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Abstract

The presented thesis is devoted to mathematical modeling of concrete fracture.

A special type of model called discrete particle model is used. The concrete meso-

structure is simplified as a system of interconnected polyhedral particles. The par-

ticles represent larger concrete aggregates with surrounding cement paste. The

particle interaction is prescribed at their contacts. Solution of discrete displacement

field is obtained under the assumption of small deformations and rigid body move-

ment of particles. Two modifications of the static version of the discrete meso-scale

model are presented: (i) representation of short fiber reinforcement and (ii) implicit

dynamic solver.

The first main part of the thesis is devoted to modelling of short fiber reinforce-

ment, which is used to improve poor tensile performance of concrete. This material

modification leads to more efficient material use and crack width reduction. Short

fibers are represented in the discrete model indirectly, taking into account the fric-

tional forces between fiber and cement matrix. The fiber forces are applied at particle

contacts working against the crack opening. This modification is able to capture

the strain hardening behavior and the multiple cracking of the fiber reinforced com-

posites.

The second main part of the thesis addresses dynamic material behavior. Con-

crete resistance varies under different strain-rates. For slow, quasi-static loading

rates, the initial micro-cracks localize into a macro-crack. For fast loading rates, the

energy is not consumed by one crack only, but multiple cracking and crack branching

occurs. The inertia typically dominates in fast processes. Even though the meso-

scale model accounts for the inertia and the crack branching, the cracking at lower

scale is not addressed. Therefore additional phenomenological rate-dependency of

the constitutive law is adopted. Numerical simulations on various geometries un-

der various loading rates are performed and compared to experimental evidence

from literature. Dynamic material behavior is computed using Newmark’s implicit

time-integration scheme.
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Abstrakt

Předkládaná práce se zabývá matematickým modelováńım chováńı betonu. K

numerické analýze je použit diskrétńı částicový model. Tento model zjednodušuje

meso-strukturu materiálu na systém propojených diskrétńıch částic – konvexńıch

mnohostěn̊u. Částice reprezentuj́ı větš́ı zrna kameniva společně s okolńı cemen-

tovou matrićı. Tyto částice jsou uvažovány ideálně tuhé a jejich vzájemná interakce

je předepsána na kontaktech sousedńıch částic. Při hledáńı nespojitého pole po-

sun̊u a rotaćı jsou zjednodušeně předpokládány malé deformace. Práce popisuje dvě

rozš́ı̌reńı implementovaná do stávaj́ıćı verze modelu, konkrétně (i) přidáńı reprezen-

tace krátké rozptýlené výztuže a (ii) implicitńı dynamický řešič.

Prvńı z hlavńıch část́ı práce se zabývá modelováńım kompozit̊u s krátkou

rozptýlenou výztuž́ı. Krátká vlákna rozptýlená v materiálu přisṕıvaj́ı k zlepšeńı

jinak nepř́ıznivé tahové pevnosti betonu. Vlákna přemosťuj́ı vznikaj́ıćı trhliny a

přenášej́ı značnou část zat́ıžeńı, docháźı tak ke sńıžeńı š́ı̌rky trhlin, jejich četnost

je naopak zvýšena a materiál je pak lépe využit. Vlákna jsou v částicovém mod-

elu reprezentována nepř́ımo, zohledněńım třeńı mezi vláknem a cementovou ma-

trićı silami, které p̊usob́ı proti otev́ıráńı trhlin. S pomoćı tohoto rozš́ı̌reńı model

dokáže předpov́ıdat chováńı vláknobetonu zahrnuj́ıćı tahové zpevněńı i navýšeńı

počtu trhlin.

Druhá z hlavńıch část́ı se zabývá odezvou materiálu na dynamické zat́ıžeńı. Be-

ton vykazuje rozd́ılné chováńı pro r̊uzné rychlosti zatěžováńı. V př́ıpadě pomalého,

kvazi-statického, zatěžováńı se počátečńı mikro-trhliny lokalizuj́ı v makro-trhlinu.

Docháźı-li k rychlému zatěžováńı, energie nahromaděná v tělese neńı spotřebována

pouze jednou trhlinou, ale docháźı k jej́ımu větveńı. V př́ıpadě rychlých proces̊u

je hlavńım faktorem setrvačnost hmoty, která je zat́ıžeńım urychlována. Struktura

materiálu a setrvačnost částic je v mezo-úrovňovém diskrétńım modelu zahrnuta.

Přesto ale daľśı jevy prob́ıhaj́ıćı pod rozlǐsovaćı úrovńı modelu ovlivňuj́ı výsledné

chováńı materiálu. Proto je do modelu přidána fenomenologická závislost konstitu-

tivńıho zákona na rychlosti přetvářeńı. Numerické simulace těles rozličných tvar̊u

zatěžovaných r̊uznou rychlost́ı deformace jsou porovnány s experimenty z literatury.

Kĺıčová slova

Beton; Trhliny; Diskrétńı model; Mezo úrovňový model; Krátká rozptýlená

výztuž; Dynamika; Setrvačnost; Rychlost zatěžováńı
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Vı́t Posṕıchal. I am glad for all these people I could have meet during my life up to

this point.

Thank you

Apart from support from the mentioned individuals, the work on this thesis was

financially support by:

Czech Science Foundation under projects GA16-22230S, GJ15-19865Y, GA19-

12197S, GA19-06684J and Ministry of Education, Sports and Youth of under Specific

University Research projects FAST-J-17-4583 and FAST-J-18-5412.

This support is gratefully acknowledged.

VII





CONTENTS

1 Introductory remarks 1

1.1 Fracture of concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Modelling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Discrete modeling approach 7

2 Discrete formulation 9

3 Meso-scale discrete model 11

3.1 Spatial domain discretization . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Contact behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Integration of stress over the facet . . . . . . . . . . . . . . . . . . . . 18

3.4 Random field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II Fiber reinforced concrete 21

4 Fibers and concrete 23

4.1 Cementitious composites with fibers . . . . . . . . . . . . . . . . . . . 23

4.2 Fiber representation in computational model . . . . . . . . . . . . . . 24

5 Fibers in meso-scale model 27

5.1 Fiber bridging force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Multiple cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Micro-effects at fiber exit point . . . . . . . . . . . . . . . . . . . . . 29

5.4 Fibers in discrete model . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Numerical simulations 33

6.1 Two sided pullout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Volume fraction effect . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Preliminary study on uniaxial tensile test . . . . . . . . . . . . . . . . 35

6.4 Detail study on model parameters influence . . . . . . . . . . . . . . 36

6.5 Random concrete strength . . . . . . . . . . . . . . . . . . . . . . . . 40

6.6 Comparison to experimental data . . . . . . . . . . . . . . . . . . . . 40

6.7 Conclusions about the fiber model . . . . . . . . . . . . . . . . . . . . 42

IX



III Dynamics 45

7 Strain-rate effect in concrete fracture 47

8 Transient solution 49

8.1 Balance equation - time integration . . . . . . . . . . . . . . . . . . . 49

8.2 Mass matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3 Elastic behavior in dynamic regime . . . . . . . . . . . . . . . . . . . 51

8.4 Strain rate dependency of constitutive law . . . . . . . . . . . . . . . 54

9 Numerical simulations 59

9.1 Available experimental data . . . . . . . . . . . . . . . . . . . . . . . 59

9.2 L-shaped specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.3 Compact tension specimens . . . . . . . . . . . . . . . . . . . . . . . 67

9.4 Brazilian disk specimen . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.5 Spalling test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.6 Conclusions about the dynamic model . . . . . . . . . . . . . . . . . 82

10 Closing remarks 85

10.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 87

Curiculum vitae 95

List of publications 96



LIST OF FIGURES

2.1 Various types of discrete formulation in 2D. Left: lattice of trusses or

beams, center: projection of concrete structure and different element

properties and right: rigid polygonal particles . . . . . . . . . . . . . 9

3.1 (a) 3D Voronoi rigid cell with connections to neighbouring particle

centers, (b) decomposition of polyhedron into tetrahedrons, (c) simple

and (d) discretized facet. . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Schematic description of tensile part of the meso-scale constitutive

law with strain-softening. . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Top: elastic limit in terms of straining direction angle 𝜔 ∈ ⟨−𝜋

2
; 𝜋

2
⟩;

bottom: different post-critical behavior for different angle 𝜔. . . . . . 17

3.4 Difference in model results obtained with beam loaded in uni-axial

tension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Difference in model results obtained for four point bending test. . . . 19

4.1 (a) fiber bridging crack in material, (b) representation of different

material phase in lattice model, (c) indirect fiber representation in

discrete particle model and (d) frictional and bond stress distribution

along the fiber length. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Crack length divided into pullout on each side according to different

stage of fiber behavior – debonding on the left, pullout on the right.

Superscripts 𝑅 and 𝐿 refer to the right and left side of the crack

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Schematic explanation of angles used in Eqs.(5.8-5.10). . . . . . . . . 29

5.3 Influence of parameters describing micro-scale fiber behavior –

Eqs. (5.8-5.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Influence of material parameters to results of two-sided pullout sim-

ulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Influence of fiber volume fraction on a single contact response. . . . . 34

6.3 Settings of uni-axial tensile test with fibers aligned with loading di-

rection or randomly oriented. . . . . . . . . . . . . . . . . . . . . . . 35

6.4 Influence of material parameters to results of uni-axial test simulation

of prism made of fiber reinforced composite. . . . . . . . . . . . . . . 36

6.5 Sensitivity of loading and straining capacity to model input parameters. 37

6.6 Influence of concrete parameters. . . . . . . . . . . . . . . . . . . . . 38

6.7 Influence of shear stress between fiber and matrix 𝜏0 and hardening

parameter 𝛽f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.8 Influence of parameters related to micro-spalling at the fiber exit point. 40



6.9 Application of random field on concrete material parameters; top:

load-displacement curves, center: spatial fluctuation of concrete

strength, bottom: crack pattern at the final stage. . . . . . . . . . . . 41

6.10 Comparison of the numerical load-displacement curves and crack pat-

terns with the experimental data reported by Li et al. (2001). . . . . 42

8.1 Modeled geometry and deformed shape showing the discrete structure

with 100 times magnified deformation. . . . . . . . . . . . . . . . . . 52

8.2 Dynamic response of cantilever beam using various time discretiza-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.3 Dynamic response of cantilever beam using various parameters of

Newmark method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.4 Dynamic response of a cantilever beam using different particle sizes. 54

8.5 Influence of parameters on increase function and scaling the elastic

envelope for increasing strain rate. . . . . . . . . . . . . . . . . . . . . 55

8.6 Increase in tensile strength for various settings of the model compared

with experimental data (Yan and Lin, 2006; Wu et al., 2005; Brara

and Klepaczko, 2006a) and modified CEB formulation (Malvar and

Crawford, 1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.1 Geometry of simulated L-shaped specimen showing particle model

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.2 Effect of selected material properties on the maximum loading force

at various displacement rates. . . . . . . . . . . . . . . . . . . . . . . 61

9.3 Load–displacement curves and crack patterns for different material

strength used in numerical simulations compared with experimental
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1

1 INTRODUCTORY REMARKS

In construction industry, there is a great demand on reduction of material con-

sumption nowadays. Possibilities leading to more efficient material usage are being

investigated. It is not only trend of past few years but more likely decades. There

are various reasons for such demand. One of them is economical sustainability of

newly built structures, that has always been important factor. Besides, nowadays,

developed countries start to reflect the fact that also environmental point of view

should be taken into consideration. It is not only the limited amount of limestone

or other material resources, but also the emission of CO2 during cement production.

When calcium carbonate is thermally decomposed lime and carbon dioxide is pro-

duced. According to Worrell et al. (2001), the cement industry contributes about

5% to the global anthropogenic CO2 emissions.

On the other hand, some kinds of industrial waste can be further used in con-

struction industry. Materials producing clinker minerals can be used instead of

Portland cement or as its partial replacement in concrete mix. These are, for exam-

ple, blast furnace slag, which is a waste from the processing of iron ore, fly ash that

comes from burning of coal or a side product of manufacturing silicon - silica fume

(Aı̈tcin, 2016).

Various admixtures have been introduced to improve concrete performance, for

example old tires (Bignozzi and Sandrolini, 2006). Also short fiber reinforcement can

lead to better tensile performance of concrete and reduction of crack width (Bentur

and Mindess, 2007). Part II of this thesis is devoted to numerical modeling of fiber

reinforced concrete.

The reduction of material consumption can also be achieved by more detailed

understanding of material behavior, which is the essential part of structural design.

In modern industry, material engineering plays a crucial role. This branch, in a way

we know it nowadays, is being developed since the mid-20
th

century. The knowledge

of a material composition is very important and, based on this insight, the behavior

of a material during its life-cycle can be described in detail.

Cracks and discontinuities significantly influence overall behavior and durabil-

ity of structural elements, therefore it is important to understand the processes of

their formation and growth. Disciplines dealing with fracture of materials were at

first focused on homogeneous materials like glass or steel, where the failure can be

described by linear elastic fracture mechanics. With growth of industrial produc-

tion, more detailed and reliable description of material behavior is required also for

heterogeneous materials. Typical heterogeneous material is concrete, where, besides

relatively homogeneous cement paste, mineral aggregates appear. Their size, shape

and placement within the volume affects the resulting composite quality.



2 CHAPTER 1. INTRODUCTORY REMARKS

A great progress that has been done in this field in the past decades is closely

related to development in the numerical mathematical methods and a growth of

computing possibilities. In the early days of material engineering, analytical models

were commonly used (Shah and Carpinteri, 1991). Where analytical descriptions are

not possible, numerical solutions can provide approximations of high accuracy. With

the growth of computing, ability to use more computationally demanding techniques

arises.

1.1 Fracture of concrete

Materials are often distinguished according to their behavior under loading.

There is a group of materials with ductile behavior. For this group, plastic yield-

ing is typical. If such material is loaded, plastic deformation occurs after reaching

the elastic limit and loading force typically further increases (for materials with

strain-hardening). On the other side of the range, there are brittle materials. They

collapse immediately after reaching the material strength, which is typically close to

the elastic limit. But there is also a group of materials that exhibit so called quasi-

brittle behavior. Their response after reaching the elastic limit is neither brittle nor

ductile and changes with size of the specimen. Their collapse is not instantaneous,

but, after reaching maximum strength, ability to transfer load slowly decreases with

increasing deformation. This group of materials comprises e.g. rocks, ice and also

material widely used in civil engineering – concrete.

When we distinguish between either homogeneous and heterogeneous or duc-

tile and brittle (eventually quasi-brittle) materials, we need to take into account

the scale. The classification of materials in previous paragraph is done with con-

sideration of dimensions commonly used in construction industry. Looking at the

micro-structure of steel, we would observe dislocations and heterogeneities. Relation

between inner structure of the material and dimensions of an investigated element is

of importance. The material behavior could be considered as scale dependent rather

than a constant property.

Cusatis et al. (2014) distinguish among seven length scales for concrete, namely

(I) full structure scale, (II) structural element scale, (III) plain concrete scale, (IV)

concrete meso-scale (distinguishing aggregates), (V) mortar scale, (VI) cement paste

scale and finally (VII) C-S-H gel scale. When developing a concrete model, it is

necessary to determine at which scale it will be used. This thesis is focused at the

meso-scale modelling.

Looking closer at the concrete meso-scale structure, one can distinguish different

phases that are closely related to the process of material fracturing. The following
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concrete phases are usually characterized: aggregates, cement paste and inter-facial-

transition zone (ITZ), which is a thin layer on the contact of aggregate with cement

paste. Sometimes, voids are considered as a separate phase too.

The fracture of concrete usually initiates from ITZ (or voids), which is the weak-

est part of material. Under increasing loading, a lot of micro-cracks grow in mate-

rial. Finally some of them connect and form the macro-crack, i.e. crack localizes.

The crack then propagates through the material and usually does not cross the

aggregates, whose strength is considered much higher than the strength of the ce-

ment paste. There is a significant difference between high performance and normal

strength concrete (usually taken as concrete up to class C50/60). In the case of high

strength concrete, crack often propagates across the aggregates.

1.2 Modelling approaches

There is a large effort to develop robust and reliable numerical models of mate-

rials behavior. No universal model for every material at every scale exists. Every

numerical model is a simplification of reality and is convenient for a particular pur-

pose. Some of them have a wide range of purposes, some are focused to a small

area of interest. Deeper understanding of material behavior can be obtained from

fine, low-scale model and behavior derived at the fine scale can be further used in

continuous models at scale of structural members and whole constructions. Also for

concrete, various models are used at different length scales. Model used for simula-

tion of overall behavior of whole structure is different than the one used for modeling

the interaction of atoms in C-S-H gel (Calcium-Silicate-Hydrate).

Homogeneous models are suitable for material scales where material can be sim-

plified as homogeneous. In case of steel, this can be also applied for relatively small

structural members, e.g. bolts. In case of concrete, homogeneity assumption is

widely used in case of modelling of whole buildings. The homogeneous models are

typically treated as continuous, i.e. unknown displacement field must be continuous.

Problems treated as continuous are described by partial differential equations.

An approximate solution of such problems can be provided by various numerical

methods. Nowadays, finite element method (FEM) is widely used in many different

branches of engineering.

Besides geometric and balance equations, mechanical model needs also constitu-

tive equation relating strain and stress. The tensile failure of quasi-brittle materials

is often simulated using constitutive relation with strain-softening. The descending

part of the constitutive law can be expressed by various kinds of plastic or damage

models. Anytime a negative slope appears in the stress – strain relation, localization
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of inelastic deformation may occur. This localization phenomenon causes so called

spurious mesh sensitivity – the results of the simulations are dependent on the dis-

cretization of the material body. Various regularization techniques were established

to prevent this behavior.

Crack band model (Bažant and Oh, 1983) uses fracture energy density dependent

on the element size to ensure that the amount of work dissipated during the fracture

process is mesh-independent. Nonlocal approach (Bažant and Lin, 1988; Jirásek,

1998) calculates the damage according to a nonlocal variable – e.g. strain (depends

on the type of nonlocal formulation). In both of the mentioned approaches, crack is

smeared, the material remains continuous, but its integrity is being degraded. Some

other approaches allow the discontinuity in a continuous body, e.g. embeded crack

model (Oliver, 1996) or extended finite elememnts – XFEM (Belytschko and Gracie,

2007).

Concrete fracture takes place at the scale, where one can distinguish individual

aggregates. Material is far from homogeneous at this scale. It is therefore conve-

nient to use a model that account for material heterogeneity. Alternatively to the

continuous approach, material can be represented by a system of interconnected

discrete particles. Various versions of discrete formulation has been proposed in lit-

erature. Discrete meso-scale model can be conveniently used for fracture of concrete

in particular. Detailed description of the discrete approach and meso-scale model is

presented in Part I.

In reality, any process happens in a certain time period. If the loading is applied

slowly enough, the static equilibrium can be considered. In particular cases, ne-

glecting viscous effects or structural inertia is, however, not possible. For fast events

like impact or blast, dynamic equilibrium that take into account inertia effects is

more appropriate. Both static and dynamic solutions are presented in this thesis.

Part III is devoted to detailed description of dynamic concrete behavior simulated

by discrete meso-scale model.
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1.3 Objectives

The aim of the thesis is to present discrete meso-scale model for concrete, describe

its advantages and weak spots as well. Since it is directed towards meso-scale, it

is inapplicable for structural design due to large computational demands. It is

suitable for design of smaller structural parts, but primarily for detailed description

of fracture processes.

The thesis is structured into three parts. The first part introduces discrete

approach and presents the discrete particle model used in further parts for numerical

simulations. The next two parts present two modifications, representation of short

fiber reinforcement and extension of the code by an implicit dynamic solver.

The objectives of the thesis are:

• Extend the existing model with representation of short fiber reinforcement.

• Incorporate dynamic solver into existing static version of the model.

• Show the model performance and sensitivity to the input parameters.

• Validate the model on comparison with data presented in literature.





Part I

Discrete modeling approach
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2 DISCRETE FORMULATION

Many versions of discrete approach has been introduced in literature (van Mier,

2013; Cusatis et al., 2003; Grassl et al., 2012). One of the first attempts was a lattice

of elasto-brittle elements that provides quasi-brittle behavior at macro-scale. Vari-

ous enhancements were proposed to this model, e.g. random placement of the lattice

nodes (Fig. 2.1 left) or random material properties for each element. Spatial fluctu-

ation of material properties can be represented by random assignment of material

properties to the particular truss or beam. Such an assignment can be independent

or material properties can be spatially correlated (Vořechovský, 2008).

Another option is to project material inner structure on a fine lattice model and

assign the material properties accordingly (Fig. 2.1 center). Then one can distin-

guish particular material phase (aggregate, cement paste or interfacial transitional

zone - ITZ) that each lattice element represents. In this type of models, elasto-brittle

constitutive law is usually used and different material parameters are assigned ac-

cording to the material phase. Even with such simple settings, the model is capable

of representing complex material behavior (van Mier, 2013).

Unfortunately, such a fine lattice model leads to a computational system with

a large number of degrees of freedom (DOF), especially in 3D, which makes it ineffi-

ciently demanding. These fine models are therefore usually used for representation

of small material volume only.

The work in the thesis is based on the meso-scale particle model where the volume

domain is discretized into a system of rigid bodies with a convex polyhedral shape

(Fig. 2.1 right) (Cusatis and Cedolin, 2007). The interaction between particles takes

place on the facets, where normal, shear and rotational resistance of the contact is

prescribed.

Comparing fine lattice and meso-scale particle model, indisputable advantage of

Fig. 2.1: Various types of discrete formulation in 2D. Left: lattice of trusses or
beams, center: projection of concrete structure and different element properties and
right: rigid polygonal particles
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the later is large reduction of number of DOFs. On the other hand, more complex

constitutive law needs to be used, since the lower scale phenomena are ommited.
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3 MESO-SCALE DISCRETE MODEL

The mechanical problem is formulated directly in discrete form. The material is

represented by a system of interconnected particles with three translational and three

rotational degrees of freedom. Rigid particles represent larger mineral aggregates

with surrounding cement matrix, smaller grains are omitted. The kinematics of the

model is provided by rigid-body motion of the particles that results in displacement

jumps between them. The origin of this approach is attributed to work of Kawai

(1978). Similar models are often referred to as rigid-body-spring networks. The

mathematical model used within this thesis is adopted according to Cusatis and

Cedolin (2007).

3.1 Spatial domain discretization

Material inner structure represented by a system of interconnected particles is

based on Voronoi tessellation. At first, particle centers are generated within the

volume domain. Nodes positions are generated randomly in a sequential process,

rejecting those whit minimal distance to the others below chosen model parameter

𝑙min. This internal length dictates the particle size and to large extend also the

nonlinear behavior of the model.

Then Voronoi tessellation is performed to get the geometry of the particles. The

Voronoi tessellation is a dual projection of Delaunay triangulation. Circumscribing

circle (sphere) of any simplex of this triangulation does not contain any other node.

Connections of centers of the circumscribing circles then form the ridges of Voronoi

tessellation. In other words, Voronoi cell belonging to one node is a set of all points

that are closer to the particular node then to any other. In case of 3D model,

Voronoi cells are convex polyhedrons. To obtain Voronoi tessellation, qhull library

is used (Barber et al., 1996).

Since the discretization of a material body comes from pseudo-random process,

the response of simulations with different meso-scale geometry differs as well. This

can be compared with reality, where material internal structure is also random and

so is the response of each specimen.

3.2 Contact behavior

3.2.1 Kinematics

Displacement 𝑢𝑝 of arbitrary point 𝑝 within a rigid body can be expressed in

terms of displacements 𝑢𝑎 of particle center 𝑎 and rotations 𝜃𝑎 of the rigid body 𝑎
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as

𝑢𝑝 = 𝑢𝑎 + 𝜃𝑎 × (𝑝 − 𝑎) (3.1)

in matrix-vector form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢
𝑝
1

𝑢
𝑝
2

𝑢
𝑝
3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 𝑥
𝑝
3 − 𝑥

𝑎
3 𝑥

𝑎
2 − 𝑥

𝑝
2

0 1 0 𝑥
𝑎
3 − 𝑥

𝑝
3 0 𝑥

𝑝
1 − 𝑥

𝑎
1

0 0 1 𝑥
𝑝
2 − 𝑥

𝑎
2 𝑥

𝑎
1 − 𝑥

𝑝
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
𝐴

𝑝
𝑎

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢
𝑎
1

𝑢
𝑎
2

𝑢
𝑎
3

𝜃
𝑎
1

𝜃
𝑎
2

𝜃
𝑎
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where subscripts 1, 2 and 3 refer to 3 directions of coordinate basis. In this descrip-

tion of rigid body motion, small deformations and rotations are assumed. Consider

two rigid bodies 𝑎 and 𝑏 with one common contact facet as in Fig. 3.1(c). Assum-

ing arbitrary displacements and rotations for 𝑎 and 𝑏, displacement of point 𝑐 at

contact facet can be expressed substituting 𝑐 and 𝑎 (respectively 𝑏) into Eq. 3.1.

Difference between displacement from both sides of the contact results in the follow-

ing expression for displacement jump Δ𝑢𝑎𝑏 between rigid bodies 𝑎 and 𝑏 at point 𝑐

Δ𝑢𝑎𝑏 = 𝐴
𝑐
𝑏(𝑢𝑏𝜃𝑏)𝑇 −𝐴

𝑐
𝑎(𝑢𝑎𝜃𝑎)𝑇 (3.3)

Since the constitutive law is formulated in normal and shear direction, strain in the

local contact coordinate system is needed.

𝑒𝑎𝑏 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑒𝑁

𝑒𝑀

𝑒𝐿

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛1 𝑛2 𝑛3

𝑚1 𝑚2 𝑚3

𝑙1 𝑙2 𝑙3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
𝑅

Δ𝑢𝑎𝑏

𝐿
(3.4)

Substituting Eqs. (3.2) into (3.4) we obtain relation between nodal displacements

and rotations and contact strain

𝑒𝑎𝑏 = 𝑅
1

𝐿
[ −𝐴𝑐

𝑎 𝐴
𝑐
𝑏 ]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
𝐵

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑎

𝜃𝑎

𝑢𝑏

𝜃𝑏

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)



3.2. CONTACT BEHAVIOR 13

𝑏𝑚

𝑎

𝑐

𝑙

𝑛

𝑢𝑏

𝜃𝑏

𝑢𝑎

𝜃𝑎

𝑏

𝑎

𝑐
𝑐1

𝑐2𝑐3

𝑐4

𝑐5

𝑐6

𝑥3

𝑥2

𝑥1

a)

b)

c)

d)

Fig. 3.1: (a) 3D Voronoi rigid cell with connections to neighbouring particle centers,
(b) decomposition of polyhedron into tetrahedrons, (c) simple and (d) discretized
facet.

The displacement jump ∆𝑢 divided by the contact length 𝐿 (distance between

particle centers) and projected into the local coordinate system, represents contact

(meso-scopic) strain vector 𝑒. Here 𝑅 is transformation matrix, 𝑛 is the direction

normal to the facet and 𝑚 and 𝑙 are two arbitrarily chosen directions forming with

𝑛 an orthonormal basis, see Fig. 3.1(c). Subscripts 𝑁 , 𝑀 and 𝐿 refer to components

in local contact coordinates.

3.2.2 Elastic constitutive behavior

Interaction of particles is governed by constitutive relations that are applied at

their contact facets. The meso-scale elastic behavior is controlled by two parameters,

namely elastic modulus 𝐸0 and ratio between tangential and normal stiffness 𝛼. On

the contacts (facets), normal and shear stiffness of particle connection is prescribed.

The meso-scopic stress is denoted 𝑠. The relation between stress 𝑠 and strain 𝑒

in elastic regime on each facet yields
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𝑠 = 𝐸0𝛼𝑒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑠𝑁

𝑠𝑀

𝑠𝐿

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= 𝐸0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

𝛼

𝛼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑒𝑁

𝑒𝑀

𝑒𝐿

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.6)

Multiplying the stress 𝑠 by the contact area 𝐴, we get the contact force 𝑓 .

𝑓 = 𝐴𝑠 = 𝐴𝐸0 𝛼𝑅𝐵𝑢

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑓𝑁

𝑓𝑀

𝑓𝐿

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= 𝐴

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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𝑠𝑀

𝑠𝐿

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= 𝐴𝐸0𝛼𝑅

1

𝐿
[ −𝐴𝑐

𝑎 𝐴
𝑐
𝑏 ]
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𝐵

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑎

𝜃𝑎

𝑢𝑏

𝜃𝑏

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

Since the parameters 𝐸0 and 𝛼 are applied at meso-scale, one needs some estima-

tion of overall material behavior observed at macro-scale. The theoretical relation

between these meso-scale parameters and macro-scale Young’s modulus and Pois-

son’s ratio can be derived (Eliáš, 2017). This relation reads

𝐸0 =
1

1 − 2𝜈
𝐸 ; 𝛼 =

1 − 4𝜈

1 + 𝜈
(3.8)

Note that Eq. (3.6) postulates limitation on Poisson’s ratio, that must be within

interval (−1, 0.25). Nevertheless, value of Poisson’s ratio for concrete is around 0.2.

Relation (3.8) is only theoretical based on relatively strong assumption about

model rotations and displacements. Behavior of the numerical model is also influ-

enced by the presence of boundaries. The real model response using parameters

obtained from Eq. (3.8) would be slightly more compliant compared to analytical

solution (Eliáš, 2017).

3.2.3 Balance equation

The solution of unknown displacements comes from principle of virtual work.

We know that work of forces (forces 𝑓𝑎, 𝑓𝑏 and moments 𝑚𝑎, 𝑚𝑏) acting on virtual

nodal displacements (𝛿𝑢𝑎, 𝛿𝑢𝑏 and 𝛿𝜃𝑎, 𝛿𝜃𝑏) must be equal to work of forces (𝑓 from
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𝑠eq

𝑒eq
𝐸 0
𝑒 eq

(1 −𝐷)𝐸0𝑒eq

𝐷 = 1 −
𝑠eq

𝐸0𝑒eq

Fig. 3.2: Schematic description of tensile part of the meso-scale constitutive law
with strain-softening.

Eq. 3.7) acting on facet virtual jumps (𝛿Δ𝑢𝑎𝑏 = 𝐿 𝛿𝑒𝑎𝑏).

( 𝑓𝑎 𝑚𝑎 𝑓𝑏 𝑚𝑏 ) ( 𝛿𝑢𝑎 𝛿𝜃𝑎 𝛿𝑢𝑏 𝛿𝜃𝑏 )𝑇 = 𝑓
𝑇
𝛿Δ𝑢𝑎𝑏

( 𝑓𝑎 𝑚𝑎 𝑓𝑏 𝑚𝑏 ) (
((((((((((((
𝛿𝑢𝑎 𝛿𝜃𝑎 𝛿𝑢𝑏 𝛿𝜃𝑏 )

𝑇
=

𝐿𝑓
𝑇
𝑅𝐵 (

((((((((((((
𝛿𝑢𝑎 𝛿𝜃𝑎 𝛿𝑢𝑏 𝛿𝜃𝑏 )

𝑇
(3.9)

Substituting (3.7) into (3.9) we obtain system of equations relating nodal displace-

ments and rotations with nodal forces and moments

( 𝑓𝑎 𝑚𝑎 𝑓𝑏 𝑚𝑏 )𝑇
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

𝐹

= 𝐸0𝐴𝐿𝐵
𝑇
𝑅

𝑇
𝛼𝑅𝐵
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𝐾

( 𝑢𝑎 𝜃𝑎 𝑢𝑏 𝜃𝑏 )𝑇
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

𝑢

(3.10)

Here, 𝐾 is the stiffness matrix, 𝑢 is the vector of nodal displacements and 𝐹 is the

loading vector.

3.2.4 Inelastic constitutive behavior

In nonlinear regime, isotropic damage model is applied. After reaching the elastic

limit 𝑓eq, the integrity of any contact is described by a damage parameter 𝐷 ∈ ⟨0, 1⟩.
Zero value stands for intact material, 1 means that the contact is not able to transfer

any stress. Then, stress-strain relation described by Eq. (3.11) is modified

𝑠 = (1 −𝐷)𝐸0𝛼𝑒 (3.11)

Evolution of damage 𝐷 is a crucial part of the constitutive law. For the case of tensile

loading, damage calculation is schematically described in Fig. 3.2. It is calculated
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in an equivalent space defined by equations (3.12) and (3.13).

𝑒eq =
√
𝑒2𝑁 + 𝛼(𝑒2𝑀 + 𝑒2𝐿) (3.12)

𝑠eq =
√
𝑠2𝑁 + (𝑠2𝑀 + 𝑠2𝐿)/𝛼 (3.13)

𝐷 = 1 −
𝑠eq

𝐸0𝑒eq
(3.14)

Note that 𝑠eq in Eq. (3.14) is unknown value dependent on straining direction

𝜔 ∈ ⟨−𝜋/2, 𝜋/2⟩. This is calculated from local components of contact strain

𝜔 = arctan
⎛
⎜
⎝

𝑒𝑁

𝛼
√
𝑒2𝑀 + 𝑒2𝐿

⎞
⎟
⎠

(3.15)

Straining direction 𝜔 = −𝜋/2, 0 and 𝜋/2 indicates compressive, pure shear and

tensile loading, respectively. Any angle within these limits is a combination of

normal and shear loading.

At first, value of the elastic limit 𝑓eq(𝜔) for a particular straining direction 𝜔 is

calculated, see upper part of Fig. 3.3

𝑓eq =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

16𝑓𝑡√
sin2 𝜔 + 𝛼 cos2 𝜔

𝜔 < 𝜔0

𝑓𝑡
4.52 sin𝜔 −

√
20 sin2 𝜔 + 9𝛼 cos2 𝜔

0.04 sin2 𝜔 − 𝛼 cos2 𝜔
𝜔 ≥ 𝜔0

(3.16)

If corresponding strain is exceeded, equivalent stress 𝑠eq is calculated from

𝑠eq = min

⎛
⎜⎜⎜⎜⎜
⎝

(1 −𝐷max)𝐸0𝑒eq

𝑓eq exp ( 𝐾

𝑓eq
⟨𝑒eq −

𝑓eq
𝐸0

⟩)

⎞
⎟⎟⎟⎟⎟
⎠

(3.17)

Here, value of maximum previously reached level of damage 𝐷max provides its ir-

reversibility and is stored for every contact individually. If the currently reached

equivalent strain 𝑒eq is larger than the one reached previously, equivalent stress 𝑠eq

comes from the lower part of Eq. (3.17). Note that only the positive part of val-

ues in Macaulay brackets is considered. Evolution of 𝑠eq reflects the complexity of

the combination of normal and tangential loading. Initial slope 𝐾 of the soften-
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different post-critical behavior for different angle 𝜔.

ing/hardening curve depends on angle 𝜔, too (see lower part of Fig. 3.3).

𝐾 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.26𝐸0 (1 − ( 𝜔 + 𝜋/2

𝜔0 + 𝜋/2
)
2

) 𝜔 < 𝜔0

𝐾𝑡 (1 − ( 𝜔 + 𝜋/2

𝜔0 + 𝜋/2
)
𝑛𝑡

) 𝜔 ≥ 𝜔0

(3.18)

Straining direction corresponding to value 𝜔0 is on the border between softening and
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hardening behavior. The exponent from lower part of Eq. 3.18 reads

𝑛𝑡 =
ln(𝐾𝑡/(𝐾𝑡 −𝐾𝑠))

ln(1 − 2𝜔0/𝜋)
(3.19)

where 𝐾𝑡 and 𝐾𝑠 are the initial slopes for tension and pure shear respectively.

𝐾𝑡 =
2𝐸0 𝑓

2
𝑡 𝑙

2𝐸0𝐺𝑡 − 𝑓 2
𝑡 𝑙

; 𝐾𝑠 =
18𝛼𝐸0 𝑓

2
𝑡 𝑙

32𝛼𝐸0𝐺𝑡 − 9𝑓 2
𝑡 𝑙

(3.20)

The original model has more parameters, e.g. compressive or shear elastic lim-

its. Here, only two governing parameters for material in nonlinear regime are used,

namely tensile strength 𝑓t and fracture energy in tension 𝐺𝑡, the remaining parame-

ters are derived from them according to the recommendations (Cusatis and Cedolin,

2007).

Constitutive law at the contact is in Egs. (3.20) scaled according to the crack

band approach (Bažant and Oh, 1983) to ensure constant energy dissipation per

unit contact area, independent on particle size.

3.3 Integration of stress over the facet

A displacement jump for a single contact is calculated at the facet centroid as

explained in Sec. 3.2.1. Let us call this mechanical model simple facet. In this case,

all the contact area is lumped into a single point, therefore rotational stiffness is

neglected. Perhaps more correct approach would be to integrate stresses over the

whole facet continuously accounting also for possible material nonlinearity all over

the facet.

Such integration can be performed numerically introducing more integration

points over the facet area, where calculation of displacement jump is performed,

see Fig. 3.1(d). For example, polygonal facet can be decomposed into triangular

sub-domains with common vertex in polygon centroid. Constitutive law is then ap-

plied in centroids of all triangles. Using such discretized facet, rotational stiffness

is, up to some point, preserved and also possible nonlinear behavior is represented

in more detail.

In general, any other set of points over the facet area can be chosen. However,

one should also take into account increase in computational demand with more

integration points.

Here, simple study on uni-axial tensile test and four-point-bent beam is pre-

sented. For the purpose of this study, simulations using different particle size dic-

tated by parameter 𝑙min and simple or discretized facets are performed. Results are
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Fig. 3.5: Difference in model results obtained for four point bending test.

plotted in Figs. 3.4 and 3.5. Two longer sides of prism under tension shown in the

upper left part of the figure are 100 mm long and its thickness is 40 mm. Bent beam

length is 160 mm, depth and thickness 40 mm.

In case of uni-axial tensile test, greater difference is caused by different particle

size then by different integration method, see Fig. 3.4. The difference for various

particle size used is caused by two facts. First, small influence has the randomness

of the internal structure represented by random placement of particle centers in

a volume domain. Second the damage is, up to the point of final localization,

distributed over the volume domain. In the case of distributed damage, crack band
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concept is overestimating results of the numerical simulation (Le and Eliáš, 2016).

Greater difference can be observed for the largest used particle size 𝑙min. Note that

for this size, there are only 4-5 particles per thickness of the volume domain.

Results of four point bending tests are shown in Fig. 3.5. The simulations using

discretized facets are predicting higher loading capacity than the ones using simple

facets. The bending at facet level helps to resist bending at the level of whole

specimen. When bending is present, rotational stiffness makes the difference. The

graphs also show that when the finer discretization is used, the influence of rotational

stiffness decreases.

3.4 Random field

Concrete exhibit spatially fluctuating material properties. Some part of this

randomness is included in the discrete model via direct representation of its het-

erogeneous structure. The remaining part can be conveniently incorporated with

help of random field. Single random field ℎ(𝑥) is applied on tensile strength 𝑓t and

tensile fracture energy 𝐺𝑡 according to (Le et al., 2018)

𝑓𝑡(𝑥) = 𝑓𝑡ℎ(𝑥) 𝐺𝑓(𝑥) = 𝐺̄𝑓 [ℎ(𝑥)]2 (3.21)

where symbol •̄ denotes the mean value of variable •. Since values of many other

material parameters are derived from these two via recommendations by Cusatis and

Cedolin (2007), random field affects them as well. Distribution function of ℎ(𝑥) is

considered normal (Gaussian) with grafted Weibull tail in the left part (Bažant and

Pang, 2007). The mean value of ℎ is 1.

Autocorrelation function of ℎ(𝑥) is considered square exponential (Eliáš et al.,

2015) with governing parameter called correlation length. The random field is gen-

erated initially on regular grid via Karhunen–Loève expansion and than projected

onto the model by EOLE method (Li and Der Kiureghian, 1993). The autocor-

relation function allows decomposition of the problem into individual directions

(Vořechovský, 2008), which greatly simplifies the problem of searching for eigende-

composition of covariance matrix.

Randomness of material properties is not a subject of this thesis, it is only used

for a particular studies of parameters influence.



Part II

Fiber reinforced concrete
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4 FIBERS AND CONCRETE

It is well known that plain concrete suffers from poor performance in tension,

therefore it is usually reinforced with steel rebars that help transfer tensile stress.

However, steel tends to corrode when not sufficiently protected. Such a protection

demands quite thick concrete layer. Great progress has been done in a past decades

on improving the poor performance of concrete in tension by adding short fibers.

4.1 Cementitious composites with fibers

One of the possible ways of enhancing the tensile properties of concrete-based

materials is to add short fibers as a reinforcement. Use of tiny fibers can lead to

a significant increase in composite tensile performance. Then, the material can be

used also for very thin structural members.

Various types of fiber materials are used in this field. For example, industrial

floors are nowadays typically reinforced by steel fibers. The modern development

of so called engineered cementitious composites (ECC) also reflects the advantages

of plastic materials as a fiber reinforcement. Tiny poly-vinyl alcohol (PVA) fibers

are considered as a very good choice thanks to their flexibility and rough surface

promising good slip-frictional behavior. Their frictional resistance can be so high

that it is necessary to coat them in oil to ensure that they are pulled out instead

of being broken (Yang et al., 2008b; Li et al., 2001; Redon et al., 2001). One of

the ideas behind the design of these materials is to increase strain capacity. Loaded

specimen is, after initial cracking, further able to transfer increasing value of load.

That is the reason why they are also referred to as strain hardening cementitious

composites (SHCC). Strain hardening behavior is obtained only if crack density is

high, than, overall elongation of specimen is distributed in whole volume (Adendorff

et al., 2009). Higher crack density can be obtained using artificial flaws (Li and

Wang, 2006).

Amount of fibers in material volume is important. According to Fantilli et al.

(2009) volume fraction around 2% ensures multiple cracking with sufficient crack

density, which leads to strain hardening behavior. On the other hand, excessive

volume fraction reduces workability of the raw material, which can lead to formation

of fiber clusters that cause reduction of bond between fibers and cement paste which

results in poor composite performance.

Many factors affect resultant composite behavior. Influence of some material

properties go against each other, e.g. greater tensile strength of cement paste in-

creases the maximum loading capacity on one side, but reduces the strain capacity
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of composite on the other side, because the fibers are not able to transfer higher

load and break. Also if fibers are too long, they break instead of being pulled out.

4.2 Fiber representation in computational model

Progress in development of new, enhanced materials requires also a progress in

the field of computational mechanics to be able to predict their behavior. Short

fiber reinforcement influence material behavior at the meso – or even lower – scales.

Furthermore, heterogeneity of the material is increased by the presence of fibers. In

homogeneous model, this needs to be taken into account phenomenologically.

To determine such phenomenological description, discrete model with higher

resolution can be conveniently used. There are more possibilities of fiber represen-

tation in discrete models. In case of low-scale lattice model, different elements can

a)

b)

c)

d) 𝜏0
𝜏

𝐿
𝐿
𝑒

𝑤𝑓

𝐿
𝑅
𝑒

𝜏max

Fig. 4.1: (a) fiber bridging crack in material, (b) representation of different material
phase in lattice model, (c) indirect fiber representation in discrete particle model
and (d) frictional and bond stress distribution along the fiber length.
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be used for fiber, cement paste and bond between them (Bolander et al., 2008), see

Fig .4.1(b). At higher scales, phenomenological description can be used in discrete

models as well. The constitutive law of particular facet can be adjusted according

to the number of fibers crossing it. In case of the presented meso-scale discrete par-

ticle model, the fibers can be represented by additional elements connected to the

meso-scale structure. However, such direct representation brings large increase in

number of DOFs, because the amount of fibers is in tens of thousands even for small

laboratory specimen made of composite reinforced with PVA fibers with volume

fraction 2%.

It appears to be convenient to take into account only frictional forces of fiber

bridging crack in the material. These forces are then distributed into particles that

are crossed by particular fiber (Kang et al., 2014) as depicted in Fig. .4.1(c). In this

thesis, pullout frictional resistance is for the sake of simplicity applied at contact

only as a crack closing force. In that case, number of DOFs is not increased and at

the same time every single fiber is taken into account.

Particle models incorporating fiber reinforcement are used by Jin et al. (2016)

for simulations of steel fiber reinforced concrete or by Schauffert and Cusatis (2012)

for simulations of PVA reinforced composites.
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5 FIBERS IN MESO-SCALE MODEL

Phenomenological description of fiber pullout force is broadly reported in liter-

ature, though, most of the cases refer to the work of Naaman et al. (1991). The

mentioned article provides an insight into two main stages of fiber pullout, debond-

ing and pullout slip.

5.1 Fiber bridging force

There is a significant difference between behavior of a single fiber that is being

pulled out from a material on one side and fiber that is bridging crack on the other

side. The former is so called one-sided pullout, the later two-sided pullout.

According to Naaman et al. (1991), the following relation between pullout slip

𝑣 and force 𝑃 (𝑣) due to fiber resistance is described (Schauffert and Cusatis, 2012;

Yang et al., 2008b),

𝑃 (𝑣) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
𝜋2𝐸f𝑑

3
f

2
(𝜏0𝑣 +𝐺d) for 𝑣 ≤ 𝑣𝑑

𝑃0 (1 − 𝑣−𝑣𝑑
𝐿𝑒

) [1 + 𝛽f(𝑣−𝑣𝑑)
𝑑f

] for 𝑣 > 𝑣𝑑
(5.1)

𝑣𝑑 =
2𝜏0𝐿

2
𝑒

𝐸f𝐷f
+

√
8𝐺d𝐿

2
𝑒

𝐸f𝑑f
(5.2)

𝑃0 = 𝜋𝐿𝑒𝑑f𝜏0 (5.3)

Here, 𝑑f denotes fiber diameter, 𝑣 is fiber pullout and 𝐿𝑒 is an embedment length,

see Fig. 5.1. Parameters of the fiber constitutive law are: frictional stress between

fiber and surrounding matrix 𝜏0, fiber elastic modulus 𝐸f , bond fracture energy

𝐺d and parameter 𝛽f describing the slipping behavior of debonded fiber. 𝛽f = 0

refers to constant slip frictional behavior, whereas negative or positive value is used

𝑃
𝐿
= 𝑃

𝑅

𝐿
𝐿
𝑒

𝐿
𝐿
𝑑

𝐿
𝑅
𝑒

𝑣
𝐿

𝑣
𝑅

𝑤𝑓

Fig. 5.1: Crack length divided into pullout on each side according to different stage
of fiber behavior – debonding on the left, pullout on the right. Superscripts 𝑅 and
𝐿 refer to the right and left side of the crack respectively.
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when softening respectively hardening slip behavior is considered. Critical pullout

𝑣𝑑 (pullout at complete debonding of considered fiber part) is described by Eq. (5.2).

It has been reported that frictional behavior of fully debonded PVA fibers tends

to increase (Li et al., 2002). This phenomenon is caused by rough surface of such

fibers, that is being scraped off by surrounding material during pullout. Such be-

havior can be approaximately characterized by positive value of parameter 𝛽f > 0.

The stated relation describes a one-sided pullout, the two-sided pullout behavior

is schematically depicted in Fig. 5.1. A crack propagates through material over the

fiber. To determine crack bridging force, crack width 𝑤f is divided into two parts,

belonging to each fiber part on both sides of the crack. With increasing crack width,

two of the fiber parts are partially debonded (𝑣 < 𝑣𝑑). The shorter embedment

lengths 𝐿
𝑅
𝑒 is fully debonded first. The debonded part is still resistant against

pullout, but only due to friction between fiber and matrix – Eq. (5.1). Different

part of crack 𝑤f is assigned to pullout from the left 𝑣
𝐿

or the right side 𝑣
𝑅

of the

crack, see Fig. 5.1. Calculation of bridging force is an iterative process, in which an

equilibrium between forces from both sides of the crack must be reached.

5.2 Multiple cracking

When the fiber bridges multiple cracks, the interaction needs to be taken into

account. The value of debonded length from another crack that is crossed by the

same fiber is needed. Eq. (5.2) describes the value of critical pullout 𝑣𝑑 according to

embedment length 𝐿𝑒. It can be rewritten for unknown 𝐿𝑒

2𝜏0
𝐸f𝐷f

𝐿
2
𝑒 +

√
8𝐺d

𝐸f𝑑f
𝐿𝑒 − 𝑣𝑑 = 0 (5.4)

Solution of this quadratic equation can be found with a value of the actual pullout

𝑣 instead of 𝑣𝑑. Then, the value of actual debonded length 𝐿𝑑 can be obtained

according to

𝐿𝑑 =

√
2𝐸f𝑑f
2𝜏0

(
√
𝐺d + 𝜏0𝑣 −

√
𝐺d) (5.5)

To calculate the critical value 𝑣𝑑 (slip at full fiber debonding), embedment length is

reduced of debonded lengths due to other cracks.

When multiple cracking occurs over one fiber, both ends of a fiber are connected

through the particles they are crossing. If the middle particle is fully separated by

cracks and its part of fiber is fully debonded, it should be able to move independently

on surrounding particles, only due to friction. Because the fibers are in the model

approximately represented only by their frictional forces, this case is not captured.
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Fig. 5.2: Schematic explanation of angles used in Eqs.(5.8-5.10).

5.3 Micro-effects at fiber exit point

When the fiber is not parallel with the normal facet direction, micro-spalling of

the cement matrix occurs in the vicinity of fiber exit point.

The fiber inclination is schematically depicted in Fig. 5.2, where one contact of

two neighboring particles is shown in its initial and deformed (current) configuration.

Calculation of angle 𝜙
′
f is performed according to

𝜙
′
f = arccos

(R − L)𝑇 f

∥R − L∥∥f∥ (5.6)

where 𝑓 is fiber direction and points 𝑅 and 𝐿 are fiber exit points for particles on

right and left sides of a crack respectively. Taking into account spalling length, these

points differ from the fiber exit point 𝑃 . Their subtraction can be calculated from

𝑅 −𝐿 = 2 (Δ𝑢𝑎𝑏/2 + 𝑠f 𝑓) (5.7)

where Δ𝑢𝑎𝑏 is a displacement jump between particles, 𝑠f refers to spalling length

and 𝑓 is fiber direction.

The embedment length is reduced of spalling length 𝑠f that is, according to
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Schauffert and Cusatis (2012), calculated as

𝑠f =
𝑃𝑁 sin(𝜃/2)

𝑘𝑠𝑝𝑓t𝑑f cos2(𝜃/2) (5.8)

where 𝑃𝑁 is the normal component of crack bridging force, 𝑘𝑠𝑝 is spalling coefficient,

𝜃 is angle between facet normal and fiber and 𝑓t is meso-scale tensile strength of

cement matrix.

Inclination of fiber at exit point also causes additional friction and bearing be-

tween fiber and matrix. Schauffert and Cusatis (2012) refer to this as a snubbing

effect that increases the resistance of a fiber against pullout. The following relation

is used to take this phenomenon into account.

𝑃f = exp(𝑘𝑠𝑛𝜙′f)𝑃 (𝑣) (5.9)

Here, 𝜙
′
f is the angle between fiber and straining direction reduced by spalling length,

see. Fig. 5.2, 𝑘𝑠𝑛 is snubbing coefficient.

Together with increase of the fiber pullout resistance, the fiber strength is reduced

due to “bending” of an inclined fiber at the exit point (Schauffert and Cusatis, 2012;

Yang et al., 2008b).

𝑓𝑡𝑓incl = 𝑓tf exp(−𝑘rup𝜙
′
f) (5.10)

where 𝑓tf stands for fiber tensile strength and 𝑘rup is material coefficient.

The influence of parameters 𝑘𝑠𝑝, 𝑘𝑠𝑛 and 𝑘𝑟𝑢𝑝 on the spalling length, increase of

pullout force and decrease of fiber strength is shown in Fig. 5.3.
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Fig. 5.3: Influence of parameters describing micro-scale fiber behavior – Eqs. (5.8-
5.10)
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5.4 Fibers in discrete model

For elastic behavior, fibers contribution to the stiffness of the system is neglected.

Single fiber is taken into account only if it bridges any contact of particles undergoing

fracture. When cracking occurs in the material, every fiber that crosses some crack

is visited, bridging force is calculated and stiffness of the cracked contact is modified

accordingly.

In nonlinear regime, stiffness of particle contacts is increased by contribution due

to fiber bridging force. Meso-scopic contact stress 𝑠eq used for calculation of damage

– Eq. (3.14) – is then calculated as a sum of contributions of both concrete (𝑠
𝑐
eq) and

fiber (𝑠
𝑓
eq)

𝑠eq = 𝑠
𝑐
eq + 𝑠

𝑓
eq (5.11)

𝑠
𝑓
eq is calculated from crack bridging force acting against crack opening on a virtual

facet placed in the point of intersection between fiber and particle contact. This

virtual facet area then corresponds to fiber cross-section.

A fiber behavior is assumed to be elasto-brittle and ideally flexible. Each fiber

is simplified by a straight line of a certain length. These lines are generated within

volume of the specimen with prescribed or random orientation. Fibers with ran-

dom orientation are directionally biased close to the boundary, because only fibers

inside the specimen are allowed. If any part of generated fiber appears outside the

prescribed volume domain, it is removed and a new fiber is generated instead.
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6 NUMERICAL SIMULATIONS

6.1 Two sided pullout

A simple study of two sided pullout was conducted. The contact of two particles

is crossed by a fiber. The two particles have all DOFs prescribed to 0 except the right

particle horizontal displacement prescribed to 𝑣. The contact facet is pre-cracked

from the beginning to show only the pullout representation.

For this demonstrative example, the following material parameters were used.

Fiber elastic modulus 𝐸f = 30 GPa, fiber length 𝑙f = 10 mm (and 2 𝑙f for long fiber)

with 35% of fiber length on the right side of the contact, fiber diameter 𝑑f = 40𝜇m,

energy needed for fiber debonding 𝐺d = 5 N/m, friction between fiber and cement

paste 𝜏0 = 2 MPa after debonding and parameter 𝛽f = 0 for constant friction or

𝛽f = ± 0.01 for increase respectively decrease of frictional resistance. Fiber strength

is 𝑓tf = 1000 MPa

The influence of fiber parameters is shown in Fig. 6.1. Nonzero bond fracture

energy (thin lines) brings instant drop in fiber force after debonding. If the fiber is

too long, it breaks instead of being pulled out (red line).
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Fig. 6.1: Influence of material parameters to results of two-sided pullout simulation.
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6.2 Volume fraction effect

After single fiber pullout, the influence of number of fibers 𝑛f crossing a single

contact was investigated. The same geometry as in case of pullout test was used, but

this time the contact was not pre-cracked. Simulations with 1, 2, 10 and 20 fibers

crossing the contact were calculated. Fiber volume relative to the whole volume

is denoted volume fraction 𝑉f . In this case of a single contact, it is calculated

from fibers cross-section relative to the facet area. The results of simulations are

shown in Fig. 6.2. The model responses are shown also in semi-logarithmic plot. For

comparison, response of contact without fibers is plotted in black. For all cases,

after the contact reaches the elastic limit, sudden drop occurs. This is caused by the

fact that the fiber pullout force depends on crack opening, which is zero at the crack

initiation. If the bond fracture energy 𝐺d is nonzero (dotted lines), the initial peak

(before the first drop) is higher, because the fiber pullout force according to Eq. 5.1

does not start at zero 𝑃 (𝑣 = 0) =
√

0.5𝜋2𝐸f 𝑑
3
f 𝐺d. The second peak, long after the

crack has been created, is higher due to 𝐺d as well. There is no sudden drop as in

the case of single fiber pullout, because the fibers have different embedment lengths.

After the initial drop, loading force further increases, however, only for 𝑉f > 1% the

force exceeds the initial peak. To ensure strain hardening behavior in fiber reinforced

cementitious composites, the volume fraction 𝑉f = 2% is recommended in literature

(Fantilli et al., 2009).
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Fig. 6.2: Influence of fiber volume fraction on a single contact response.
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6.3 Preliminary study on uniaxial tensile test

Simple uni-axial tensile test of a prismatic beam was performed. Again, various

model settings were used, including concrete and fiber material parameters as well

as fiber orientation. Setting of the model is shown in Fig. 6.3.

Beam length was 𝐿 = 60 mm, width 𝑊 = 20 mm and thickness 𝑇 = 10 mm.

Prameter 𝑙min = 2.5 mm. The results of simulations shown in Fig. 6.4 were obtained

using the following material parameters: fiber elastic modulus 𝐸f = 30 GPa, bond

fracture energy 𝐺d = 0 or 5 N/m, frictional stress 𝜏0 = 2 MPa, parameter 𝛽f =

0, fiber length 𝑙f = 10 mm and fiber strength 𝑓
0
tf = 1000 MPa. Concrete meso-

scale parameters used here are 𝐸0 = 48 GPa, parameter 𝛼 = 0.237, concrete tensile

strength 𝑓t = 3.8 MPa and fracture energy dictating the quasi-brittle behavior 𝐺f =

20 J/m
2
. Special case of elasto-brittle concrete behavior is considered as well.

The simulated load-displacement curves are shown in Fig. 6.4. Reduction of fiber

strength results in their breakage instead of pullout (dotted lines). As expected,

lower forces values are obtained with zero bond fracture energy (lines with cross

mark), furthermore, these results does not exhibit instantaneous drop-down after

second peak as in the case of nonzero 𝐺d. Response using elasto-brittle contact be-

havior (thin lines) has quite smoother transition to hardening after the initial crack-
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Fig. 6.3: Settings of uni-axial tensile test with fibers aligned with loading direction
or randomly oriented.
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Fig. 6.4: Influence of material parameters to results of uni-axial test simulation of
prism made of fiber reinforced composite.

ing compared to responses with nonlinear constitutive law used for concrete (thick

lines). Finally, the fibers aligned in a loading direction (red lines) give much higher

loading capacity than the ones randomly distributed (blue lines). Since straight

alignment is barely possible in reality, any further calculations are preformed with

randomly oriented fibers. Responses of plain concrete assuming elasto-brittle and

nonlinear behavior are plotted for comparison.

The meso-scale model assumes small deformations and rotations for represen-

tation of rigid body motion as stated in Sec. 3.2. Having displacement in order of

millimeters for a specimen of length 60 mm, the assumption is not really correct.

In this case, at least the deformation is distributed into a whole volume, and not

localized into a single crack.

6.4 Detail study on model parameters influence

The preliminary study showed influence of bond energy and fiber length that

needs to be taken into account. In this section, series of simulations with various

material parameters is presented.

Initially, the sensitivity study on influence of five model parameters was con-

ducted. Results are shown in Fig. 6.5 as a normalized relative change in the model
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Fig. 6.5: Sensitivity of loading and straining capacity to model input parameters.

response based on change in different parameters. Since the calculations are quite

computationally demanding, simple sensitivity study using fractional factorial de-

sign (Montgomery, 2017) was performed. The left graph shows that increase in

any of these five model parameters results in greater peak load predicted by the

model. On the other hand, the right graph shows the effect of parameter changes

to the predicted straining capacity. Three of the parameters influence the results

negatively, namely concrete strength 𝑓t, bond fracture energy 𝐺d and fiber elastic

modulus. Different influence of the material parameters would be obtained for the

case when fibers break instead of being pulled out.

Further parameter studies are performed to show more than this simple sensitiv-

ity. Larger beams than in the case of preliminary study (sec. 6.3) are simulated. This

time, length was 𝐿 = 120 mm, width 𝑊 = 40 mm and thickness equal to 𝑇 = 10 mm.

Fibers of length 𝑙f = 8 mm were used. Material parameters used are the following:

concrete parameters 𝐸0 = 48 GPa, 𝛼 = 0.237, 𝑓t = 1.5 MPa and 𝐺f = 20 J/m
2
; fiber

parameters: 𝐸f = 20 GPa, 𝑓tf = 1000 MPa, 𝐺d = 5 N/m, 𝜏0 = 2 MPa and 𝛽f = 0.

Simulations using these values are plotted with magenta color.

Lower concrete strength was chosen because the sensitivity study showed its

negative influence on predicted straining capacity. This negative influence will be

emphasized in Sec. 6.5 on simulations using random spatial distribution of concrete

strength.

6.4.1 Influence of concrete strength

Based on comparison of the simulations considering plain and fiber reinforced

concrete in Fig. 6.4, it seem that the concrete itself has a very little effect. However,

simulations of fiber reinforced composite considering brittle or nonlinear concrete

behavior show that this influence has quite a large impact.
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Fig. 6.6: Influence of concrete parameters.

For this purpose, more simulations were calculated using lower concrete strength

and fracture energy. The material strength was scaled similarly to application of

random field – Eq. (3.21), but the function ℎ(𝑥) is kept constant in space (for

interpretation, see Sec. 3.4). The results plotted in Fig. 6.6 show the influence of

concrete strength to material response predicted by the numerical model. If the

higher strength is assumed for concrete, the predicted loading capacity is higher.

Even though the post-peak behavior is more ductile than in case of plain concrete,

strain-hardening response is not obtained. This happens for simulations with lower

concrete strength. In that case, multiple cracking occurs.

6.4.2 Influence of frictional parameters

Influence of frictional stress 𝜏0 between fiber and matrix is addressed here. The

results of simulations using wide range of values 𝜏0 are plotted in Fig. 6.7. Using

frictional stress 𝜏0 > 1.5 MPa the model predicts strain-hardening response. We also

focus on the parameter 𝛽f that describes increase/decrease of friction during fiber

pullout and change its value to 0.5. We can see that 𝜏0 influences mainly the initial

angle of strain-hardening/softening behavior. Using positive value for parameter 𝛽f ,

strain capacity predicted by the numerical model is increased. But combination of

higher values of both 𝜏0 and 𝛽f results into too high force that leads to fiber breakage

instead of pullout.
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Fig. 6.7: Influence of shear stress between fiber and matrix 𝜏0 and hardening pa-
rameter 𝛽f .

6.4.3 Influence of micro-effects

In the previous simulations, influence of micro-spalling at the fiber exit point was

not taken into account. In Fig. 6.8, various values of these parameters are used to

show how they affect the model behavior. Parameters used for simulation of refer-

ence spalling were 𝑘rup = 0.33, 𝑘sn = 0.1 and 𝑘sp = 500. These values are considered

according to Schauffert and Cusatis (2012). Three more calculation are performed

here, each one considering half value for one of the parameters and for comparison

the calculation with no micro-effects taken into account is added. It can be observed

that considering micro-effects results into prediction of higher initial peak but this

also leads to earlier collapse of the simulated specimen. Considering half value of

parameter managing spalling length, 𝑘𝑠𝑝, does not have much influence on the model

results. Change in two other parameters, 𝑘𝑟𝑢𝑝 and 𝑘𝑠𝑛 has noticeable influence. The

former affects the fiber strength, therefore, decreasing this parameter leads to higher

strength and thus later fiber breakage that results in higher both loading and strain-

ing capacity. The latter influences the pullout force, so its reduction decreases fiber

pullout force, which leads to decrease in the peak load but increase in the straining

capacity.
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Fig. 6.8: Influence of parameters related to micro-spalling at the fiber exit point.

6.5 Random concrete strength

In the final study, a random field was applied to concrete material properties.

This time, simulations on prisms with the following dimensions were performed:

length 𝐿 = 100 mm, width 𝑊 = 40 mm and thickness 𝑇 = 10 mm. Material pa-

rameters from Sec. 6.3 are used, only the fiber length and strength are changed to

𝑙f = 8 mm and 𝑓tf = 1600 MPa. Concrete parameters 𝑓t and 𝐺f vary over the volume

domain according to auto-correlated random field (sec. 3.4). The auto-correlation

length is 𝑙𝑐 = 20 mm and the standard deviation is 0.25. Load-displacement curves

from the simulations are shown in Fig. 6.10 together with crack pattern at the final

stage and different random fields applied. Only one simulation exhibits the desired

strain-hardening behavior, i.e. a further increase of the loading capacity after initial

cracking. This simulation marked as No. 10 is the one calculated with relatively weak

concrete, almost all volume has strength around 1/2 of the mean value depicted by

dark blue color. This corresponds to the effect of concrete strength presented in

Sec. 6.4.1

6.6 Comparison to experimental data

Experimental series reported by Li et al. (2001) was chosen for comparison of

the model prediction. In this series, coupon specimens of dimensions 304.8× 76.2×

12.7 mm were subjected to tensile tests after 28 days of curing in water at room
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Fig. 6.9: Application of random field on concrete material parameters; top: load-
displacement curves, center: spatial fluctuation of concrete strength, bottom: crack
pattern at the final stage.

temperature. Water to cement (w/c) ratio was the same for all the batches and its

value was 0.45. Fibers parameters reported in experimental series (Li et al., 2001)

are: fiber strength 𝑓tf = 1 660 MPa, fiber elastic modulus 𝐸𝑓 = 42.8 GPa, frictional

stress 𝜏0 = 3.5 MPa and bond fracture energy 𝐺d = 3.5 J/m
2
. Fiber volume fraction

is 𝑉𝑓 = 2 %, fiber diameter 𝑑𝑓 = 39𝜇m and fiber length 𝑙𝑓 = 12 mm. Fibers were

coated with oil to ensure their pull-slip behavior and prevent their breakage. The

experiments with 0.3 % of oil volume content were chosen for comparison.

For numerical simulations, the geometry of the fibers, volume fraction and ten-

sile strength were chosen according to the experimental data. The other parameter

values were chosen to obtain response comparable to the experimental results. Their

values are: concrete meso-scale parameter elastic modulus 𝐸0 = 48 GPa, parame-

ter 𝛼 = 0.237, tensile strength 𝑓t = 0.75 MPa, fracture energy 𝐺f = 5 J/m
2

and

𝑙min = 3 mm; parameters related to fiber are fiber elastic modulus 𝐸𝑓 = 20 GPa,

bond fracture energy 𝐺d = 2 J/m
2
, friction 𝜏0 = 1 MPa and parameter 𝛽 = 0.05.
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Fig. 6.10: Comparison of the numerical load-displacement curves and crack patterns
with the experimental data reported by Li et al. (2001).

Parameters accounting for micro-effects at the fiber exit point 𝑘𝑠𝑝, 𝑘𝑠𝑛 and 𝑘𝑟𝑢𝑝 are

500, 0.2 and 0.33 respectively.

The load-displacement curves of numerical simulations compared to the experi-

ments performed by Li et al. (2001) are plotted in the upper part of Fig. 6.10. The

lower part of the figure shows crack pattern obtained by the numerical model. Crack

spacing from experiments (Li et al., 2001) is shown for comparison. In case of quite

large elongation and multiple cracking, the simulations often end up with the loss

of convergence, which is considered as a final collapse. No drop is plotted in the

graph, since at the last step the model terminated due to convergence problems.

6.7 Conclusions about the fiber model

The parameters of the mathematical model are related to the actual physical

phenomena of the material behavior at meso-scale. Even if the fibers are represented

indirectly, the constitutive law contains information about their behavior during

loading. Experimental data on a single fiber pullout (Yang et al., 2008a; Scheffler
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et al., 2013; Redon et al., 2001) as well as on whole specimens made of fiber reinforced

composite (Li et al., 2001; Zhou et al., 2010) are broadly reported in literature,

however, the connection between them is missing. For example the correlation

between concrete strength on one side and bond and frictional fiber characteristics

on the other side would be extremely helpful.

The numerical model is able to represent the fiber reinforced composites behav-

ior, strain-hardening after the initial cracking and also multiple cracks are captured.

However, the parameters used for the numerical model are quite different compared

to those reported experimentally.





Part III

Dynamics
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7 STRAIN-RATE EFFECT IN CONCRETE

FRACTURE

Macroscopic mechanical behavior of concrete is dependent on the strain rate.

Damaging specimens under higher strain rate typically leads to increase of the load-

ing forces and energy dissipation. In case of quasi-static loading, the initial micro

cracks localize into one highly damaged zone – macro crack. For higher rates, the

work done by loading forces is not consumed by one crack only, but dissipates via

multiple cracking and crack branching (Jirásek and Bažant, 1995). For processes

that are slow, but not slow enough to be considered as quasi static, the increase in

loading forces is attributed to viscous effects and can possibly be captured by strain

rate dependent material properties, for high loading rates the influence of inertia

forces is the main factor responsible for increase in strength and crack branching.

For high strain rates, fragmentation of the material occurs. With increasing strain

rate, the amount of very small fragments increases (Fowler and Scheu, 2016). The

model needs to take these small fragments into account either by modeling them

directly or representing them in constitutive law phenomenologically. Direct mod-

eling of such small particles enables more detailed description of material behavior,

but it is computationally demanding when modeling structures of reasonable dimen-

sions. With the strain rate dependent constitutive relation that accounts for small

fragments phenomenologically, the computational cost can be significantly reduced.

Such a phenomenological description can be easily provided by dynamic increase

factor (DIF). With help of DIF, the material properties are usually set to fit large

series of experimental results. Several examples of such approach can be found in

literature (Eibl and Schmidt-Hurtienne, 1999; Leppänen, 2006).

The eurocode (CEB, 1990) accounts for the difference between quasi-static tensile

strength 𝑓t ant the dynamical strength 𝑓t,imp using the dynamic increase factor (DIF)

for strain rates in two ranges, lower and higher with the boundary strain rate value

of 30 s
−1

. Malvar and Crawford (1998) reported that the progressive increase occurs

already for strain rates around 1 s
−1

and the following modification was proposed.

𝑓t,imp/𝑓t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝜀̇𝑡/𝜀̇𝑡0)𝛿𝑠 for 𝜀̇𝑡 ≤ 1s
−1

𝛽𝑠(𝜀̇𝑡/𝜀̇𝑡0)1/3 for 𝜀̇𝑡 > 1s
−1

(7.1)
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where 𝜀̇𝑡 is tensile strain rate and other constants are calculated according to

𝛿𝑠 =
1

1 + 8 𝑓𝑐𝑚/𝑓𝑐𝑚0

log 𝛽𝑠 = 6𝛿𝑠 − 2

𝜀̇𝑡0 = 10
−6

s
−1

𝑓𝑐𝑚0 = 10 MPa

and 𝑓𝑐𝑚 is static compressive strength of concrete. Malvar and Crawford (1998)

claim that this formula is applicable up to strain rate 160 s
−1

.

It is not only the strength itself that changes with high strain rate. For quasi-

brittle materials like concrete, fracture energy is an important material parameter.

The eurocode (CEB, 1990) states that the data regarding the strain rate effect on

fracture energy are too incomplete to include it into model code, nevertheless, the

existence of its dependency is mentioned there. Experimental data concerning also

dynamic fracture energy were published e.g. by Weerheijm and Doormaal (2007) or

Schuler and Hansson (2006).

However, direct multiplication of material strength (or fracture energy) by DIF

demands the constant strain rate during the investigated time period. It is therefore

suitable for rough estimation of material dynamic strength only.

For more detailed analysis, dynamic solution accounting for inertia forces is more

suitable. Solution of material dynamic behavior with discrete meso-scale model is

described in the following sections.
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8 TRANSIENT SOLUTION

Simulations of material behavior under various strain-rates bring necessity of

dynamic solution that consider inertia and damping forces.

8.1 Balance equation - time integration

The calculations are performed in dynamic regime, the time dependent response

is obtained from the solution of equations of motion

𝑀𝑢̈ +𝐶𝑢̇ +𝐾𝑢 = 𝐹 (8.1)

where 𝑀 , 𝐶 and 𝐾 stand for mass, damping and stiffness matrix respectively, 𝐹 is

a loading vector and 𝑢 is vector of unknown displacements and rotations, dotted

symbols represent first and second time derivative – accelerations and velocities

respectively.

Equations of motion are solved using an implicit time integration scheme accord-

ing to Newmark (1959). In this case, time-derivatives of accelerations and velocities

are approximated

𝑢̈𝑡+Δ𝑡 =
1

𝛽∆𝑡2
(𝑢𝑡+Δ𝑡 − 𝑢𝑡) −

1

𝛽∆𝑡
𝑢̇𝑡 − ( 1

2𝛽
− 1) 𝑢̈𝑡 (8.2)

𝑢̇𝑡+Δ𝑡 = 𝑢̇𝑡 +∆𝑡 (1 − 𝛾) 𝑢̈𝑡 + 𝛾∆𝑡𝑢̈𝑡+Δ𝑡 (8.3)

Substituting Eqs. (8.2)-(8.3) into (8.1), the following system is obtained (Bathe,

1996)

(𝐾 +
1

𝛽∆𝑡2
𝑀 +

𝛾

𝛽∆𝑡
𝐶)𝑢𝑡+Δ𝑡 = 𝐹𝑡+Δ𝑡 +𝑀 ( 1

𝛽Δ𝑡2
𝑢𝑡 +

1

𝛽Δ𝑡
𝑢̇𝑡 + ( 1

2𝛽
− 1) 𝑢̈𝑡) +

+𝐶 ( 𝛾

𝛽Δ𝑡
𝑢𝑡 + ( 𝛾

𝛽
− 1) 𝑢̇𝑡 +

Δ𝑡

2
( 𝛾

𝛽
− 2) 𝑢̈𝑡) (8.4)

where on the left side, the part multiplied by unknown displacements 𝑢𝑡+Δ𝑡 is the

effective stiffness and the right-hand side is the effective loading vector. ∆𝑡 is time

step length and 𝛽 and 𝛾 are parameters of Newmark method, that should be kept

within the following limits to get unconditionally stable solution

2𝛽 ≥ 𝛾 ≥ 0.5 (8.5)

The system is in nonlinear regime damped by dissipation of energy. Such effect

is considerably more important than damping due to viscous effect and friction that
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are collected in matrix 𝐶. Therefore damping by matrix 𝐶 is omitted hereinafter.

8.2 Mass matrix

Lumped mass matrix is commonly used in dynamic simulations. Such simplifica-

tion neglects the influence of the moments of inertia and takes into account only the

mass of particle concentrated in its center. However, neglecting the inertia moments

might provide inaccurate solution. Furthermore, the Voronoi node does not have to

coincide with Voronoi cell center of gravity. The full matrix is therefore used here.

Symmetric mass matrix of a single particle then consists of 6 × 6 values corre-

sponding to 3 translational and 3 rotational DOFs as follows

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 additional

𝑚 momentum

𝑚 𝑆𝑚

s inertia

y tensor

m 𝐸𝑄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.6)

where 𝑚 stays for particle mass 𝑚 = 𝜌 𝑉 . Since the mass matrix is based on the

geometry of rigid particles and the fracture is allowed only on their contacts, the

matrix itself is considered constant during the whole solution time. Description of

sub-matrices called additional momentum 𝑆𝑚 and inertia tensor 𝐸𝑄 is in following

subsections 8.2.1 and 8.2.2.

8.2.1 Additional momentum

Translation and rotational DOFs are related to the node of Voronoi cell. That

node, in general, does not coincide with particle center of gravity. Inertia of particle

mass relative to Voronoi node brings to the system additional momentum that is

taken into account by sub-matrix 𝑆𝑚

𝑆𝑚 = 𝑚

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∆𝑧 −∆𝑦

−∆𝑧 0 ∆𝑥

∆𝑦 −∆𝑥 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.7)

where ∆𝑥, ∆𝑦 and ∆𝑧 describes positional shift between particle gravity center and

Voronoi node in terms of coordinates 𝑥, 𝑦 and 𝑧.
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8.2.2 Inertia tensor

The matrix representing inertia tensor consists of moments and products of in-

ertia

𝐸𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.8)

Moments and products of inertia are obtained from integration over the volume

domain, in our case, over volume of the particle.

𝐼𝑥𝑥 = ∫
𝑉

𝜌(𝑦2 + 𝑧
2)𝑑𝑉 (8.9)

𝐼𝑦𝑧 = ∫
𝑉

𝜌𝑦𝑧𝑑𝑉 (8.10)

The rigid bodies obtained from the Voronoi tessellation are convex polyhedrons. To

calculate the inertia moments, these polyhedrons are decomposed into simplexes

(tetrahedrons) for which analytical formula for inertia tensor exists (Tonon, 2005).

One can calculate moment of inertia for a single tetrahedron (relative to its centroid)

from its vertex coordinates. For example, equation for 𝐼𝑥𝑥 reads

𝐼𝑥𝑥 = 𝜌 𝑉 (𝑦21 + 𝑦1𝑦2 + 𝑦
2
2 + 𝑦1𝑦3 + 𝑦2𝑦3 + 𝑦

2
3 + 𝑦1𝑦4 + 𝑦2𝑦4 + 𝑦3𝑦4 + 𝑦

2
4 +

𝑧
2
1 + 𝑧1𝑧2 + 𝑧

2
2 + 𝑧1𝑧3 + 𝑧2𝑧3 + 𝑧

2
3 + 𝑧1𝑧4 + 𝑧2𝑧4 + 𝑧3𝑧4 + 𝑧

2
4)/10 (8.11)

Similarly, product of inertia 𝐼𝑦𝑧 can be obtained

𝐼𝑦𝑧 = 𝜌 𝑉 (2𝑦1𝑧1 + 𝑦2𝑧1 + 𝑦3𝑧1 + 𝑦4𝑧1 + 𝑦1𝑧2 + 2𝑦2𝑧2 + 𝑦3𝑧2 + 𝑦4𝑧2 +

𝑦1𝑧3 + 𝑦2𝑧3 + 2𝑦3𝑧3 + 𝑦4𝑧3 + 𝑦1𝑧4 + 𝑦2𝑧4 + 𝑦3𝑧4 + 2𝑦4𝑧4)/20 (8.12)

Here, subscripts 1–4 refer to four tetrahedron vertices. Expressions for moments

and products of inertia related to other two base axes are analogical.

The tensors obtained from Eqs.(8.11)-(8.12) need to be further transformed to

Voronoi cell node. This is achieved using the Steiner’s (parallel axis) theorem.

8.3 Elastic behavior in dynamic regime

In this section, elastic response of the model is compared with analytical solution.

The elastic behavior of the model is tested using a cantilever beam loaded by a force
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𝐹 = 1 N at the free end (Fig. 8.1). Its dimensions are following: length 𝐿 is 200 mm,

depth and width are 20 mm. Particle radii, parameters of the Newmark method and

the time step length are varying in order to investigate the influence of their change

to the model behavior. For comparison, one (reference) setting is kept in all studies

the same: 𝑙min = 2 mm, time step 0.05 ms and parameters 𝛽 = 0.25 and 𝛾 = 0.5.

Simplifying the cantilever as an ideal Euler-Bernoulli beam and assuming that

it is vibrating in its first natural shape only, the deflection of the free end can be

calculated analytically. The solution is

𝑢(𝑡) = 𝐹𝐿
3

3𝐸𝐼
(cos(𝜔𝐼𝑡) − 1) (8.13)

where 𝐹 stands for loading force at the free end, 𝐿 for length of the beam, 𝐸 is the

elastic modulus and 𝐼 is the moment of inertia of the beam cross section. The first

natural frequency 𝜔𝐼 can be expressed

𝜔𝑡 = 𝜆𝐼

√
𝐸𝐼

𝑚𝐿3
(8.14)

where 𝜆𝐼 is according to Brepta et al. (1994) equal to 1.875. In all the graphs on

the following pages, this analytical solution is plotted in gray while static solution

appears as thin straight line. The response of the model is shown in Figs. 8.2-8.4. In

each figure, the upper graph displays evolution of deflection of the free end in time,

and the lower graph the time dependence of the vertical reaction in the support.

Each figure shows the sensitivity of the model to the change of one input parameter.

The elastic parameters of the meso-scale model used here are 𝐸0 = 48 GPa and

𝛼 = 0.29.

At first the solution with different length of the time step was examined (Fig. 8.2).

Time step length is ∆𝑡 ∈ {0.005, 0.05, 0.5}ms. On the lower graph, we can observe

Fig. 8.1: Modeled geometry and deformed shape showing the discrete structure with
100 times magnified deformation.
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Fig. 8.2: Dynamic response of cantilever beam using various time discretizations.

that the longer the time step, the more high frequencies are damped as a side effect

of numerical solution. The difference between the two finer time discretizations is

quite small compared to the difference between any of them and the longest time

step. high frequency oscillations in reaction 𝑅 are caused by the fact that for the

shorter time step length, the initial “impact” of the constant force happens in shorter

time. To damp high order modes it is recommended to use Newmark constants that

satisfy (Bathe, 1996)

𝛽 ≥ 0.25(0.5 + 𝛾)2 (8.15)

Fig. 8.3 shows the dependence of the model behavior on change of the parameters

of the Newmark method, beam is loaded by the same constant force. It can be seen,

that if we use the parameters for the trapezoidal rule (𝛽 = 0.25 and 𝛾 = 0.5 ), we

are taking into account more high order modes than if we use higher values of these

parameters, for which, the response becomes smoother.

Since the model is based on a concept of rigid body motion of particles of finite

size, it is important to understand the influence of their size. In all previous simula-

tions, particle size is 2 mm, which gives us approximately 10 bodies per cross section

depth/width. In Fig. 8.4, the change of response with the change of the particle size

is shown. The difference is obvious particularly for size 6.67 mm. In this case, only

3 particles are filling the depth/width of the beam.
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Fig. 8.3: Dynamic response of cantilever beam using various parameters of Newmark
method.

Fig. 8.4: Dynamic response of a cantilever beam using different particle sizes.

8.4 Strain rate dependency of constitutive law

The discrete model is able to capture some part of strain rate dependency at

macroscopic level by correctly accounting for heterogeneity and inertia in the meso-

structure. However, since used resolution does not capture all the possible cracking

in the material undergoing fast damage and also viscous effect of free water in the

material are not explicitly addressed, some strain rate dependency needs to be in-

corporated phenomenologically. To account for inertia of the interparticle material
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Fig. 8.5: Influence of parameters on increase function and scaling the elastic envelope
for increasing strain rate.

in inelastic regime, the constitutive behavior of contact facets is enriched by depen-

dency on difference in velocities of particles it connects. Calculation of 𝑠eq takes

into account rate of crack opening, 𝑤̇, of contact element through increase function

𝐹 (𝑤̇) provided Cusatis (2011).

𝑠eq = 𝐹 (𝑤̇)𝑓eq exp ( 𝐾

𝑓eq
⟨𝑒eq −

𝐹 (𝑤̇)𝑓eq
𝐸0

⟩) (8.16)

𝐹 (𝑤̇) = 1 + 𝑐1arcsinh ( 𝑤̇𝑐0) (8.17)

where variables 𝑐0 and 𝑐1 are additional material parameters.

The influence of parameters 𝑐0 and 𝑐1 is depicted in left part of Fig. 8.5, 𝑐0 is



56 CHAPTER 8. TRANSIENT SOLUTION

responsible for length of initial rate-independent part and 𝑐1 for increase of slope of

the second, rate-dependent part. The left part of the figure shows the elastic limit

𝑓eq for different straining direction; the elastic envelope is scaled according to the

strain rate. Initial slope of the softening curve remains unchanged, therefore more

energy is dissipated. This accounts for less localized strain in material loaded by

high strain rate compared to quasi-static fracture.

8.4.1 Numerical study of strain rate effect

The model was applied to simulate a simple tensile test of a prismatic beam in

uniaxial tension. The beam width and depth is 100 mm, thickness 40 mm. One end

of the beam is fixed, whereas the other one is loaded by an increasing deformation,

under wide range of strain rates, from 10
−6

to 10
2

s
−1

.

Various settings of an increase function from Eq. (8.17) used are listed in Tab. 8.1.

Other material parameters used in calculations have the following values: elastic

modulus 𝐸0 = 50 GPa, tangential/normal stiffness ratio 𝛼 = 0.25, tensile strength

𝑓t = 2.5 MPa, meso-scale fracture energy 𝐺f = 25 N/m
2
. Inertia is governed by the

material density, 𝜌 = 2500 kg/m
3
.

𝑐0 [s
−1

] 𝑐1 [ - ]

set 1 1 ⋅ 10
−5

5 ⋅ 10
−2

set 2 2.5 ⋅ 10
−5

8 ⋅ 10
−5

set 3 1 ⋅ 10
−2

8 ⋅ 10
−5

set 4 1 ⋅ 10
−5

5 ⋅ 10
−1

Tab. 8.1: Parameters of strain rate dependency for various settings of constitutive
law used in calculations.

Results are plotted in Fig. 8.6. Dynamic increase factor (DIF) for any model

response is calculated as ratio between dynamic and static strength 𝑓dyn/𝑓stat. Static

strength 𝑓stat is taken from simulation under strain rate 𝜀̇stat = 10
−6

s
−1

. Reference

calculation is performed using basic constitutive law with 𝐹 (𝑤̇) = 1.

The response of the model is compared to experimental results (Yan and Lin,

2006; Wu et al., 2005; Brara and Klepaczko, 2006a), which are also shown in Fig. 8.6

together with dotted curve representing the modified CEB relation for DIF presented

in (Malvar and Crawford, 1998).

It can be observed that setting of strain rate dependency of constitutive law

changes overall response, however, it should be noted that sudden increase in DIF

for rates 𝜀̇ ≥ 1 s
−1

is also due to inertia forces.
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9 NUMERICAL SIMULATIONS

9.1 Available experimental data

Experimental data regarding increase in compressive strength are quite abun-

dantly reported in literature already since the half of 20
th

century, e.g. (Mellinger

and Birkimer, 1966). On the other hand, data qualifying tensile properties of con-

crete under different strain-rates, especially when concerning more information than

simply dynamic tensile strength, are quite limited.

Very little experiments using conventional techniques for testing of concrete ten-

sile properties are published. As an example, experiments on concrete L-shape

specimens or compact tension tests can be found (Ožbolt et al., 2016). These test

are performed in dynamic regime under relatively low loading rates, up to 2.4 m/s

and simulated here with the discrete meso-scale model.

More convenient technique for estimation of high-rate tensile strength was re-

ported by Gran et al. (1985) where long concrete bar was loaded in compression

along the bar length, as well as in radial direction. The compressive force applied

in longitudinal bar direction was released suddenly by an explosive (decrease from

pre-stressing force to zero happened during period of 30𝜇s) and as the relaxing wave

approached form both sides, it meets in the middle where tensile failure occurs.

Another technique using Hopkinson Pressure Bar setup (Brara and Klepaczko,

2006b) is based on imposing pressure on a concrete bar that finally breaks in ten-

sion after the compressive wave is reflected at the rear face as a tensile stress wave.

Several techniques for estimation of dynamic tensile strength from this spalling test

are reported in literature, e.g. using a distance where the failure occurs or vari-

ous techniques based on observation of the specimen velocity field. Simulations of

spalling test by homogeneous discrete model with rate dependency due to viscous

material model are reported in (Hwang et al., 2016). Erzar and Forquin (2011)

published large set of spalling experiments is published in , including velocity of the

rear face of the specimen. These experimental data are chosen for comparison with

the presented meso-scale discrete model.

The following sections present simulations of the experiments from literature with

the numerical discete model. Also several studies are presented. Material parameters

are different for each experiment, since the model is applied on experimental data

performed on different materials. The only constants in all further calculations are

Newmark’s parameters 𝛽 = 0.3 and 𝛾 = 0.55 chosen according to Bathe and Noh

(2012).
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9.2 L-shaped specimen

In this section, simulations of the experimental series of concrete specimens with

a shape of an upside down letter L (Ožbolt et al., 2015) are presented.

9.2.1 Geometry and material properties

Specimen dimensions are 𝑊,𝐷 = 500 mm and 𝑊1, 𝐷1 = 250 mm (Fig. 9.1). Spec-

imen thickness is 𝑡 = 50 mm. Depth of the bottom support is 100 mm and loading

is applied by prescribed displacement in a distance of 30 mm from the edge of the

specimen. The loading is applied via rigid plate that can freely rotate. The loading

force is calculated during the simulations. Loading rates are chosen according to

Ožbolt et al. (2015) as 0.25 mm/s for quasi-static loading and 0.1, 0.35, 0.74, 1.0

and 2.4 m/s to study influence of the strain-rate.

Material parameters are also taken from Ožbolt et al. (2015). Macroscopic

Young’s modulus is 𝐸 = 32.2 GPa and Poisson’s ratio is 𝜈 = 0.18; the elastic meso-

scopic parameters at the interparticle contacts are obtained from Eq. (3.8): meso-

scale elastic modulus 𝐸0 = 50 GPa and normal-tangential stiffness ratio 𝛼 = 0.237,

respectively. Further material properties taken from Ožbolt et al. (2015) are: ma-

terial density 𝜌 = 2210 kg/m
3

and tensile strength 𝑓t = 3.12 MPa. The meso-scopic

Fig. 9.1: Geometry of simulated L-shaped specimen showing particle model struc-
ture.
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Fig. 9.2: Effect of selected material properties on the maximum loading force at
various displacement rates.

fracture energy for tensile failure was identified from the quasi-static loading rate

according to the experiments as 𝐺f = 35.5 N/m
2
.

9.2.2 Influence of material parameters

For static loading, the influence of fracture material characteristics – 𝑓t and 𝐺f –

plays a crucial role. The maximum loading force is mainly influenced by the tensile

strength 𝑓t and the descending part of load – displacement (time) diagram is affected

by the value of fracture energy 𝐺f . With increasing loading rate, the major influence

moves towards inertia.

To demonstrate this trend, influence of selected material properties was studied,

namely elastic modulus 𝐸0, tensile strength 𝑓t, fracture energy 𝐺f and material

density 𝜌. Simulations with the mentioned parameters magnified 1.5 times were

calculated. The change of maximum load is shown in Fig. 9.2. It can be observed,

that the greatest increase in loading forces is caused by increase in elastic modulus

𝐸0 for all displacement rates. The influence of tensile strength 𝑓t and fracture energy

𝐺f diminish with increasing loading rate, while the influence of material density 𝜌

appears. Effect of fracture parameters can be observed again even for higher rates

starting at 0.74 m/s, which is caused by cracking in the area of applied load which

was not observed in experiments (Ožbolt et al., 2015).

To show this effect of strength and fracture energy in detail, these are scaled

similarly to application of spatial material randomness (Sec. 3.4), ℎ(𝑥) = 𝑚, where

𝑚 is a strength multiplier. From load displacement curves in Fig. 9.3, one can observe
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Fig. 9.3: Load–displacement curves and crack patterns for different material
strength used in numerical simulations compared with experimental data reported
by Ožbolt et al. (2015).

that the value of the peak load for quasi-static rates is largely influenced, whereas

the effect for other loading rates is substantially lower, especially for loading velocity

0.35 m/s. For higher rate, the dependency is caused by crushing at the loading area.

In the same figure, the crack patterns are plotted at the end of each simulation.
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Fig. 9.4: Comparison of nonlinear vs. elastic response of the model.

The crack pattern changes with increasing rate. For quasi-static loading, the crack

propagates in the horizontal direction. With an increasing rate, the inclination angle

grows up to the vertical direction. With further increase of the loading velocity, crack

branching occurs. These results correspond to experimental observations (Ožbolt

et al., 2015) added in Fig. 9.3 in the bottom row. Comparing crack patterns for

different scaling parameter 𝑚, weaker material results in greater inclination angle

of crack direction and also crack branching occurs at lower loading velocity than for

stronger material.

It is interesting to compare the results with simulations considering elastic ma-

terial. In Figs. 9.4 and 9.5, elastic is compared with nonlinear response and experi-

ments from Ožbolt et al. (2015). A theoretical maximum load for elastic simulations

would be in infinity, but the time dependent response oscillates around the static

response and the first such wave is plotted in Fig. 9.5. Comparing the elastic calcu-

lation with the experimental response, it seems that material in the whole measured

response is purely elastic. The cracking in the corner of the specimen happens later

when the loading wave reaches the corner. For higher rates, the nonlinear model

prediction of the peak load is affected by crushing of the material close to the loading

point. This undesired effect was already mentioned because it is responsible for 𝑓t

and 𝐺f effects in high rate regimes.

Trying to avoid this crushing, gradual increase in displacement rate 𝑣 is applied.

Loading constraint is then calculated according to

𝑢𝑙 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0.5𝑡
2
+

𝑡0
4𝜋2

cos(2𝜋 𝑡
𝑡0
) − 𝑣𝑙

𝑡0
) 𝑣𝑙
𝑡0

𝑡 ≤ 𝑡0

𝑣𝑙 𝑡 − 𝑣𝑙 𝑡0 𝑢𝑙(𝑡0) 𝑡 > 𝑡0

(9.1)

where 𝑢𝑙 is applied displacement constraint at the area of loading, 𝑣𝑙 is a specified
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Fig. 9.5: Relation between maximum loading force and displacement rate.

loading rate and 𝑡0 is an initial transition period (length of gradual increase of

displacement rate). This analytical formula was chosen to obtain smooth transition

at the beginning as well as at the end of gradual increase for all displacements,

velocities and accelerations. Using this formula with different transition period 𝑡0,

simulations of specimens loaded under displacement rate 2.4 m/s were performed.

Both time dependent response and crack pattern are shown in upper part of Fig. 9.6.

Using this gradual increase, the crushing in the area of applied load is reduced. On

the other hand, longer initial transition period 𝑡0 causes reduction of loading forces,

because the mass is actually accelerated under lower rate.

Up to this point, particle size 𝑙min = 15 mm was used. Since this model uses crack

band theory (Bažant and Oh, 1983), the discretization does not influence the model

response for cases when the crack is localized. However, when crushing occurs and

cracks are distributed in volume, the model becomes discreteizetion dependent. The

results for simulation using doubled and half particle size are shown in the lower part

of Fig. 9.6. Note that for coarse discretization there are only two particles across

the specimen thickness. For the finer discretization, the peak load is a bit lower and

for the coarser a bit higher than for the reference particle size. But, this increase

or decrease can be aso attributed to the randomness of spatial discretization of

the volume domain resulting in random response as mentioned in Sec. 3.1. Though

that the distributed cracking occurs, the response is not influenced much by the

discretization.

9.2.3 Application of rate dependent constitutive law

As has been shown in Fig. 9.3, the numerical model predicts cracking in the area

of applied load, which does not occur in the experimental study, see (Ožbolt et al.,
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Fig. 9.6: Effect of gradual increase of displacement rate and different particle size.

2015). Furthermore the model does not sufficiently capture the increase in maximum

load obtained for high strain rates measured experimentally and this is again due

to distributed fracture in the loading area. This phenomenon can be attributed

to missing strain-rate dependency in constitutive law, which should compensate

for insufficient resolution of the model inner structure and viscous effects. The

constitutive law was therefore enhanced with strain rate dependency according to

Cusatis (2011), as explained in Sec. 8.4

Calculations using two different sets of parameters 𝑐0 and 𝑐1 are performed. The

first one (set 1) has 𝑐0 = 1 ⋅ 10
−5

s
−1

and 𝑐1 = 5 ⋅ 10
−2

, and the second one (set 2)

has 𝑐0 = 4 ⋅ 10
1

s
−1

and 𝑐1 = 1 ⋅ 10
3
. Response of the models is shown in Fig. 9.7.

The reference simulation without rate dependency is the one shown in Fig. 9.3 using

𝑚 = 1. With increasing rate parameters, cracking in the area of the applied load

diminishes, however, it also changes in the shape of damaged zone not corresponding

to experimental evidence appears.

Loading force can also be influenced by steel mass between the force sensor

and concrete material, which has to be accelerated as well and which also helps to

distribute the loading force into the specimen. In the right bottom part of Fig. 9.7,

response of the model with additional steel piston (steel part modeled by elastic finite

elements with total mass 0.277 kg) is shown. Value of the maximum load increases

significantly, however, arbitrary loading force can be obtained using different size of
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Fig. 9.7: Response of the model using strain rate dependent constitutive law and
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this steel cylinder. Since this mass is not known to us, it is not applied for any other

simulations here.

9.2.4 Application of random field

It has been shown that the change in material properties has large influence

on model response for all the simulated displacement rates. Here, the focus is on

faster loading rates from 0.74 to 2.4 m/s. For these loading velocities, 10 different

random field realizations are applied. Correlation length 𝑙𝑐 = 20𝑚𝑚 and standard

deviation 0.25, mean fracture energy and These realizations are shown in Fig. 9.8 in

the first row. Further rows show crack patterns for corresponding realization and

displacement rate applied. Similarly to the change of material properties, the load-

displacement response is not influenced much, but crack pattern is highly affected

by presence of locally stronger or weaker material.

9.2.5 Summary

L-shaped specimens loaded by several displacement rates according to experi-

ments by Ožbolt et al. (2015) are simulated. The peak load is highly influenced

by inertia (i.e. by accelerating the mass above the loading point), while the crack

pattern is highly influenced by material fracture properties. Contrary to the exper-

imental evidence, the model predicts large zone of distributed cracking above the

loading point for high loading velocities. Strain rate dependency in constitutive load

helps to reduce this cracking as well as smooth loading acceleration, however, these

remedies lead to incorrect crack pattern in later stages of too low loading forces.
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9.3 Compact tension specimens

The discrete model was further applied on a recently published experimental

series of notched compact tension specimens – CTS (Ožbolt et al., 2013). Also

these specimens were loaded under various displacement rates.

Specimen dimensions (Fig. 9.9-left) are: width and depth 𝑊 = 𝐷 = 200 mm,

notch depth 𝑛 = 64 mm and specimen thickness is 25 mm. One side of the notch is

fixed, whereas opposite side of the notch is loaded. Loading is applied in the middle

of the loading area by prescribed displacement. Loaded/supported area is up to

𝑝 = 50 mm of the notch depth. These areas are formed by rigid plates that can

freely rotate around the horizontal axis pointing out of the figure plane (Fig. 9.9).

Material properties were chosen according to experiments (Ožbolt et al., 2013):

elastic modulus 𝐸0 = 56.25 GPa, tensile-shear stiffness ratio 𝛼 = 0.237, tensile

strength 𝑓t = 3.5 MPa. Fracture energy for tensile failure was set according to

best fit for loading rate 0.035 m/s as 𝐺f = 39 N/m
2
. Parameter dictating the av-

erage particle size was set 𝑙min = 7.5 mm according to maximum aggregate size in

experiments.
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9.3.1 Results of simulations

In the right part of Fig. 9.9, displacement of the loading point vs. reaction in fixed

support is plotted and compared with the experimental curves from Ožbolt et al.

(2013). Relation between the maximum reaction/loading force and applied loading

rate is shown in Fig. 9.12. For this purpose, simulations under rates from 0.25 mm/s

to 4.3 m/s were performed. Two sets of simulations were calculated, where rotation

of loading plate was (i) allowed or (ii) restricted. Simulations with the restricted

rotation provide small increase in the loading force compared to those with the free
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Fig. 9.10: Crack patterns obtained from numerical simulations compared with ex-
perimental data from Ožbolt et al. (2013) for lower loading rates.
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Fig. 9.11: Crack patterns obtained from numerical simulations compared with ex-
perimental data from Ožbolt et al. (2013) for higher loading rates.

rotation. In the case of max. reaction the trend is similar, but for loading rates

≥ 0.5 m/s, the maximum reaction decreases due to excessive crushing and changes

in the crack pattern. The experimental data (Ožbolt et al., 2013) shown in left

graph in Fig. 9.12 exhibit large scatter, but the trend is obvious. The simulations

using rate independent constitutive law do not provide high enough reaction for

higher loading rates. Using rate dependent constitutive law, higher loading forces

and reactions are obtained, but for loading rates above 1 s
−1

crushing of the material

results in decrease of reaction with increasing loading rate. Change in the mechanism

displacement rate [m/s]
10−3 10−2 10−1 100

2

4

6

m
ax

R
ea

ct
io

n
[k

N
]

rotation free restricted rotation rate dependency experiments

10−3 10−2 10−1 100

0

20

40

60

m
ax

L
oa

d
[k

N
]

Fig. 9.12: Relation between displacement rate and the maximum reaction (left) or
the maximum loading force (right).
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of failure observed experimentally and simulated is shown in Figs. 9.10 and 9.11.

Here, particle contacts are colored according to the value of damage parameter 𝐷.

With increasing loading rate, the direction of the crack changes and crack branching

occurs. For slow loading, crack propagates in the direction of the initial notch. With

increasing loading rate, the crack bends towards the horizontal direction and crack

branching occurs. The same trend can be seen in experiment, however, for higher

loading rates, the simulation predicts crushing in the area of applied load.

9.4 Brazilian disk specimen

Simulations presented in this section were calculated using mathematical models

corresponding to experimental series on Brazilian splitting tests reported by Jin et al.

(2017). Simplified models of Brazilian discs were supported (respectively loaded) by

line of boundary aggregates as shown in Fig. 9.13. The loading is applied by in-

creasing deformation under prescribed loading rate. It does not fully correspond to

experimental loading, which was applied by Hopkinson bar setup. Loading by pres-

sure (force) wave would be more realistic, but in this case, the desired displacement

rate can be exactly specified. The experiments as well as simulations were performed

on concrete and mortar discs with diameter 𝐷 = 70 mm and with thickness 𝑇 = 30

(further referred to as thin) and 55 mm (further referred to as thick).

Two materials (concrete and mortar) were used in experimental study, there-

fore also two sets of material parameters were used for the modeling, see Tab. 9.1.

Parameter 𝑙min was set according to maximum aggregate size used in experiments.

The material fracture parameters were estimated with help of the maximum load

obtained by quasi-static tests on thin discs. with displacement rate of 1.67 10
−6

m/s.

Fig. 9.13: Setup of the model representing Brazilian discs.
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𝐸0 [GPa] 𝛼 𝑓t [MPa] 𝐺f [N/m
2
] 𝜌 [kg/m

3
] 𝑙min

concrete 44 0.237 2.64 9.93 2400 7.50
mortar 40 0.237 3.47 40.66 2020 2.36

Tab. 9.1: Material parameters used from simulations of concrete and mortar discs.

Value of material meso-scale tensile strength was set to the value of macro-scopic

tensile strength of the material and meso-level fracture energy was then found by

fitting the model response to match the peak load only, since the post-peak behavior

is hard to capture in the case of splitting test. The fit was performed separately for

both simulated materials – concrete and mortar.

In this section, strain-rate is calculated as displacement rate divided by disc

diameter. This is actually not correct, since the actual strain-rate varies in space.

This simplification was chosen to enable comparison with the experimental data.

For Brazilian splitting tests, the material tensile strength 𝑓tu is estimated ac-

cording to

𝑓tu =
𝑃1 + 𝑃2

𝜋𝑇𝐷
(9.2)

where 𝑃1 and 𝑃2 are impact and transmitted force respectively. In the case of

dynamic loading, the forces from both sides are different at each time-step. But

they must be equal in the case of quasi-static loading.

9.4.1 Results of simulations

After finding the best possible set of parameters to match the quasi-static re-

sponse on thin specimens, the response of thick specimens was calculated. Values of

the peak load and tensile strengths obtained by the model are listed in Tab. 9.2 to-

gether with the experimental values. Note that rows corresponding to thin specimens

are from the fitted response, while thick sample simulations are model predictions.

experiments simulations
peak [kN] strength [MPa] peak [kN] strength [MPa]

concrete thin 8.71 2.64 fit 8.71 2.64
thick 15.71 2.6 15.24 2.52

mortar thin 11.44 3.47 fit 11.44 3.47
thick 20.26 3.35 23.01 3.80

Tab. 9.2: Peak load and tesile strength obtained by the model assuming quasi-static
loading compared to the experiments by Jin et al. (2017)
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Fig. 9.14: Left: force vs. displacement curve for thin mortar specimens, right:
damaged volume obtained by simulation (with magnified displacements).

The dynamical simulations were performed under wide range of displacement

rates in correspondence to the experimental test. On the graph in the left part of

Fig. 9.14, load-displacement curves are plotted for various strain rates. Significant

delay in transmitted force can be observed as well as different increase of impact

force 𝑃1 and transmitted force 𝑃2. The greater increase in the first one is mainly

caused by inertia.

Right part of Fig. 9.14 shows crack patterns for quasi-static and fast loading

rate. In these pictures, displacements are 10× magnified. Particle facets are colored

according to the value of damage 𝐷. The model predicts splitting the specimen into

two parts with relatively localized crack path for quasi-static loading, whereas in

case of fast rate, the damage spreads into a wider zone. This corresponds to the

experimental data by Jin et al. (2017)

Fig. 9.15 displays relation between the strain rate and the material dynamic ten-

sile strength according to Eq. 9.2 obtained by the discrete particle model and experi-

mentally by Jin et al. (2017). Value of DIF is calculated by dividing the dynamic and

static strength. DIFs were obtained for both materials and both thicknesses Even

though the same trends of DIF are obtained by the model, experimental data pro-

vides greater DIFs in all cases. The rate independent version of the model was used

for these simulations. It appears that for high loading rates, the material behavior
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Fig. 9.15: Dynamic increase factor of material tensile strength obtained by the model
compared with experimental measurements (Jin et al., 2017).

under the model resolution needs to be captured by rate dependent constitutive law.

9.5 Spalling test

Another simulated test also uses Hopkinson pressure bar setup. It is used for

estimation of dynamical tensile strength induced by spalling. Test series reported by

Erzar and Forquin (2011, 2010) was selected because of direct measurements of the

rear face velocity, which is important for estimation of dynamic tensile strength. It

was a large series of specimens tested using not only Hopkinson bar setup, but also

tensile test performed in conventional apparatus to determine material properties

under lower and quasi-static strain-rates.

The test setup consists of long metal (usually steel or aluminum alloy) bar and

relatively short concrete cylinder at its end. Metal bar is loaded by impact of

a projectile or by an explosive and the pressure wave propagates along the bar until

it reaches its end. At the contact between metal and concrete, some part of pressure

wave is reflected backwards to the metal bar as a tensile wave and the rest of it is

transmitted into the concrete specimen, where it further propagates as a pressure

wave. When it reaches the rear face of concrete cylinder, it is reflected as a tensile

wave and, after reaching the material tensile strength, the specimen breaks.
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Fig. 9.16: Visualization of model geometry used in numerical simulation of spalling
test – concrete cylinder discretized into particles loaded by a stress wave.

To determine the dynamic tensile strength from results of SHPB test, theory

derived for 1D longitudinal wave propagation according to (Novikov et al., 1966) is

usually applied. Erzar and Forquin (2010) use the following relation

𝑓t,dyn =
1

2
𝜌 𝑐∆𝑉pb (9.3)

where ∆𝑉pb is pullback velocity, which is a difference between the maximum and

residual velocity of the rear face of the specimen, 𝑐 is a wave speed, which can be

for elastic materials analytically calculated

𝑐 =

√
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈) (9.4)

Here 𝐸, 𝜈 and 𝜌 are macroscopic elastic modulus, Poisson’s ratio and density re-

spectively. Empirical determination of residual velocity is proposed in Sec. 9.5.2.

Initially, the whole steel bar with the concrete specimen were simulated. Steel

bar was represented by elastic finite elements and concrete by the discrete parti-

cles. Initial velocity was applied at the beginning of the steel bar corresponding to

velocity of a projectile used for loading. However, this approach turned out to be

too computationally demanding. Therefore, loading was applied by a stress wave

applied at front face of the specimen as shown in Fig. 9.16.

Prior to the actual comparison of model results with the experimental data,

several studies were conducted to understand the wave propagation and to correctly

interpret the model results.

9.5.1 Wave propagation along elastic material

At first, propagation of a stress wave along elastic cylindrical bar was investi-

gated, similarly to study done by Hwang et al. (2016). Stress wave was prescribed
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Fig. 9.17: Results for different time step length ∆𝑡, left: rear face velocity evolution
in time, right: stress profile along the elastic bar in particular times.

according to one period of following cosine function

𝜎(𝑡) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

2
[𝜎max − 𝜎max cos (2𝜋𝑡

𝑡P
)] for 𝑡 ≤ 𝑡P

0 for 𝑡 > 𝑡P

(9.5)

where 𝜎max is the peak stress applied and 𝑡P is the period of the stress wave. Chosen

parameters are: length 𝐿 = 400 mm and radius 𝑅 = 22.5 mm, the maximum stress

𝜎max = 4 MPa and the period of imposed stress wave 𝑡P = 50𝜇s. The material

parameters are following: 𝐸0 = 70 GPa, 𝛼 = 0.237, 𝜌 = 2340 kg/m
3

and 𝑙min = 5 mm.

In Fig. 9.17, results of elastic simulations are plotted. The graph on the left

shows evolution of the rear face velocity in time and the graphs in the right part

show the stress profile along the bar in four different times during the simulation.

The vertical lines in the left graph mark times when stress profiles are plotted.

Thanks to the heterogeneous inner material structure represented by the model,

the stress profile is not smooth. This can be observed in the upper right graph in

Fig. 9.17 where nodal stress 𝜎𝑥 of each particle is represented by a small dot. In

the lower graphs, only the average stress in longitudinal bar direction is plotted.

Averaging is performed in slices of width 5 mm, corresponding to parameter 𝑙min

dictating the particle size.

The color then refers to different time step length ∆𝑡 used in the transient

Newmark’s solution. Even though the step length does not influence the stability
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Fig. 9.18: Two stress waves reported by Erzar and Forquin (2011), wave 3 with half
intensity of wave 1 is introduced for study of model behavior.

of the solution, it influences its accuracy, as can be observed from slightly different

results for various step length. The wave tends to be faster when longer time-step is

used. Also numerical damping has greater effect for longer ∆𝑡. Difference between

solution with ∆𝑡 = 10
−7

and ∆𝑡 = 10
−8

is minimal, therefore time step chosen for

further calculations is ∆𝑡 = 10
−7

s.

Since the calculation of wave speed according to Eq. (9.4) takes into account

macro-scopic properties that are known only approximately from the Eq. (3.8), the

wave speed is calculated from the elastic model response. This actual wave speed

obtained from the results of this test is 𝑐act ≈ 4200m/s.

9.5.2 Study of fracturing behavior

Prior to the comparison of the model with the experimental data, model behavior

for this test setup was investigated also in nonlinear regime. Compressive stress wave

imposed on the front face of the specimen is this time piecewise-linear function

according to experimental data (Erzar and Forquin, 2011). The compressive wave

has so high amplitude that tensile damage occurs in transverse direction. Such

crushing cannot be seen in homogeneous models since it is a direct consequence of

heterogeneity. This damage causes energy dissipation leading to reduction of wave

intensity and also changes material behavior. Therefore it strongly affects obtained

results. In order to reduce inelastic behavior under compressive wave propagation,

smaller stress intensity than the experimental one was used. It is shown in Fig. 9.18
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Fig. 9.19: Preliminary study on various material model settings.

as wave 3. Note that even for this reduced pressure wave, the strain-rate reaches

value 20/s. Simulated specimen has length 𝐿 = 140 mm and radius 𝑅 = 22.5 mm.

Elastic material parameters and density for this preliminary study are same as in

Sec. 9.5.1, parameters governing nonlinear part of constitutive law are 𝑓𝑡 = 8 MPa

and 𝐺𝑓 = 36.5 J/m
2
. Parameters of rate dependency of are chosen according to

recommendations in (Cusatis, 2011) 𝑐0 = 10
−5

s
−1

and 𝑐1 = 5 ⋅ 10
−2

.

The rear face velocity in time is plotted in Fig. 9.19 for 6 different material mod-

els. At first, elastic response was calculated. Then, the inelastic reference simulation

was computed with material parameters mentioned above. Finally, four more mate-

rial models were considered with (i) fracture energy decreased to one half, (ii) tensile

strength decreased to one half and (iii) one quarter and (iv) eliminated strain rate

dependency. For simulation with the lowest tensile strength, significant amount

of damage occurs during propagation of pressure wave which leads to deviation of

response from the elastic one already before peak velocity is reached.

The dynamic tensile strength is estimated using Eq. (9.3). Looking at the rear

face velocity evolution, it is often unclear what value should be taken as pull-back

velocity ∆𝑉pb.

For this purpose, response using three different material models was chosen for

detailed comparison: The reference calculation and simulations using 0.5𝐺𝑓 and

0.25 𝑓t. These are shown in detail in Fig .9.19. In the middle graph, derivative of

velocity in time is plotted. The value of residual velocity 𝑣r is here chosen as (i) the

next local extreme after the peak velocity, d𝑣/d𝑡 = 0 or (ii) the next inflex point

after the peak, d
2
𝑣/d𝑡

2
= 0. Time of occurrence of these events is highlighted in the
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Fig. 9.20: Two different ways to estimate the residual velocity to calculate the pull-
back velocity ∆𝑉pb.

calculation 𝑣p [m/s] 𝑣r2,3 [m/s] ∆𝑝𝑏 [m/s] 𝑓t,dyn [MPa] 𝜎̄max [MPa]

0.25 𝑓t 5.55 5.02 0.53 2.58 3.74
3.52 2.03 9.88

0.5 𝐺f 5.70 3.73 1.97 9.50 9.75
3.56 2.14 10.42

reference 5.70 3.21 2.49 12.12 11.18
2.86 2.84 13.82

Tab. 9.3: Different 𝑓t,dyn according to different points considered for values of resid-
ual velocity 𝑣r.

graphs as straight line of color corresponding to color of the response curve. Dotted

lines are used for local extreme and solid lines for inflex points of the velocity in

time. The bottom graph in Fig .9.19 shows evolution of the maximum tensile stress

in longitudinal direction occurring in the model. In all three graphs, elastic response

is plotted for comparison as thick grey curve. Values of dynamic tensile strength
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Fig. 9.21: Stress profile along the specimen and crack pattern in time of maximum
tensile 𝜎𝑥 for simulation with 0.25 × 𝑓t.

according to Eq. (9.3) are calculated in Tab. 9.3 for two mentioned values of 𝑣r. In the

table, maximum longitudinal stress 𝜎̄max obtained by the numerical model is stated

for comparison. The stress profiles of these three models responses are shown in

Figs. 9.21-9.23 together with the crack pattern at the time of reaching the maximum

tensile stress and at the end of the calculation. Average stress is represented by a

red curve and stress in every node of meso-scale structure is represented by a small

dot in stress profile.

At first, let us focus on the response of the model with 0.25 𝑓t. This response

deviates from the elastic even before the peak velocity, which is caused by the

large damage during pressure wave propagation, see the crack in the right part of

Fig. 9.21. A lot of contacts are damaged already at the time of the peak stress.

The stress profile is shown in the same figure, value of the peak stress 𝜎̄max =

3.74 MPa. Calculation of the dynamic strength 𝑓t,dyn considering the local minimum

gives exaggerated value. On the other hand, the value obtained with consideration

of the inflex point is a bit lower than the model prediction, however it is much

closer than the other one. The response of the material is highly influenced by

the transverse damage due to huge compressive loading (relative to the material

strength). This corresponds with the recommendation reported by Forquin et al.

(2013) which states that one should avoid pressures larger than 30% of compressive

strength for this spalling test.

Now compare the other two responses, the one with reference material model

and the one using reduced fracture energy 0.5𝐺𝑓 . Even though the elastic limit

is the same for both calculations, the resulting dynamic strength is different. The

dynamic strength predicted by the numerical model is therefore dependent on both

tensile strength and fracture energy. Also for these responses, the value of dynamic
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Fig. 9.22: Stress profile along the specimen and crack pattern in time of maximum
tensile 𝜎𝑥 for simulation with 0.5 × 𝐺f .
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Fig. 9.23: Stress profile along the specimen and crack pattern in time of maximum
tensile 𝜎𝑥 for reference simulation.

tensile strength calculated using the velocity at the inflex point is closer to the value

of maximum stress 𝜎̄max extracted from the meso-scale analysis.

9.5.3 Comparison to experimental data

Two tests were selected for comparison with results of the developed numerical

model. These two tests differ only in stress waves transmitted from aluminum alloy

bar of length 1.2 m. Both of the waves were measured by Erzar and Forquin (2011),

they are plotted in Fig. 9.18 as waves 1 and 2. The maximum strain-rate calculated

from the stress waves is 41/s and 94/s for wave 1 and 2, respectively.

Concrete specimens had length 𝐿 = 140 mm and radius 𝑅 = 22.5 mm, which are

the same dimensions as in the previous section. Specimens were made of satu-
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Fig. 9.24: Results of numerical simulations compared to the experimental data by
Erzar and Forquin (2011).

rated (wet) concrete with the following macroscopic parameters: elastic modulus

𝐸 = 42 GPa, Poisson’s ratio 𝜈 = 0.2, density 𝜌 = 2380 kg/m
3

and tensile strength

𝑓𝑡 = 3.7 MPa.

The material parameters for the meso-scale model are following: elastic modulus

𝐸0 = 77 GPa, parameter 𝛼 = 0.1667, density 𝜌 = 2380 kg/m
3
, tensile strength

𝑓t = 3.7 MPa and fracture energy 𝐺f = 36.5 J/m
2
. Parameters of rate dependency

are 𝑐0 = 10
−5

s
−1

and 𝑐1 = 10
−1

. Since the relation between macro and mesoscopic

elastic properties – Eq. (3.8) – is only approximate, the actual mesoscale elastic

modulus was identified from the wave speed and the maximum velocity of the rear

face using wave 1. The resulting value 𝐸0 = 77 GPa is slightly higher than 70 GPa

which would be value obtained by Eq. (3.8). This is in agreement (Eliáš, 2017),

because Eq. (3.8) underestimates 𝐸0 for positive Poisson’s ratios. For verification,

results of elastic FEM simulation with the macroscopic elastic modulus and Poisson’s

ratio is performed. The difference between continuous and discrete elastic simulation

is negligible for both waves (Fig. 9.24) and the difference is attributed to different

solution methods. The continuous model used explicit time integration, while the
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discrete model integrated in implicit scheme which suffers from numerical damping.

The fracture energy 𝐺f was chosen to obtain post peak evolution of the rear face

velocity comparable to experimental data for the first loading case – wave 1. The

second rate dependency parameter 𝑐1 is increased for the same reason.

The model response for both loading cases along with experimental data (Erzar

and Forquin, 2011) is shown in Fig. 9.24. It can be observed that the experimental

peak velocity for wave 1 corresponds to the elastic response of the model. However,

looking at the response for wave 2, the model elastic response of the same material

is above the experimental peak velocity. It could possibly be explained by inelastic

effects occurring in experiments during the pressure wave propagation, which did

not occur under lower pressure of wave 1.

The responses of nonlinear model deviate from elastic response prior to reaching

peak velocity in both cases, again due to inelastic effects during compression phase.

These effects are magnified when rate dependency is neglected. The descending part

of the simulated pullback velocity line is not as steep as reported in experiments.

There are multiple macrocracks created in the model, shown in the bottom part

of Fig. 9.24, which corresponds to the experimental evidence (Erzar and Forquin,

2011).

9.6 Conclusions about the dynamic model

Application of the discrete meso-scale model showed the model ability to imitate

the dynamic concrete behavior. The model is, up to some point, able to reproduce

both major attributes of the rate dependent concrete behavior, increase in loading

forces and changes in the crack pattern. Initially, these were attributed to the

heterogeneous material structure and its direct representation in the meso-scale

model should have ensured capturing all the rate-dependency. This idea turned

out to be too ambitious and rate-dependency of the constitutive law needed to

be incorporated to enable more appropriate representation of material behavior,

especially for high strain-rates.

The direct application of the displacement under higher strain rates resulted in

crushing of the material close to the loading point. This occurred even though the

displacement was applied via rigid plate and not in a single point. Various remedies

were tried to fix this behavior, e.g. gradual increase in displacement rate instead of

loading under full velocity from the beginning. These helped to prevent crushing,

however, the increase in loading forces was lost due to reduced inertia effect.

The developed model was used to determine the macro-scopic homogeneous

model characteristics in (Le et al., 2018). Dependency of the process zone size
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and other characteristics on the strain rate and specimen size was investigated on a

small specimens representing ceramics at fine resolution, using the presented model

(Figs. 9.25 and 9.26). The specimens were loaded in tension, random field was con-

sidered.

Fig. 9.25: Different fraction of damaged volume relative to different specimen size.

Fig. 9.26: Different amount of damaged volume for different strain rate for specimen
of width = 400𝜇m.
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10 CLOSING REMARKS

The presented thesis is focused on the numerical analysis of concrete fracture

using discrete meso-scale model. In the first part, the existing meso-scale model

for static analysis is presented. The material representation and constitutive rela-

tions are described. Two following parts are devoted to two modifications of the

computational model implemented by the author.

Part II presents incorporation of a short fiber reinforcement into the numerical

model. Direct representation of fibers by additional elements was rejected in favour

of indirect approach, taking into account frictional forces due to fiber resistance

against pullout. The later was chosen to prevent the increase the number of degrees

of freedom.

Concrete reinforced with tiny poly-vinyl-alcohol fibers is studied. At first, ex-

amples showing the model behavior on a single contact of two particles connected

with one and multiple fibers are presented. The fiber constitutive law adopted from

literature (Schauffert and Cusatis, 2012) has two main parts representing process

of fiber debonding and pullout, respectively. The model behavior is then inves-

tigated on simulations of uni-axial tensile test of a prismatic beam made of fiber

reinforced concrete. This study shows interaction between material parameters re-

lated to fibers and those related to the concrete matrix. If concrete is too strong, no

strain-hardening behavior is predicted by the numerical model. This unfortunately

cannot be confirmed by an experimental evidence, because the data on both plain

and PVA-fiber reinforced concrete from one batch are missing.

Numerical simulations of experiments by Li et al. (2001) shows an ability of this

model modification to predict complex behavior of the fiber reinforced composite,

including strain-hardening and multiple cracking. However, fiber material param-

eters reported in the mentioned article and those used for fiber representation in

computational model to obtain comparable response differ considerably.

Part III is devoted to extension of the discrete meso-scale model by an the implicit

dynamic solver. An ability of the model to represent strain-rate dependent material

behavior is investigated.

Initially, the constitutive law is considered strain-rate independent. The inten-

tion is to account for the rate dependent behavior by the direct representation of

material inner structure. It appeared that processes at even lower scale influence the

material response as well, especially for higher loading rates. Since these processes

are under resolution of the model, they has to be incorporated into the constitutive

law phenomenologically. The rate dependency of the constitutive law is adopted

from Cusatis (2011).

Dynamic numerical model is initially used to simulate tests under relatively slow
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loading rates, up to 4.3 m/s (Ožbolt et al., 2015, 2013). Numerical simulations of

these experiments predict similar trends – increase of loading forces as well as the

crack inclination for higher loading rates. It shows that the loading forces in dynamic

regime are mostly influenced by the inertia. On the other hand, the model weakness

is a local crushing in the area of applied load that occurred even though the loading

was applied via rigid plate and with smooth increase of displacement rate.

Dynamic behavior under strain-rates higher than 10 s
−1

is studied on Hopkinson

bar setup. The experimental data on Brazilian splitting tests (Jin et al., 2017) and

spalling experiments (Erzar and Forquin, 2010) are chosen for comparison. The large

effect of inelastic material behavior during pressure wave propagation is described.

It is shown that the estimation of the dynamical tensile strength can be highly

influenced by the transverse tensile damage caused by the pressure wave. In case

of spalling tests, the dynamical strength is estimated from the evolution of velocity

at the rear face of the spalling specimen. It is discussed what value should be used

as this residual pullback velocity. The most convenient seems to be the velocity at

the first kink, the first local minimum might provide exaggerated dynamic strength,

especially for the cases when the material is damaged already during pressure wave

propagation. To avoid damaging the specimen by pressure wave, Forquin et al.

(2013) recommend to use pressures lower than 30% of compressive strength in the

dynamic spalling tests.

10.1 Future work

The discrete meso-scale model appears to be capable of representing the complex

behavior of heterogeneous cement-based composite. This representation is, however,

limited.

The limits of the current model configuration reveal the space for the future

modifications. For example the transition from tensile into compressive loading

that happens during reflection of the wave at the domain boundary, results into the

loading unloading cycle. The constitutive law governed by the damage variable lacks

representation of irreversible strain, model gives zero strain when fully unloaded. So

the next step is modification of the constitutive law for more realistic representation

of loading-unloading cycles.

Opportunity also lies in the application of the model to other materials or struc-

tures at different scales. For example, low-scale representation of masonry structures

is a challenging task that the author considers to investigate further.
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J. Ožbolt, J. Bošnjak, and E. Sola. Dynamic fracture of concrete compact tension

specimen. International Journal of Solids and Structures, vol. 50(25-26):4270–

4278, 2013. ISSN 00207683. doi:10.1016/j.ijsolstr.2013.08.030.

http://dx.doi.org/https://doi.org/10.1016/j.probengmech.2005.10.008
http://dx.doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2769)
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.030


92 BIBLIOGRAPHY
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