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ABSTRACT
Standard procedures of dysphonia diagnosis by a clinical speech therapist have their
downsides, mainly because the process is very subjective. Recently, an automatic objec-
tive analysis of a speaker’s condition gained in popularity. Researchers successfully based
their methods on various machine learning algorithms and handcrafted features. These
methods, unfortunately, are not directly scalable to other voice disorders and the process
of feature engineering is laborious and thus financially and talent expensive. Based on
the previous successes, a deep learning approach might help to ease the problems with
scalability and generalization, but an obstacle is a limited amount of training data. This
is a common denominator in almost all systems for automated medical data analysis.
The main aim of this work is to research new approaches to deep-learning-based pre-
dictive modeling using limited audio data sets, focusing especially on voice pathology
assessment. This work is the first to experiment with deep learning in this field and on so
far the largest combined database of dysphonic voices, which was created in this work.
It provides a thorough examination of publicly available data sources and identifies their
limitations. It describes the design of novel time-frequency representations based on
Gabor transform and it presents a new class of loss functions, that yield target represen-
tations beneficial for learning. In numerical experiments, it demonstrates improvements
in the performance of convolutional neural networks trained on limited audio data sets
using the augmented target loss function and the newly proposed time-frequency repre-
sentations, namely Gabor and Mel scattering.
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ABSTRAKT
Standardní postupy diagnózy dysfonie klinickým logopedem mají své nevýhody, přede-
vším tu, že je tento proces velmi subjektivní. Nicméně v poslední době získala popularitu
automatická objektivní analýza stavu mluvčího. Vědci úspěšně založili své metody na
různých algoritmech strojového učení a ručně vytvořených příznacích. Tyto metody nej-
sou bohužel přímo škálovatelné na jiné poruchy hlasu, samotný proces tvorby příznaků je
pracný a také náročný z hlediska financí a talentu. Na základě předchozích úspěchů může
přístup založený na hlubokém učení pomoci překlenout některé problémy se škálovatel-
ností a generalizací, nicméně překážkou je omezené množství trénovacích dat. Jedná se
o společný jmenovatel téměř ve všech systémech pro automatizovanou analýzu medicín-
ských dat. Hlavním cílem této práce je výzkum nových přístupů prediktivního modelování
založeného na hlubokém učení využívající omezené sady zvukových dat, se zaměřením
zejména na hodnocení patologických hlasů. Tato práce je první, která experimentuje s
hlubokým učením v této oblasti, a to na dosud největší kombinované databázi dysfonick-
ých hlasů, která byla v rámci této práce vytvořena. Předkládá důkladný průzkum veřejně
dostupných zdrojů dat a identifikuje jejich limitace. Popisuje návrh nových časově-
frekvenčních reprezentací založených na Gaborově transformaci a představuje novou
třídu chybových funkcí, které přinášejí reprezentace výstupů prospěšné pro učení. V
numerických experimentech demonstruje zlepšení výkonu konvolučních neuronových sítí
trénovaných na omezených zvukových datových sadách pomocí tzv. “augmented target
loss function” a navržených časově-frekvenčních reprezentací “Gabor” a “Mel scatter-
ing”.
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1 Introduction

"The potential benefits are huge; everything that civilisation
has to offer is a product of human intelligence; we cannot
predict what we might achieve when this intelligence is mag-
nified by the tools that AI may provide, but the eradication
of war, disease, and poverty would be high on anyone’s list.
Success in creating AI would be the biggest event in human
history. Unfortunately, it might also be the last, unless we
learn how to avoid the risks."

Stephen Hawking, Stuart Russell, Max Tegmark & Frank Wilczek, 2014

As a society, we should not try to stand in the way of technological advances.
I believe, there is no way of stopping what we have already been once able to imagine.
However, we also should not completely surrender to anything that just becomes
convenient. Instead, we should use the new technology with caution, without locking
ourselves and other species on the planet unwarily out of other options. While
keeping such an open, but a watchful mindset, we should focus on finding ways to
take advantage of our innovations to ease the suffering where we see possible.

During my doctoral studies, I have tried to focus my research work in that
manner – to embrace new ideas and further their development towards a wholesome
application. It culminates in this thesis in the form of a cumulative dissertation,
which comprises a certain portion of the published works produced by my coauthors
and me. It gives a brief introduction to each of the relevant topics and describes
the genesis of the presented ideas. Furthermore, it provides a story line contextually
linking and summarizing the individual papers. Finally, the work as a whole is
discussed and concluded.

From a methodological point of view, the central idea of this scientific endeavor
is an exploration of the learning capabilities of deep neural networks trained with
audio data, particularly in sequence classification. From the application perspective,
we explore and address the domain-specific challenges which emerge in the analysis
of pathological voices.

This document is structured into three main parts, namely the Preamble, Pub-
lications, and Appendix. Those lines describing my ideas and points of view are
written in the singular form of the first person, the rest, summarizing the joint
effort of my coauthors and me, is written in the plural form of the first person.

6



In the following sections, I am introducing the relevant topics in a non-technical,
colloquial way. The main aim is to provide a potential reader without sufficient back-
ground, an idea, where these topics originate. A more experienced reader with an
understanding of deep learning, audio signal processing, and medical data analysis,
whom this thesis assumes, may consider skipping the Introduction and continuing
directly to Summary of the Publications. If this is not the case, I recommend further
reading, at the end of each section.

1.1 Deep Learning
Artificial intelligence (AI) is a field of study in computer science (CS). Its definition
is unfortunately not clear or straightforward, as it took Stuart Russell and Peter
Norvig exactly 31 full pages in their book Artificial Intelligence: A Modern Ap-
proach (2016) [44], to introduce, define and summarize the concept along with its
philosophical, mathematical and other cultural foundations. Colloquially, it refers
to the ability of a machine to solve a task by imitating intelligent human behav-
ior. It is often confused with artificial general intelligence (AGI), which inspired
a multitude of science fiction authors because of the fascinating idea of a computer
that would be equally intelligent to humans in every aspect. The term “Artificial
intelligence” was coined by John McCarthy in 1955 [8], just about a year after the
sad death of Alan Turing, the father of CS [4].

"It would be useful if computers could learn from experience
and thus automatically improve the efficiency of their own
programs during execution."

Donald Michie, 1968

Machine learning (ML), a subfield of AI, is also a term which refers to a par-
ticular set of algorithms, that enable the computers to learn from historical data
i.e. experience, without being explicitly programmed. This is a paraphrased quote
often attributed to Arthur Samuel, who is also considered having coined the term
“Machine learning” back in 1959 [46]. According to Russell and Norvig, ML is a ca-
pability of a computer to adapt to new circumstances and to detect and extrapolate
patterns [44]. A ML algorithm builds a mathematical model based on the set of
training data, which provides an approximation of an unknown optimal solution of
the task as measured by a performance metric.
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"We think that deep learning will have many more successes
in the near future because it requires very little engineering
by hand, so it can easily take advantage of increases in the
amount of available computation and data."

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, 2015

Deep learning (DL) is a subfield of ML concerned with artificial neural networks
(ANN). ANNs are computation systems of interconnected artificial neurons, which
very loosely model the biological neurons. ANNs have been developed since 1943,
when McCulloch and Pitts, inspired by the study of the human brain modeled an
electrical circuit of a simple neural network [35], and since Rosenblatt described
a mathematical model of Perceptron in 1958 [43]. Nowadays, ANNs are usually
described as directed graphs of nodes connected with edges and organized into layers.

The term “Deep learning” was introduced by Rina Dechter in 1986 [47]. The
word “deep” refers to a subset of ANNs with a number of hidden layers (number
of layers excluding input and output layer) bigger than one. Depending on how
the nodes are linked, i.e. the topology, the deep neural network (DNN) is either
feedforward or recurrent. Edges represent weights, which parameterize the model
and are adjusted during the training of the network.

DNNs were not popular at first but became widely used with the increased avail-
ability of data and computing power. In the past years, they dramatically improved
the state of the art in areas such as speech recognition, visual object recognition,
robotics, bioinformatics, online advertising, search engines, and medical applica-
tions [30, 31], to name a few. In this work, we are mainly concerned with architec-
tures composed of one or more of the following components: standard fully connected
feedforward layers, convolutional layers as introduced in deep convolutional neural
networks (CNN) and recurrent long short-term memory layers (LSTM) [29, 25, 45].

For further reading, please refer to the following books, which go into a great
detail in each topic: Artificial Intelligence: A Modern Approach (Russell & Norvig,
2016) [44], Pattern recognition and machine learning (Bishop, 2011) [5], Introduction
to Machine Learning (Alpaydin, 2014) [2], Deep Learning (Goodfellow, Bengio &
Courville, 2016) [17]. For a quicker overview of DL, refer to the works of LeCun,
Bengio & Hinton (2015) [30], Schmidhuber (2016) [47], Liu et al. (2017) [32] and
Pouyanfar et al. (2018) [41].
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1.2 Digital Audio Signal Processing
To process sound information with neural networks, it is necessary to transform
the continuous acoustic physical phenomenon into its discrete, digital, computer-
understandable representation, i.e. audio data. The field concerned with recording
real-world signals like voice, music, etc., their further conversion and processing is
called digital signal processing (DSP). In this work, we will be mainly interested in
decisions of sampling rate and time-frequency representations of the sound, as well
as psychoacoustics and we will study their impact on learning.

For a comprehensive introduction into these topics, please refer to the following
books: Discrete-Time Signal Processing (Oppenheim & Schafer, 2014) [39], Digital
Audio Signal Processing (Zölzer, 2008) [48], Understanding Digital Signal Processing
(Lyons, 2004) [33], Foundations of Time-Frequency Analysis (Gröchenig, 2001) [18].
For a more concise merger introducing DL from the perspective of audio signal
processing, refer to the paper by Purwins et al. (2019) [42].

1.3 Automatic Analysis of Medical Audio Data
According to an extensive survey in medical image analysis by Litjens et al. (2017) [31],
medical images have been automatically analyzed as soon as it was possible to cap-
ture and load them into a computer. In the case of audio, researchers were first
interested in using extralinguistic information to identify speakers, their age or gen-
der. For speech emotion recognition, they have used paralinguistic information, and
in the case of accent, dialect or speech recognition, the linguistic dimension has been
studied. Just in the past years, the analysis of the speaker’s condition gained in pop-
ularity, as Gómez-García, Moro-Velázquez & Godino-Llorente (2019) [16] explain in
another great survey on automatic voice condition analysis (AVCA) systems. AVCA
aims for an objective and automatic quantification of the degree to which a patient
is impaired by a voice disorder. One of the main advantages of such analysis based
on audio data is its relatively low cost, non-invasive nature and a possibility for
continuous monitoring and in-cloud processing [36].

The fact that sparked my interest in this research direction was a link between
hypokinetic dysarthria (HD) and Parkinson’s disease (PD). HD is a motor speech
disorder manifested in articulation, phonation, prosody, respiration, and faciokinesis,
that occurs in up to 90 % of PD patients and is also considered one of the early
markers of PD. For more information about HD and other disorders in PD, please
refer to a thorough survey paper by Brabenec et al. (2017) [6]. Unfortunately,
nowadays, it is still not possible to cure PD, but an early diagnosis can significantly
improve patient’s quality of life thanks to already available medication.
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The standard procedure of HD diagnosis is carried out by a clinical speech ther-
apist. Speech and voice of a patient are usually assessed using specific scales and
questionnaires such as Frenchay dysarthria assessment [12] or 3F test [27]. This
procedure still has its downsides though, mainly because the evaluations are very
subjective. The human ear, even of a trained clinician, is not sensitive enough to cap-
ture slight changes in the patient’s voice or speech, it is, therefore, hard to compare
successive assessments for progression tracking, even from the same clinician [36].

Researchers thus started to work on automatic objective methods of HD analysis
and proposed a variety of parameterization methods, to extract conventional or non-
conventional features from the audio recordings of the patients’ speech and voice.
These were further utilized in predictive modeling using a variety of machine learning
techniques [6] to infer an automatic evaluation of the patient’s data. Successes of
these methods are undeniable and encouraging, with strong advantages for clinicians
who can use these methods as a supportive tool for their decisions. The main pros
are objectivity and relatively good interpretability [11], which is important in this
setting. Unfortunately, the approach is not directly scalable to voice disorders other
than HD. The process of feature engineering is laborious and requires researchers
with expertise in signal processing and machine learning as well as deep knowledge of
the particular disorder and its underlying pathophysiological mechanisms. A model
trained for one disorder will highly unlikely produce satisfactory predictions on data
of another disorder. Even for the same disorder, the model’s performance can differ
greatly depending on the data acquisition conditions or labeling framework. For
a more comprehensive list of factors affecting AVCA systems, refer to the work of
Gómez-García et al. (2019) [16].

A DL approach might help to alleviate the problems with scalability and gen-
eralization, but and obstacle, as will be pointed out later, is a limited amount of
available data, which is insufficient for today’s DL models to fulfill their promises.
The lack of data is a common denominator of almost all systems for automated
medical data analysis.

"Deep Learning is getting really good on Big Data [. . . ]. But
Small Data is important too. [. . . ] Hope more researchers
work on Small Data – ML needs more innovations there."

Andrew Ng, 2018

Please, refer to the following articles for further information: A Guide to Deep
Learning in Healthcare (Esteva et al. 2019) [13] provides a short, but compre-
hensive introduction to this topic, A Survey on Deep Learning in Medical Image
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Analysis (Litjens et al. 2017) [31] provides an extensive survey regarding images,
which is very relevant to this topic due to image-like properties of time-frequency
representations of audio signals.

1.4 Objectives
From the perspective of the superordinate analysis of this dissertation, here I ret-
rospectively delineate the main objective of this work, which is to research new
approaches to DL based predictive modeling using limited audio data
sets, with a special focus on voice pathology assessment. This main aim
along with its sub aims will be later discussed in section Concluding Discussion.
More specifically this dissertation aims to:

Aim 1: Explore the specifics of medical audio data analysis with DL
This constitutes conducting first experiments directly with the raw wave-
form in a search for an end to end system of voice pathology detection,
which would map raw waveforms to the corresponding targets. Such ex-
periments should also show the specific nature of the data and how to
handle them with DL while determining the caveats.

Aim 2: Identify prospective DNN architectures w.r.t. AVCA systems
We plan to test popular DNN building blocks used in CV and in time-series
analysis, namely CNN and LSTM, expecting automatic feature extraction.

Aim 3: Review available data sources and their limitations
More specifically to review their previous uses, identify which speech tasks
they comprise, what is the distribution of healthy vs. dysphonic samples,
what is the distribution of pathology types recorded and to propose an
approach of combining the databases.

Aim 4: Clarify which input and target representations are useful
Specifically, to train models using raw waveforms and standard time-frequency
representations, and compare the performances with handcrafted speech
features. Moreover to identify, which other input modalities, such as gen-
der, age, a grade of dysphonia, etc. affect the modeling capabilities and to
suggest possibilities of redefining the task by changing the targets.

Aim 5: Propose countermeasures to high data demand
More precisely, to research and propose novel input and target data repre-
sentations, which would benefit training on limited data sets.
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2 Summary of the Publications
The main body of this work consists of five selected publications done during my
doctoral studies. This section gives a short overview of their order, how the articles
are contextually linked and how each of the preceding work and other events, like
research visits, influenced the research direction and topic of the whole thesis. This
timeline is presented in Table 2.1. The Publications are presented in versions of
accepted or submitted manuscripts, their templates are unified, but contents are
unchanged, apart from the numbering of tables, figures, equations and theorems,
which may not fully reflect the official version.

Before I started to work on these articles, I did some prior work, where I was
exploring the idea of DL and its application to time-series and audio data. In
a paper entitled Speech Emotion Recognition with Deep Learning (Harar, Burget &
Duta, 2017) [22], we have successfully used a CNN for automatic speech feature
extraction and classification into one of three classes, i.e. emotional states – angry,
neutral, sad.

After I was exposed to work and ideas of Mekyska and Galaz at the Brain
Diseases Analysis Laboratory, I started to work on the utilization of DL in AVCA
systems to avoid the “manual” feature engineering. Shortly after, I made a research
visit to the University of Las Palmas de Gran Canaria, where Assoc. Prof. Jesús B.
Alonso-Hernández generously provided his experience and further guidance.

Based on this cross-fertilization of ideas, a preliminary study entitled Voice Pa-
thology Detection using Deep Learning [20] was published and presented at Interna-
tional Conference and Workshop on Bioinspired Intelligence (IWOBI) in July 2017.
To the best of our knowledge, this was the first work in the world that studied the
use of DL to solve this type of a problem. The objective of this study was to clarify,
whether the use of DNN based on a combination of CNN and LSTM, applied to
raw input audio signal, would prove itself worthy of further exploration for voice
pathology detection. This work was chosen to be extended for a special issue in the
journal Neural Computing and Applications (IF 4.664, Q2 in AI) and was once again
presented at Systematic Approaches to Deep Learning Methods for Audio workshop
in Vienna in September 2017.

The extended version with title Towards Robust Voice Pathology Detection [24]
contains an extensive survey of previously published works, presents experiments
conducted on four databases, namely Arabic Voice Pathology Database (AVPD) [37,
38], Massachusetts Eye and Ear Infirmary Voice Disorders Database (MEEI) [34],
Príncipe de Asturias Database (PDA) [15] and SVD. Furthermore, it compares per-
formances of ML and DL models trained using raw audio signal, spectral and cep-
stral time-frequency representations, and conventional handcrafted features. Also
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Table 2.1: Timeline

∙ Prior work
First published experiments with CNNs for audio sequence classification applied
to speech emotion recognition.

∙ University of Las Palmas de Gran Canaria (IDeTIC)
Acquired new data, exchanged ideas, and received guidance in the research of
pathological voices from the machine learning perspective from Assoc. Prof.
Jesús B. Alonso-Hernández.

∙ Voice Pathology Detection Using Deep Learning
∙ Towards Robust Voice Pathology Detection

In-depth analysis of the state of the art and available data sets. Identified the
main issues and conducted cross-database experiments.

∙ University of Vienna (NuHAG)
Collaboration and supervision from Dr. Monika Dörfler in applied math and
harmonic analysis. Strong focus on the fundamentals of neural networks and
audio time-frequency representations.

∙ On Orthogonal Projections for Dimension Reduction . . .
Numerical experiments with augmented target loss function emphasizing
important characteristics by beneficial representations of the target space.

∙ Gabor Frames and Deep Scattering Networks in Audio . . .
∙ Improving Machine Hearing on Limited Data Sets

Proposed and developed a software library for Gabor scattering and Mel
scattering. Addressed the issue of insufficient amounts of data.

∙ Future work
Combining the findings and applying them to voice pathology data.

Legend: – Journal article, – Conference paper, – Research visit
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includes experiments with DenseNet [26] DNN architecture. It points out the limi-
tations of the available data, the definition of the task and approach and suggests
future work to alleviate the summarized problems.

In 2018, I have been awarded a grant for the mobility of researchers and thanks
to the previously mentioned workshop in Vienna, I was given the opportunity to
continue my research as a part of Numerical Harmonic Analysis Group (NuHAG) at
the Faculty of Mathematics of the University of Vienna. This research visit under
the supervision of Dr. Monika Dörfler radically changed my view on the problems
at hand. I was invited to collaborate on multiple interesting fundamental research
topics, for which I have conducted numerical experiments in music information re-
trieval setting, helped to design and implemented proposed algorithms, and created
software libraries. In all the following articles, we have taken advantage of CNNs
which were originally proposed for computer vision (CV), in predictive modeling
with audio data. The reason is that standard FFT-based signal processing methods
allowed exploiting advances in CV in the audio analysis by converting the raw audio
waveforms into image-like representations (e.g. spectrograms).

A collaboration with the Department of Ophthalmology of the Medical Univer-
sity of Vienna led to an article accepted in the Journal of Mathematical Imaging
and Vision (IF 1.603, Q1 in CV) titled On Orthogonal Projections for Dimen-
sion Reduction and Applications in Augmented Target Loss Functions for Learn-
ing Problems [7]. In this article, we studied the use of orthogonal projections on
high-dimensional input and target data in learning frameworks and we introduced
a general framework of augmented target loss functions (AT). These loss functions
integrate additional information via transformations and projections of the target
data. In two supervised learning problems, clinical image segmentation and music
information classification, the application of our proposed AT increased the accu-
racy.

From the perspective of time-frequency analysis, in the paper Gabor Frames and
Deep Scattering Networks in Audio Processing [3], we introduced Gabor scattering,
a feature extractor based on Gabor frames and Mallat’s scattering transform. Based
on the provided theory, we have implemented the Gabor-scattering software library
for Python programming language [19]. Furthermore, with numerical experiments,
we showed, that the invariances encoded by the Gabor scattering transform lead to
higher performance in comparison with just using Gabor transform, especially when
few training samples are available.

As a next natural step, we included a human perceptual scale, which led to an
extension of the Gabor scattering to a Mel scattering representation. The afore-
mentioned software library was extended to cover both Gabor and Mel scattering.
In the paper Improving Machine Hearing on Limited Data Sets [21] we investigated
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how input and target representations interplay with the amount of training data in
a music information retrieval setting. We compared the standard mel-spectrogram
inputs with a newly proposed Mel scattering. Furthermore, we investigated the im-
pact of additional target data representations by using the AT which incorporates
unused available information. We observed that all proposed methods outperformed
the standard mel-spectrogram representation when using a limited data set.
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3 Concluding Discussion
To conclude this dissertation as a whole, the following section sums up the con-
clusions of the publications and is structured in such a way it tries to address the
objectives in order of appearance in the section Objectives.

In the frame of Aim 1 and Aim 2, we have hoped for an end to end system
of voice pathology detection, which would map raw waveforms to the corresponding
targets. The objective of the paper Voice Pathology Detection Using Deep Learning
was to carry out a preliminary study which would clarify whether the use of the DNN
model, especially combination of convolutional and LSTM layers would prove itself
worthy of further exploration in case of voice pathology detection problem using
only raw recordings of sustained vowel /a/. The examined method achieved 71.36 %
accuracy on validation data and 68.08 % accuracy on testing data. It is important
to note, that we did not restrict the classification to a subset of pathologies and we
used all 71 present in the database.

We conclude that the main advantage of the DL approach with CNN is the
automatic feature extraction, as opposed to the previously proposed methods. It
saves a great amount of time and expertise in the area of the problem being solved.
We found out, that the main disadvantage is the amount of data needed to train
the model. The SVD database used in this experiment is extensive in numbers of
persons recorded, but there are not enough samples of healthy persons in compari-
son with the number of samples of pathological patients. Also, the distribution of
individual pathologies is extremely unequal making the voice pathology detection
a hard problem.

In search of a robust voice pathology detection system using acoustic (voice)
signals, researchers face a variety of problems. One of the major problems in this
field of science, as we pointed out before, is the limited amount of data. Nevertheless,
one large database from one source would not solve all the issues. A problem is also
a limited number of distinct publicly available databases, using which the model
could capture the variance of the data acquired in different recording conditions and
environments. Following the Aim 3, the article Towards Robust Voice Pathology
Detection explores publicly available data sources of dysphonic voices, discusses the
means of combining them into one bigger database and uncovers their limitations
concerning building an automatic assessment system.

The paper concludes, these commonly used databases (AVPD, MEEI, PDA,
SVD) are very hard to combine because of various distinctions such as a) the data-
bases are labeled in different languages, b) the databases do not comprise the same
set of speech tasks, c) there is a variety of voice pathologies unequally distributed
across the databases, etc. For these reasons, up to now, researchers have used only
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a subset of the databases for their experiments providing results related to that
carefully selected subset of data. However, this approach limits the possibilities
of creating a robust voice pathology detector. We have conducted experiments on
recordings of sustained phonation of the vowel /a/ produced at a normal pitch from
the combination of these 4 different databases, trying to eliminate mentioned limita-
tions. To the best of our knowledge, this is the first work that uses such a “large” set
of data to build mathematical models for computerized, objective voice pathology
detection.

To make a broader comparison, we researched 3 distinct classifiers within super-
vised learning and anomaly detection paradigms. Following the Aim 4, we have
explored the usage of raw waveforms, spectrograms, MFCC, conventional dysphonic
features and their combinations as input data. We observed that XGBoost classifier
achieved the best results amongst DenseNet and Isolation Forest classifiers. In the
article, we also investigated and described stratification and group weighting, to
equalize the uneven distribution of gender-age groups, which is important to take
into account, because of the different voice and speech properties of patients with
different ages and gender.

Even though combining the available databases, we have obtained a relatively
large amount of data samples, it still seems not to be enough to train a successful
DL model on raw waveforms, and from the observed performances, we conclude that
in voice pathology detection scenarios, with this (from AVCA perspective large, but
from the DL perspective small) amount of training data, it is better to use inputs
with reduced dimensionality in contrary to raw waveform inputs, and/or make use
of transfer learning, data augmentation or other means to alleviate the problem
with the lack of data. On the other hand, reviewing the performances achieved
in scenarios with only MFCC as input data, we conclude that representations, as
reduced in dimensionality as MFCC alone, are not reliable enough for robust voice
pathology detection, which was also concluded by Ali et al. in [1].

We anticipate, that making the combination of the databases more controlled
and coherent to reduce the noise in the database and simplifying the complexity of
the target space would boost the performance of the system. Thus we think that
recordings of the databases commonly used for automatic voice pathology detection
should be consulted with clinicians as a whole, to evaluate the severity of vocal
manifestation of the present pathologies based on perceptual evaluation as opposed
to plain names of present pathologies. There are standard metrics, which are used
to evaluate the quality of voice that can be used for this purpose [9, 10, 14, 28]. The
addition of such information to the databases could provide researchers with a unique
possibility to build models capable of classification and prediction, emphasizing
the severity of the exact vocal-manifestation (increased acoustic tremor, roughness,
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breathiness, etc.) of these pathologies.
At the end of the article, we anticipated that deep learning will play its role in

robust voice pathology detection on the assumption that more data will be available,
or at least reasonable combination of available databases will be made and limita-
tions of these databases will be partially diminished by data augmentation and other
countermeasures. Besides, we presume that the use of deep learning methods for
novelty detection such as deep autoencoder [40] for modeling the normophonic voice
could be an interesting idea for future investigation with a prospect to identify even
disordered voices that are sparsely distributed across databases.

The first two publications were focused mainly on the specifics of predictive mod-
eling using DL in voice pathology detection. They were concerned with identifying
the prospective DNN architectures and dove deep into the analysis of available data
sources. The following three publications all look at the problem of insufficient data,
which was repeatedly mentioned in the first two publications, from a different per-
spective. As defined in the Aim 5, their objective is to propose methods of input
and target space transformation in such a way, the DNN can learn with fewer data.

In the article On Orthogonal Projections for Dimension Reduction and Appli-
cations in Augmented Target Loss Functions for Learning Problems, we introduced
a general framework of AT. These loss functions integrate additional information
via transformations and projections of the target data. In two supervised learn-
ing problems, clinical image segmentation and music information classification, the
application of our proposed AT increased the accuracy.

Next, in the article Gabor Frames and Deep Scattering Networks in Audio Pro-
cessing, we introduced Gabor scattering (GS), a scattering transform based on Gabor
frames and we investigated its properties. Thereby, we have been able to mathe-
matically express the invariances introduced by GS within the first two layers. We
have experimentally shown that explicit encoding of invariances by using an ade-
quate feature extractor is beneficial when a restricted amount of data is available.
It was shown that in the case of a limited data set the application of a GS repre-
sentation improves the performance in classification tasks in comparison to using
Gabor transform (GT). This property can be utilized in restricted settings, e.g. in
embedded systems with limited resources or in medical applications, where sufficient
data sets are often too expensive or impossible to gather, while the highest possible
performance is crucial.

The common choice of a time-frequency representation of audio signals in pre-
dictive modeling is mel-spectrogram; hence, as a natural step, we introduced Mel
scattering (MS) in Improving Machine Hearing on Limited Data Sets, a new feature
extractor which combines the properties of GS with mel-filter averaging. We also
investigated the impact of additional information about the target space through
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AT on the performance of the trained CNN.
From the newly proposed methods, AT is the least expensive in terms of training

time, but on the other hand, yields the smallest improvement in this experimental
setup. Nevertheless, it has another advantage: it steers the training towards learning
the penalized characteristics. We can conclude that AT provides a more precise
measure of the distance between outputs and targets. That’s why it can help in
scenarios where the training set is not large enough to allow the learning of all
characteristics but can be penalized by AT. We suggest using/experimenting with
the proposed methods for other data sets if there is not a sufficient amount of data
available or/and there exist reasonable transformations in the target space relevant
to the task being solved. All proposed methods might be found useful also in
scenarios with limited resources for training.

Beyond State of the Art This section concluding four long years of work is not
short either, thus this paragraph briefly lists the achievements compactly:

• the first-ever use of deep learning in the field of voice pathology detection
• identification of limitations of deep learning w.r.t. this field
• identification of limitations of existing voice pathology databases
• experiments on the largest combined database of dysphonic voices
• design of new time-frequency representations based on Gabor transform
• improvement in the performance of convolutional neural networks on limited

audio data sets using proposed novel time-frequency representations, namely
Gabor scattering and Mel scattering, and a new class of loss functions, that
yield beneficial target representations

Concurrent and Future Work The timeline in Table 2.1 constitutes only the
main thread of my doctoral work, even though more work has been done during
this period. Most notable are two collaborations: one with the Department of The
Communication Disorders of the Comenius University in Bratislava. It is concerned
with consulting available voice pathology databases combined into one, with clinical
speech therapists, to evaluate the severity of vocal manifestation of the present
pathologies based on perceptual evaluation according to GRBAS scale [9]. And
the other, with the Austrian Research Institute for Artificial Intelligence (OFAI),
experimenting with novel preprocessing steps for learning algorithms. During this
collaboration, an experimental software library Redistributor [23] was developed.
The results of these collaborations, unfortunately, did not make it into this work
and are going to be worked upon and finalized in the future.
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I Voice Pathology Detection Using Deep
Learning: a Preliminary Study

Bibliographic Information
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Abstract
This paper describes a preliminary investigation of Voice Pathology Detection using
Deep Neural Networks (DNN). We used voice recordings of sustained vowel /a/
produced at normal pitch from German corpus Saarbruecken Voice Database (SVD).
This corpus contains voice recordings and electroglottograph signals of more than
2 000 speakers. The idea behind this experiment is the use of convolutional layers in
combination with recurrent Long-Short-Term-Memory (LSTM) layers on raw audio
signal. Each recording was split into 64 ms Hamming windowed segments with
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30 ms overlap. Our trained model achieved 71.36 % accuracy with 65.04 % sensitivity
and 77.67 % specificity on 206 validation files and 68.08 % accuracy with 66.75 %
sensitivity and 77.89 % specificity on 874 testing files. This is a promising result
in favor of this approach because it is comparable to similar previously published
experiment that used different methodology. Further investigation is needed to
achieve the state-of-the-art results.

Acknowledgment
This work was supported by the grant of the Czech Ministry of Health 16-30805A
(Effects of non-invasive brain stimulation on hypokinetic dysarthria, micrographia,
and brain plasticity in patients with Parkinsons disease) and the following projects:
SIX (CZ.1.05/2.1.00/03.0072), and LOl401. For the research, infrastructure of the
SIX Center was used.

27



II Towards Robust Voice Pathology Detec-
tion: Investigation of supervised deep learn-
ing, gradient boosting, and anomaly de-
tection approaches across four databases
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Abstract
Automatic objective non-invasive detection of pathological voice based on comput-
erized analysis of acoustic signals can play an important role in early diagnosis,
progression tracking and even effective treatment of pathological voices. In search
towards such a robust voice pathology detection system we investigated 3 distinct
classifiers within supervised learning and anomaly detection paradigms. We con-
ducted a set of experiments using a variety of input data such as raw waveforms,
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spectrograms, mel-frequency cepstral coefficients (MFCC) and conventional acoustic
(dysphonic) features (AF). In comparison with previously published works, this arti-
cle is the first to utilize combination of 4 different databases comprising normophonic
and pathological recordings of sustained phonation of the vowel /a/ unrestricted to
a subset of vocal pathologies. Furthermore, to our best knowledge, this article is the
first to explore gradient boosted trees and deep learning for this application. The
following best classification performances measured by F1 score on dedicated test
set were achieved: XGBoost (0.733) using AF and MFCC, DenseNet (0.621) using
MFCC, and Isolation Forest (0.610) using AF. Even though these results are of ex-
ploratory character, conducted experiments do show promising potential of gradient
boosting and deep learning methods to robustly detect voice pathologies.
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III On Orthogonal Projections for Dimen-
sion Reduction and Applications in Aug-
mented Target Loss Functions for Learn-
ing Problems
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Abstract
The use of orthogonal projections on high-dimensional input and target data in
learning frameworks is studied. First, we investigate the relations between two
standard objectives in dimension reduction, preservation of variance and of pairwise
relative distances. Investigations of their asymptotic correlation as well as numeri-
cal experiments show that a projection does usually not satisfy both objectives at
once. In a standard classification problem we determine projections on the input
data that balance the objectives and compare subsequent results. Next, we extend
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our application of orthogonal projections to deep learning tasks and introduce a gen-
eral framework of augmented target loss functions. These loss functions integrate
additional information via transformations and projections of the target data. In
two supervised learning problems, clinical image segmentation and music informa-
tion classification, the application of our proposed augmented target loss functions
increase the accuracy.
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Abstract
This paper introduces Gabor scattering, a feature extractor based on Gabor frames
and Mallat’s scattering transform. By using a simple signal model for audio signals
specific properties of Gabor scattering are studied. It is shown that for each layer,
specific invariances to certain signal characteristics occur. Furthermore, deforma-
tion stability of the coefficient vector generated by the feature extractor is derived by
using a decoupling technique which exploits the contractivity of general scattering
networks. Deformations are introduced as changes in spectral shape and frequency
modulation. The theoretical results are illustrated by numerical examples and ex-
periments. Numerical evidence is given by evaluation on a synthetic and a "real"
data set, that the invariances encoded by the Gabor scattering transform lead to
higher performance in comparison with just using Gabor transform, especially when
few training samples are available.

32

http://arxiv.org/abs/1706.08818


Acknowledgment
This work was supported by the Uni:docs Fellowship Programme for Doctoral Can-
didates in Vienna, by the Vienna Science and Technology Fund (WWTF) project
SALSA (MA14-018), by the International Mobility of Researchers (CZ.02.2.69/0.0/
0.0/16027/0008371), and by the project LO1401. Infrastructure of the SIX Center
was used for computation.

33



V Improving Machine Hearing on Limited
Data Sets

Bibliographic information
P. Harar, R. Bammer, A. Breger, M. Dörfler, and Z. Smekal. Improving machine
hearing on limited data sets. In 2019 The 11th International Congress on Ul-
tra Modern Telecommunications and Control Systems (ICUMT). IEEE, in press.
arXiv:1903.08950.

Author’s contribution
The author preprocessed the data, designed and conducted the numerical experi-
ments and prepared the visualizations. He wrote sections Numerical Experiments
and Discussion and Conclusions and contributed to Introduction. Helped reviewing
each section of the article and organized the finalization of the paper.

Copyright Notice
This is an accepted version of the article in press by IEEE. ©2019 IEEE. Personal
use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Abstract
Convolutional neural network (CNN) architectures have originated and revolution-
ized machine learning for images. In order to take advantage of CNNs in predictive
modeling with audio data, standard FFT-based signal processing methods are often
applied to convert the raw audio waveforms into an image-like representations (e.g.
spectrograms). Even though conventional images and spectrograms differ in their
feature properties, this kind of pre-processing reduces the amount of training data
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necessary for successful training. In this contribution we investigate how input and
target representations interplay with the amount of available training data in a mu-
sic information retrieval setting. We compare the standard mel-spectrogram inputs
with a newly proposed representation, called Mel scattering. Furthermore, we inves-
tigate the impact of additional target data representations by using an augmented
target loss function which incorporates unused available information. We observe
that all proposed methods outperform the standard mel-transform representation
when using a limited data set and discuss their strengths and limitations. The
source code for reproducibility of our experiments as well as intermediate results
and model checkpoints are available in an online repository.
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