the customary notation for the sum:
∑`

i=`+tF(i) = 0
where ` is an integer, t is a positive integer and “F ” denotes the function considered
independently of whether it is defined for indicated arguments or not.

Note that the formula (15) is many times used in recent literature to analyze asymp-
totic properties of solutions of various classes of difference equations, including nonlinear
equations. We refer, e.g., to [30]– [36] and to relevant references therein.

2 General solution

In this chapter we derive general solution of weakly delayed system (1). If (8) holds, then
equations (5) and (7) have only two (and the same) roots simultaneously. In order to
prove the properties of the family of solutions of (1) formulated in Introduction, we will
discuss each combination of roots, i.e., the cases of two real and distinct roots, a pair of
complex conjugate roots, and, finally, a double real root.
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Although computations in Parts 1.4 and 1.5 were performed under assumption λ 6= 0,
results of this part remain valid also if one or both roots of characteristic equation (7) are
zero.

2.1 Jordan forms of the matrix A and corresponding solutions
of the problem (1), (4)

It is known that, for every matrix A, there exists a nonsingular matrix S transforming it
to the corresponding Jordan matrix form Λ. This means that

Λ = S−1AS,

where Λ has the following four possible forms (denoted below as Λ1,Λ2,Λ3,Λ4), depending
on the roots of the characteristic equation (7), i.e. on the roots of

λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0. (16)

If (16) has two real distinct roots λ1, λ2, then

Λ1 =

(
λ1 0
0 λ2

)
, (17)

if the roots are complex conjugate, i.e. λ1,2 = p± iq with q 6= 0, then

Λ2 =

(
p q
−q p

)
(18)

and, finally, in the case of one double real root λ1,2 = λ, we have either

Λ3 =

(
λ 0
0 λ

)
(19)

or

Λ4 =

(
λ 1
0 λ

)
. (20)

The transformation y(k) = S−1x(k) transforms (1) into a system

y(k + 1) = Λy(k) +
n∑

l=1

B∗ly(k −ml), k ∈ Z∞0 (21)

with B∗l = S−1BlS, B∗l = (b∗lij), l = 1, . . . , n and i, j = 1, 2. Together with (21), we
consider an initial problem

y(k) = ϕ∗(k), (22)

k ∈ Z0
−mn

with ϕ∗ : Z0
−mn
→ R2 where ϕ∗(k) = S−1ϕ(k) is the initial function correspond-

ing to the initial function ϕ in (4).
Below, we consider all four possible cases (17)–(20) separately.
We define

Φ1(k) := (0, ϕ∗1(k))T , Φ2(k) := (ϕ∗2(k), 0)T , k ∈ Z0
−mn

.

Assuming that (1) is a weakly delayed system, by Lemma 1.2, the system (21) is weakly
delayed system again.
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2.1.1 The case (17) of two real distinct roots

In this case, we have Λ = Λ1 and Λk
1 = diag(λk

1, λ
k
2). The necessary and sufficient

conditions (11)–(14) for (21) turn into

b∗l11 + b∗l22 = 0, (23)∣∣∣∣b∗l11 b∗l12

b∗l21 b∗l22

∣∣∣∣ = b∗l11b
∗l
22 − b∗l12b

∗l
21 = 0, (24)

∣∣∣∣λ1 0
b∗l21 b∗l22

∣∣∣∣+

∣∣∣∣b∗l11 b∗l12

0 λ2

∣∣∣∣ = λ1b
∗l
22 + λ2b

∗l
11 = 0, (25)

∣∣∣∣b∗l11 b∗l12

b∗v21 b∗v22

∣∣∣∣+

∣∣∣∣b∗v11 b∗v12

b∗l21 b∗l22

∣∣∣∣ = 0. (26)

Since λ1 6= λ2, equations (23), (25) yield b∗l11 = b∗l22 = 0. Then, from (24), we get b∗l12b
∗l
21 = 0,

so that either b∗l21 = 0 or b∗l12 = 0. In view of assumptions Bl 6= Θ, l = 1, 2, . . . , n we
conclude that only the following cases I, II are possible

I) b∗l11 = b∗l22 = b∗l21 = 0, b∗l12 6= 0, l = 1, 2, . . . , n,

II) b∗l11 = b∗l22 = b∗l12 = 0, b∗l21 6= 0, l = 1, 2, . . . , n.

In Theorem 1.5 below are both cases I, II analyzed.

Theorem 2.1. Let (1) be a weakly delayed system and equation (16) has two real distinct
roots λ1, λ2. If the case I) hold, then the solution of the initial problem (1), (4) is
x(k) = Sy(k), k ∈ Z∞−mn

where y(k) has the form

y(k) =



ϕ∗(k) if k ∈ Z0
−mn

,

Λk
1ϕ
∗(0) +

k−1∑
r=0

λk−1−r
1

[
n∑

l=1

b∗l12Φ2(r −ml)

]
if k ∈ Zm1+1

1 ,

. . .

Λk
1ϕ
∗(0) +

k−1∑
r=0

λk−1−r
1

[
n∑

l=s+1

b∗l12Φ2(r −ml)

]
+

s∑
l=1

b∗l12

[
ml∑
r=0

λk−1−r
1 Φ2(r −ml)

+Φ2(0)
k−1∑

r=ml+1

λk−1−r
1 λr−ml

2

]
if k ∈ Zms+1+1

ms+2 , s = 1, 2, . . . , n− 1,

. . .

Λk
1ϕ
∗(0) +

n∑
l=1

b∗l12

[
ml∑
r=0

λk−1−r
1 Φ2(r −ml)

+Φ2(0)
k−1∑

r=ml+1

λk−1−r
1 λr−ml

2

]
if k ∈ Z∞mn+2.
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If the case II) is true, then the solution of initial problem (1), (4) is x(k) = Sy(k),
k ∈ Z∞−mn

where y(k) has the form

y(k) =



ϕ∗(k) if k ∈ Z0
−mn

,

Λk
1ϕ
∗(0) +

k−1∑
r=0

λk−1−r
2

[
n∑

l=1

b∗l21Φ1(r −ml)

]
if k ∈ Zm1+1

1 ,

. . .

Λk
1ϕ
∗(0) +

k−1∑
r=0

λk−1−r
2

[
n∑

l=s+1

b∗l21Φ1(r −ml)

]
+

s∑
l=1

b∗l21

[
ml∑
r=0

λk−1−r
2 Φ1(r −ml)

+Φ1(0)
k−1∑

r=ml+1

λr−ml
1 λk−1−r

2

]
if k ∈ Zms+1+1

ms+2 , s = 1, 2, . . . , n− 1,

. . .

Λk
1ϕ
∗(0) +

n∑
l=1

b∗l21

[
ml∑
r=0

λk−1−r
2 Φ1(r −ml)

+Φ1(0)
k−1∑

r=ml+1

λr−ml
1 λk−1−r

2

]
if k ∈ Z∞mn+2.

2.1.2 The case (18) of two complex conjugate roots

The necessary and sufficient conditions (11)–(14) take the forms (23), (24),
(26) and ∣∣∣∣ p q

b∗l21 b∗l22

∣∣∣∣+

∣∣∣∣b∗l11 b∗l12

−q p

∣∣∣∣ = p(b∗l11 + b∗l22) + q(b∗l12 − b∗l21) = 0 (27)

where l, v = 1, 2, . . . , n and v > l.
The system of conditions (23), (24) and (27) gives b∗l12 = b∗l21, (b∗l11)

2 = −(b∗l12)
2 and

admits only one possibility, namely,

b∗l11 = b∗l22 = b∗l12 = b∗l21 = 0.

Consequently, B∗l = Θ, Bl = Θ.
The initial problem (1), (4) reduces to a problem without delay{

x(k + 1) = Ax(k),

x(k) = ϕ(k), k ∈ Z0
−mn

and, obviously,

x(k) =

{
ϕ(k) if k ∈ Z0

−mn
,

Akϕ(0) if k ∈ Z∞1 .
From this discussion, the next theorem follows.

Theorem 2.2. There exists no weakly delayed system (1) if Λ has the form (18).

Finally, we note that the assumptions (3) alone exclude this case.
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2.1.3 The case (19) of double real root

In this case we have Λ = Λ3 and Λk
3 = diag(λk, λk). For (21), the necessary and sufficient

conditions (11)–(14) are reduced to (23), (24), (26) and∣∣∣∣ λ 0
b∗l21 b∗l22

∣∣∣∣+

∣∣∣∣b∗l11 b∗l12

0 λ

∣∣∣∣ = λ(b∗l11 + b∗l22) = 0 (28)

where l = 1, 2, . . . , n.

From (23), (24) and (28), we get b∗l12b
∗l
21 = −

(
b∗l11

)2
. From the condition (26) we get

b∗l11b
∗v
22 − b∗l12b

∗v
21 + b∗l22b

∗v
11 − b∗l21b

∗v
12 = 0 (29)

where l, v = 1, 2, . . . , n and v > l. Multiplying (29) by b∗l12b
∗v
12, we have

b∗l11b
∗v
22b
∗l
12b
∗v
12 − (b∗l12)

2b∗v21b
∗v
12 + b∗l22b

∗v
11b
∗l
12b
∗v
12 − b∗l21b

∗l
12(b

∗v
12)2 = 0. (30)

Substituting b∗l12b
∗l
21 = −

(
b∗l11

)2
, b∗v12b

∗v
21 = − (b∗v11)2 into (30) and using (23) we obtain

−b∗l11b
∗v
11b
∗l
12b
∗v
12 + (b∗l12)

2(b∗v11)2 − b∗l11b
∗v
11b
∗l
12b
∗v
12 + (b∗l11)

2(b∗v12)2 = 0. (31)

The equation (31) can be written as

(b∗l12b
∗v
11 − b∗v12b

∗l
11)

2 = 0

and

b∗l12b
∗v
11 = b∗v12b

∗l
11. (32)

We analyse the two possible cases: b∗l12b
∗l
21 = 0 and b∗l12b

∗l
21 6= 0.

For the case b∗l12b
∗l
21 = 0, we have from (23), (24) that b∗l11 = b∗l22 = 0 and b∗l12 = 0 or b∗l21 = 0.

For b∗l12 = 0 and b∗l21 6= 0, condition (26) gives b∗v12 = 0, where l, v = 1, 2, . . . , n and v > l.
Then, from (23), (24) for l = v, we get b∗v11 = b∗v22 = 0 and b∗v21 6= 0.
For b∗l21 = 0 and b∗l12 6= 0, condition (26) gives b∗v21 = 0, where l, v = 1, 2, . . . , n and v > l.
Then, from (23), (24) for l = v, we get b∗v11 = b∗v22 = 0 and b∗v12 6= 0.

Now we discuss the case b∗l12b
∗l
21 6= 0. From conditions (23), (24), we have b∗l12b

∗l
21 = −

(
b∗l11

)2
and b∗l11b

∗l
22 6= 0. This yields b∗l11 6= 0, b∗l22 6= 0 and, from (32), we have b∗v11 6= 0, b∗v12 6= 0. By

conditions (23), (24) for v = l, we get b∗v22 6= 0, b∗v21 6= 0.

From the assumptions Bl 6= Θ, we conclude that only the following cases I, II, III are
possible

I) b∗l11 = b∗l22 = b∗l21 = 0, b∗l12 6= 0,

II) b∗l11 = b∗l22 = b∗l12 = 0, b∗l21 6= 0,

III) b∗l12b
∗l
21 6= 0,

where l = 1, 2, . . . , n.

13
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The case b∗l
12b

∗l
21 = 0.

Theorem 2.3. Let (1) be a weakly delayed system, equation (16) has a two-fold root
λ1,2 = λ, b∗l12b

∗l
21 = 0 and the matrix Λ has the form (19). Then the solution of the initial

problem (1), (4) is x(k) = Sy(k), k ∈ Z∞−mn
where in the case b∗l21 = 0, y(k) has the form

y(k) =



ϕ∗(k) if k ∈ Z0
−mn

,

Λk
3ϕ
∗(0) +

k−1∑
r=0

λk−1−r

[
n∑

l=1

b∗l12Φ2(r −ml)

]
if k ∈ Zm1+1

1 ,

. . .

Λk
3ϕ
∗(0) +

k−1∑
r=0

λk−1−r

[
n∑

l=s+1

b∗l12Φ2(r −ml)

]
+

s∑
l=1

b∗l12

[
ml∑
r=0

λk−1−rΦ2(r −ml)

+(k − 1−ml)λ
k−1−mlΦ2(0)

]
if k ∈ Zms+1+1

ms+2 , s = 1, 2, . . . , n− 1,

. . .

Λk
3ϕ
∗(0) +

n∑
l=1

b∗l12

[
ml∑
r=0

λk−1−rΦ2(r −ml)

+(k − 1−ml)λ
k−1−mlΦ2(0)

]
if k ∈ Z∞mn+2.

If b∗l12 = 0 is true then the solution of initial problem (1), (4) is x(k) = Sy(k), k ∈ Z∞−mn

where y(k) has the form

y(k) =



ϕ∗(k) if k ∈ Z0
−mn

,

Λk
3ϕ
∗(0) +

k−1∑
r=0

λk−1−r

[
n∑

l=1

b∗l21Φ1(r −ml)

]
if k ∈ Zm1+1

1 ,

. . .

Λk
3ϕ
∗(0) +

k−1∑
r=0

λk−1−r

[
n∑

l=s+1

b∗l21Φ1(r −ml)

]
+

s∑
l=1

b∗l21

[
ml∑
r=0

λk−1−rΦ1(r −ml)

+(k − 1−ml)λ
k−1−mlΦ1(0)

]
if k ∈ Zms+1+1

ms+2 , s = 1, 2, . . . , n− 1

. . .

Λk
3ϕ
∗(0) +

n∑
l=1

b∗l21

[
ml∑
r=0

λk−1−rΦ1(r −ml)

+(k − 1−ml)λ
k−1−mlΦ1(0)

]
if k ∈ Z∞mn+2.
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The case b∗l
12b

∗l
21 6= 0.

For k ∈ Z0
−mn

, we define

Φ∗l (k) :=

(
b∗l11

[
ϕ∗1(k) +

b∗112

b∗111

ϕ∗2(k)

]
,−(b∗l11)

2

b∗l12

[
ϕ∗1(k) +

b∗112

b∗111

ϕ∗2(k)

])T

.

Theorem 2.4. Let the system (1) be a weakly delayed system, equation (16) admits two
repeated roots λ1,2 = λ, b∗l12b

∗l
21 6= 0 and the matrix Λ3 has the form (19). Then the solution

of the initial problem (1), (4) is given by x(k) = Sy(k), k ∈ Z∞−mn
where y(k) has the

form

y(k) =



ϕ∗(k) if k ∈ Z0
−mn

,

Λk
3ϕ
∗(0) +

k−1∑
r=0

λk−1−r

[ n∑
l=1

Φ∗l (r −ml)

]
if k ∈ Zm1+1

1 ,

. . .

Λk
3ϕ
∗(0) +

k−1∑
r=0

λk−1−r

[ n∑
l=s+1

Φ∗l (r −ml)

]
+

s∑
l=1

[
ml∑
r=0

λk−1−rΦ∗l (r −ml)

+(k − 1−ml)λ
k−1−mlΦ∗l (0)

]
if k ∈ Zms+1+1

ms+2 , s = 1, 2, . . . , n− 1,

. . .

Λk
3ϕ
∗(0) +

n∑
l=1

[ ml∑
r=0

λk−1−rΦ∗l (r −ml)

+(k − 1−ml)λ
k−1−mlΦ∗l (0)

]
if k ∈ Z∞mn+2.

2.1.4 The case (20) of a double real root

If the matrix Λ has the form (20), the necessary and sufficient conditions (11)–(14),
for (21) are reduced to (23), (24), (26) and∣∣∣∣ λ 1

b∗l21 b∗l22

∣∣∣∣+

∣∣∣∣b∗l11 b∗l12

0 λ

∣∣∣∣ = λ(b∗l11 + b∗l22)− b∗l21 =0. (33)

Then (23), (24), and (33) give b∗l11 = b∗l22 = b∗l21 = 0.

Theorem 2.5. Let (1) be a weakly delayed system, equation (16) has a double root λ1,2 =
λ and the matrix Λ has the form (20). Then b∗l11 = b∗l22 = b∗l21 = 0 and the solution of the

15



Weakly delayed linear planar systems of discrete equations

initial problem (1), (4) is x(k) = Sy(k), y(k) = (y1(k), y2(k))T and

y1(k) =



ϕ∗1(k) if k ∈ Z0
−mn

,

λkϕ∗1(0) + kλk−1ϕ∗2(0) +
k−1∑
r=0

λk−1−r

[
n∑

l=1

b∗l12ϕ
∗
2(r −ml)

]
if k ∈ Zm1+1

1 ,

. . .

λkϕ∗1(0) + kλk−1ϕ∗2(0) +
k−1∑
r=0

λk−1−r

[
n∑

l=s+1

b∗l12ϕ
∗
2(r −ml)

]
+

s∑
l=1

b∗l12

[
ml∑
r=0

λk−1−rϕ∗2(r −ml)

+(k − 1−ml)λ
k−1−mlϕ∗2(0)

]
if k ∈ Zms+1+1

ms+2 , s = 1, 2, . . . , n− 1,

. . .

λkϕ∗1(0) + kλk−1ϕ∗2(0) +
n∑

l=1

b∗l12

[
ml∑
r=0

λk−1−rϕ∗2(r −ml)

+(k − 1−ml)λ
k−1−mlϕ∗2(0)

]
if k ∈ Z∞mn+2,

y2(k) =

 ϕ∗2(k) if k ∈ Z0
−mn

,

λkϕ∗2(0) if k ∈ Z∞1 .

3 Dimension of the set of solutions

Since all the possible cases of the planar system (1) with weak delay have been analysed,
we are ready to formulate results concerning the dimension of the space of solutions
of (1) assuming that initial conditions (4) are variable. Although the case b∗l11 = b∗l22 =
b∗l12 = b∗l21 = 0 does not lead to a weakly delayed system and is excluded by (3), for
completeness of analysis we incorporate such possibility in our analysis as well (such a
case can be considered as a degenerated weakly delayed system). Before formulation we
remark that if an assumption in the following theorem is assumed to be valid for a fixed
index l ∈ {1, 2, . . . , n}, it is easy to see that it must be valid for all indices l = 1, 2, . . . , n.

Theorem 3.1. Let (1) be a weakly delayed system and (16) have both roots different from
zero and l ∈ {1, 2, . . . , n} be fixed. Then the space of solutions, being initially 2(mn + 1)-
dimensional, becomes on Z∞mn+2 only

1) (mn + 2)-dimensional if equation (16) has

a) two real distinct roots and (b∗l12)
2 + (b∗l21)

2 > 0.

b) a double real root, b∗l12b
∗l
21 = 0 and (b∗l12)

2 + (b∗l21)
2 > 0.
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c) a double real root and b∗l12b
∗l
21 6= 0.

2) 2-dimensional if equation (16) has

a) two real distinct roots and b∗l12 = b∗l21 = 0.

b) a pair of complex conjugate roots.

c) a double real root and b∗l12 = b∗l21 = 0.

Theorem 3.1 can be formulated simply as

Theorem 3.2. Let (1) be a weakly delayed system and let (16) have both roots different
from zero. Then the space of solutions, being initially 2(mn +1)-dimensional, is on Z∞mn+2

only

1) (mn + 2)-dimensional if (b∗l12)
2 + (b∗l21)

2 > 0.

2) 2-dimensional if b∗l12 = b∗l21 = 0.

Theorem 3.3. Let (1) be a weakly delayed system and let (16) have a simple root λ = 0.
Then the space of solutions, being initially 2(mn + 1)-dimensional, is either (mn + 1)-
dimensional or 1-dimensional on Z∞mn+2.

Theorem 3.4. Let (1) be a weakly delayed system and let (16) have a double root λ =
0. Then the space of solutions, being initially 2(mn + 1)-dimensional, turns into a 0-
dimensional space on Z∞mn+2, namely, into the zero solution.

4 Discussion of stability

In this chapter we use the explicit formulas derived in Chapter 3 for stability analysis of
linear system (1).

Define a norm of a 2× 2 matrix A = {aij}2i,j=1 as

‖A‖ = max{|a11|+ |a12|, |a21|+ |a22|}

and, for 2× 1 vectors x = (x1, x2)
T , an induced vector norm

‖x‖ = max{|x1|, |x2|}.

For a discrete vector ψ : Z0
−mn
→ R2 we define

‖ψ‖mn
:= max{‖ψ(−mn)‖, ‖ψ(−mn + 1)‖, . . . , ‖ψ(0)‖}.

Now we define the stability of the zero solution of linear system (1)

x(k + 1) = Ax(k) +
n∑

l=1

Blxl(k −ml)

where k ∈ Z∞−mn
, Bl are 2× 2 constant matrices.

17
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Definition 4.1. The zero solution x(k) = 0, k ∈ Z∞−mn
of (1) is said to be

a) Stable if, given ε > 0 and k0 ≥ 0, there exists δ = δ(ε, k0) such that ϕ(k), k ∈
Zk0

k0−mn
, ‖ϕ‖mn

< δ implies ‖x(k, k0, ϕ)‖ < ε for all k ≥ k0, uniformly stable if δ
may be chosen independently of k0, unstable if it is not stable;

b) Asymptotically stable if it is stable and limk→∞ ‖x(k)‖ = 0;

c) Conditionally stable (conditionally asymptotically stable) if it is stable (asymptoti-
cally stable) under the condition that a subspace P of the space all initial data with
dimP satisfying

1 < dimP < 2(mn + 1)

is fixed.

It is easy to see that

max{‖ϕ∗(0)‖, ‖Φ2(0)‖, ‖Φ2(−1)‖, . . . , ‖Φ2(−ml)‖} ≤ ‖ϕ∗‖mn .

Assume

q = max{|λ1|, |λ2|} < 1.

In the following Theorems 4.2–4.16, we present the stability, asymptotic stability,
conditional asymptotic stability, and conditional stability of system (21), (22). Tracing
the statements of these theorems we conclude that it is sufficient to perform stability
investigation only on the interval k ∈ Z∞mn+2. Therefore we omit the technical details
connected with investigating the stability on k ∈ Zmn+1

0 .

Theorem 4.2. If Theorem 2.1 holds and q < 1, then the zero solution of (1) is stable.

Theorem 4.3. If Theorem 2.1 holds and q < 1, then the zero solution of (1) is asymp-
totically stable.

Theorem 4.4. If Theorem 2.3 holds and q < 1, then the zero solution of (1) is asymp-
totically stable.

Theorem 4.5. If Theorem 2.4 holds and q < 1, then the zero solution of (1) is asymp-
totically stable.

Theorem 4.6. If Theorem 2.5 holds and q < 1, then the zero solution of (1) is asymp-
totically stable.

Theorem 4.7. If Theorem 2.1 holds and |λ1| = 1, |λ2| ≤ q < 1, then the zero solution
of (1) is stable.

Theorem 4.8. If Theorem 2.1 holds and |λ1| ≤ q < 1, |λ2| = 1, then the zero solution
of (1) is stable.

Theorem 4.9. If Theorem 2.1 holds, the case I) occurs, |λ1| ≤ q < 1, |λ2| ≥ 1 and
ϕ∗2(0) = 0, then the zero solution of (1) is conditionally asymptotically stable.
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Theorem 4.10. If Theorem 2.1 holds, the case II) occurs, |λ2| ≤ q < 1, |λ1| ≥ 1 and
ϕ∗1(0) = 0, then the zero solution of (1) is conditionally asymptotically stable.

Theorem 4.11. If Theorem 2.1 holds, the case I) occurs, |λ1| = 1, |λ2| > 1 and ϕ∗2(0) = 0,
then the zero solution of (1) is conditionally stable.

Theorem 4.12. If Theorem 2.1 holds, the case II) occurs, |λ2| = 1, |λ1| > 1 and ϕ∗1(0) =
0, then the zero solution of (1) is conditionally stable.

Theorem 4.13. If Theorem 2.3 holds, the case b∗l21 = 0 occurs, |λ| = 1 and ϕ∗2(0) = 0,
then the zero solution of (1) is conditionally stable.

Theorem 4.14. If Theorem 2.3 holds, the case b∗l12 = 0 occurs, |λ| = 1 and ϕ∗1(0) = 0,
then the zero solution of (1) is conditionally stable.

Theorem 4.15. If Theorem 2.4 holds and |λ| = 1 and ϕ∗1(0) = ϕ∗2(0) = 0, then the zero
solution of (1) is conditionally stable.

Theorem 4.16. If Theorem 2.5 holds and |λ| = 1 and ϕ∗2(0) = 0, then the zero solution
of (1) is conditionally stable.

5 Conclusions

To our best knowledge, weakly delayed systems were first defined in [22] for systems of
linear delayed differential systems with constant coefficients and, in [13], for planar linear
discrete systems with a single delay (in these papers such systems are called systems with
a weak delay). The weakly delayed systems analyzed in this paper can be simplified and
their solutions can be found in explicit analytical forms (results obtained and published
in [39] generalize those in [13] and [38]). Consequently, analytical forms of solutions can
be used directly to solve several problems for weakly delayed systems, e.g., problems of
asymptotical behavior of their solutions, stability problems, boundary-value problems,
and some problems of control theory.
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[37] Stević, S.; Iričanin B. Unbounded Solutions of the Difference Equation x(n) =
x(n − l)x(n − k − 1). Abstr. Appl. Anal., Article Number: 561682, DOI:
10.1155/2011/561682, Published: 2011.

Selected publications of the author
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Abstract

The present thesis deals with planar weakly delayed linear discrete systems

x(k + 1) = Ax(k) +
n∑

l=1

Blxl(k −ml)

where k ∈ Z∞0 := {0, 1, . . . ,∞}, m1,m2, . . . ,mn are constant integer delays, 0 < m1 <
m2 < · · · < mn, A,B1, . . . , Bn are constant 2 × 2 matrices and x : Z∞−mn

→ R2. The
characteristic equations of weakly delayed systems are identical with those of the same
systems but without delayed terms. In this case, after several steps, the space of solutions
with a given starting dimension 2(mn + 1) is pasted into a space with a dimension less
than the starting one. In a sense, this situation is analogous to one known in the theory of
linear differential systems with constant coefficients and special delays when the initially
infinite dimensional space of solutions on the initial interval turns (after several steps) into
a finite dimensional set of solutions. For every possible case, explicit general solutions
are constructed and, finally, results on the dimensionality of the space of solutions are
obtained. The stability of solutions is investigated as well.

Abstrakt

Dizertačńı práce se zabývá slabě zpožděnými lineárńımi rovinnými systémemy s kon-
stantńımi koeficienty tvaru

x(k + 1) = Ax(k) +
n∑

l=1

Blxl(k −ml)

kde k ∈ Z∞0 := {0, 1, . . . ,∞}, m1,m2, . . . ,mn jsou konstatńı celá č́ısla, 0 < m1 < m2 <
· · · < mn, A,B1, . . . , Bn jsou konstantńı 2× 2 matice a x : Z∞−mn

→ R2 je hledané řešeńı.
Charakteristická rovnice těchto systémů je identická s charakteristickou rovnićı systému,
který neobsahuje zpožděné členy. V takovém př́ıpadě se počátečńı dimenze prostoru
řešeńı 2(mn + 1) měńı po několika kroćıch na menš́ı. V jistém smyslu je tato situace
analogická podobnému jevu v teorii lineárńıch diferenciálńıch systémů s konstantńımi
koeficienty a speciálńım zpožděńım, kdy p̊uvodně nekonečně rozměrný prostor řešeńı (na
počátečńım intervalu) přejde po několika kroćıch do konečného prostoru řešeńı. V práci je
pro každý možný př́ıpad kombinace kořen̊u charakteristické rovnice konstruováno obecné
řešeńı daného systému a jsou formulovány výsledky o dimenzi prostoru řešeńı. Také je
zkoumána stabilita řešeńı.
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