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The classic form of Hamilton’s variational principle does not hold for circuits with dissipative elements. It is shown in the paper
that this may not be true in the case of systems consisting of the so-called higher-order elements. Hamilton’s principle is then
extended to circuits containing the classical resistors and Frequency Dependent Negative Resistors (FDNRs). The extension is also

made to any pair of elements which are the nearest neighbours on any X-diagonal of Chua’s table.

1. Introduction

Hamilton’s variational principle is one of the jewels of
classical mechanics [1]. Let L be a Lagrange function of the
system (Lagrangian) dependent on the generalized co-
ordinates g; and velocities dg;/dt, i = 1, .. .,n, where n is the
number of degrees of freedom. The well-known form of the
Lagrangian is the difference between the kinetic and the
potential energy of the system. Total action is taken to mean
the definite integral:

t2
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where t, and t, are the endpoints of the time interval over
which the analysis is performed. The action (1) is a func-
tional, which maps the function L (trajectory-dependent
Lagrangian) to the number A (action value assigned to a
particular trajectory). Hamilton’s principle says that the real
trajectory is an extremal of the action, i.e., the variations
made around the real trajectory lead to the zero value of the
variation of the action:
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For a transition between two states, the system seems to
be searching for a trajectory for which the action integral

acquires a stationary value. For one degree of freedom, the
situation is illustrated in Figure 1. The real trajectory q(t) is
“pinheld” at the points A and B, and other trajectories g (t) +
6q(t) are created via arbitrary deformations in a vertical
direction. According to (1), the action A can be calculated for
each of these trajectories. The existing trajectory is the one
for which the action acquires a stationary value (minimum,
maximum, or saddle point). For a system with n degrees of
freedom, the existing trajectory (q, (t),...,q,(t)) is there-
fore a solution to the optimization problem (2).

It is well-known that condition (2) is equivalent to
another condition, namely, the equations of motion of the
system are in the form of the Euler-Lagrange equations

(E-L) 1]
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These equations of motion represent the equilibrium of
the so-called generalized forces [1]. For the Lagrangian in the
form of a difference between the kinetic and the potential
energy, the first left-side term of equation (3) is the derivative
of the momentum with respect to time, or the inertial force,
and the second term represents the conservative force orig-
inating from the potential energy of the system. From just one
scalar function L, formula (3) generates all the generalized
forces and puts them into the equation of motion.
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FIGURE 1: Virtual trajectory (thin line) differs from real trajectory
(thick line) by the virtual deviation dq(t), which is zero in the start
and end states A and B.

However, nonconservative forces cannot be generated
from a Lagrangian that is dependent on coordinates and
velocities [1]. A frequently quoted claim is therefore that the
validity of Hamilton’s principle (2) is limited to conservative
systems [1]. Much effort has been devoted to finding such a
Lagrangian that would also generate nonconservative forces.
A summary of the results can be found in [2], which also
offers a solution in the form of a Lagrangian dependent on
the noninteger order of the derivative of a generalized co-
ordinate. In this work, we will use the classical form of the
Lagrangian, which is dependent on the generalized co-
ordinates and velocities, the latter being the first and thus
integer-order derivatives of the coordinates.

Hamilton’s variational principle also holds for systems
with external excitations. The potential energy and therefore
the Lagrangian L are completed by terms that, after their
appropriate differentiation, generate the original excitation
force in the equations of motion (3) [1]. Without loss of
generality, only systems without external excitation will be
therefore considered in the following text.

Lagrange’s and Hamilton’s formalisms represent an el-
egant approach to studying the system dynamics. That is why
it is preferred when constructing modern physical theories.
As the characteristic attribute of Lagrange’s formalism, the
entire information on the time evolution of a system is
contained in the scalar function—the Lagrangian. If the
Lagrangian exists, and if it can be found, then it can generate
the equations of motion of the system. Hamilton’s formalism
can also provide information on the quantities that are
conserved in the system, on important symmetries, and so
forth. No wonder that “Today most physicists would be not
only willing to accept as axiomatic the existence of a vari-
ational principle but would be also loath to accept any
dynamical equations that were not derivable from such a
principle” [3]. This paper aims to show that the benefits of
Lagrange’s formalism can be also used for dissipative sys-
tems compounded of classical resistors and the so-called
FDNRs, the frequency dependent negative resistors, from
Chua’s periodical table of fundamental electrical elements
[4]. The paper is organized as follows: Section 2 introduces a
notation that is suitable for the utilization of Lagrange’s
formalism in electrical circuits containing not only reactive
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but also dissipative elements. Section 3 summarizes in-
formation on the table of fundamental electrical elements. In
Section 4, Hamilton’s principle is proved for circuits
compounded of resistors and FDNRs, and the corre-
sponding Lagrangian is found. The explanation that the
duality principle enables a generalization of these conclu-
sions also to circuits containing other elements from Chua’s
table than resistors and FDNRs is given in Section 5.

2. Notation for Lagrange’s Formalism in
Electrical Engineering

In addition to mechanics, Hamilton’s principle is also used in
other branches of science. In electric circuits described by
methods of loop variables, the coordinate g corresponds to the
electric charge and the equation of motion (3) reflects the
voltage balance, i.e., it represents Kirchhoff's Voltage Law
(KVL). Within this electromechanical analogy, mechanical
inertness corresponds to electrical inductance and mechanical
compliance to electrical capacity. Conservative systems of
mechanical nature can therefore be successfully studied and
modelled using inductors and capacitors. If the electric circuit
only consists of these elements, then the Lagrange function
can be chosen as the difference L =T* -V between the
coenergy of magnetic fields of inductors and the energy of the
electrostatic fields of capacitors, which are integrals of the
generally nonlinear constitutive relations f; and f. of in-
ductors and capacitors:

T" = ; JfL (qL)qu’

(4)
V= ; ch (4c)dqc.

The following notation is used in (4): the indices L and C
used in the variables and functions and also as counting
indices of the sums denote the constitutive relations of
individual inductors and capacitors in the network. The
charge/current through each individual element is given by a
linear combination of the components of the vector of loop
charges/currents:

dc

n
Z a;q;>
i=1

n
qr = Z bq;.
i=1

The coeflicients a;,b; take the values +1, —1, and 0,
depending on the incidence of the element in the corre-
sponding loop and the reference direction of the element
with regard to the loop orientation.

The dissipative resistive elements are characterized by
the constitutive relations f between voltages and currents.
Their integrals are dissipative functions of currents, and their

sum gives the total dissipative function:

‘D= ; J fr(4r)d4r- (6)

(5)



Complexity

The subscript R has the same meaning as the above
indices L and C. Currents flowing through individual re-
sistors are also derived from the vector of loop currents by a
linear combination of its components:

dr = Zciqi' (7)
pr}

The coeflicients ¢; take the values of +1, -1, and 0,
depending on whether the resistor is present/absent in the
corresponding loop and on how its reference is directed with
regard to the loop orientation. Additional terms are gen-
erated in the E-L equations (3) via a systematic differen-
tiation of the dissipative function (6) with respect to the
vector of currents. This, however, violates the necessary
condition for the validity of Hamilton’s variational principle.

3. Higher-Order Elements

The so-called («,f) Higher-Order Elements (HOEs) were
introduced in circuit theory in the 1980s [4]. The HOEs are
one-ports, which preserve an unambiguous relation between
the time derivatives/integrals of the terminal voltage and
current v(® and iP). The positive/negative integers a and 3
stand for the order of the derivative/integral with respect to
time. The properties and the character of the element are
unambiguously given by the so-called constitutive relation
as a generally nonlinear dependence relation between the
v(@ and i, Three fundamental elements of electrical en-
gineering, namely, the resistor, capacitor, and inductor, are
located in the diagram in Figure 2 in the (0, 0), (0, —1), and
(-1, 0) coordinates. Figure 2 shows a fragment of the so-
called Chua’s table with presently known fundamental
elements.

The memristor as the (-1, —1) element appeared in 1971
[5]. In 2008, the discovery of a nanodevice that exhibits the
signs of the behaviour of the memristor [6] initiated the
process of filling the vacancies in the table with hitherto
unknown elements. That same year, during a historical
seminar [7], Leon Chua, the discoverer of the memristor,
appealed to the scientific community to work on discovering
new elements of the type of (-1, -2) and (-2, —1), which he
termed memcapacitor and meminductor.

Another element termed FDNR (Frequency Dependent
Negative Resistor) has been known since 1968 [8]. Its
synthetic form is frequently used in active inductorless
analog filters. Later on, this element was identified as the
missing (1, —1) element from Chua’s table. Note that the
FDNR from [8] is known as a linear element whose im-
pedance is negative and indirectly proportional to square of
the frequency, and the (1, —1) element is its nonlinear
generalization.

In 2002, the discovery of a new mechanical element
termed inerter was announced in [9]. The scientists familiar
with Chua’s concept of fundamental electrical elements
understood that it was the other missing element, either (1,
0) or (0, 1), depending on whether the F-V (force-voltage) or
F-I (force-current) electromechanical analogy was used [10].
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FIGURE 2: All currently known elements from Chua’s table. R, L,
C=resistor, inductor, capacitor; MR, ML, MC =memristor,
meminductor, memcapacitor; I, F =inerter, FDNR.

New mechanical and electrical elements bring a new
inspiration to these disciplines. This paper demonstrates, on
the example of a circuit consisting solely of resistors and
FDNRs, that the classical version of Hamilton’s principle can
also be applied to some systems that contain dissipative
elements.

4. Hamilton’s Principle for R-FDNR Circuits

Consider a circuit consisting of ideal, generally nonlinear
resistors, and Frequency Dependent Negative Resistors
(FDNRs). The following consideration assumes the circuit to
be described by the method of looped charges. However, the
choice of the method is not essential.

Let each resistor be described by its constitutive relation
v = fr (i), where the current i is the time derivative of the
charge g. Let the resistors in the circuit be described by a
single dissipative function (6).

Furthermore, let each FDNR be defined by its consti-
tutive relation v(V = £, (i), According to the definition
of the FDNR as a (1, —1) element, its constitutive relation
must be a relation between the first derivative of the terminal
voltage and the total amount of the charge flowing through
it. This unambiguous dependence makes it an element with a
small-signal negative resistance, which is inversely pro-
portional to the square of the excitation frequency.

According to the definition in [11], the “negative” dis-
sipative cofunction of the whole circuit "D* is the sum of
“negative” dissipative cofunctions of particular FDNRs:

D" = ; J fr(qr)dqp. (8)

The charges g associated with concrete elements can be
derived from the vector of loop charges via linear combi-
nations of its components:
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The coefficients d; take the values +1, -1, and 0
depending on which loop the individual FDNR is placed in
and on its reference direction.

Now consider the vector variation of the trajectory
(69, - .., 6q,) whose one-dimensional example is shown in
Figure 1. This variation concurrently means the variation of
the constitutive relations of all FDNR’s and thus also the
variation of the dissipative cofunction (8):

§("D") Zza (JfF(qF qu>6q1 (10)

F i=1

The partial derivatives in (10) can be arranged in the
form

%(JfF(qF)qu> d(qi <JfF(qF) %)aa?; (11)

The first factor (multiplicand) on the right side of (11) is
the constitutive relation f;. With equation (9) taken into
account, the second factor (multiplier) is the coefficient d;.
After rearranging the order of summations, the variation of
the cofunction (8) is equal to

= i(;difF (%))5%- (12)

=1

The inner sum in (12) gives the total contribution of the
FDNR elements to KV VL law along the i-th loop.

A similar consideration of the effect of the trajectory
variation on the dissipation function (6) leads to the in-
termediate result:

5('D) = i(zcifR (qR>>aqi. (13)

i=1 R

The inner sum in (13) gives the total contribution of
resistors to KV ”L law along the i-th loop. The variation of
the velocity takes place in (13) instead of the variation of
coordinates. This imperfection can be corrected by in-
tegrating with respect to time, the same as Hamilton orig-
inally did for the kinetic energy in mechanics [1]. Via
integrating by parts, integration with respect to velocity is
changed to integration with respect to coordinate:

5 j (*D)dt = {Z(Zd fr (qR)>6q,] |

i=1
]

(14)

- J? Z(i ;difR (%))&]idt.

1i=1

Since this is a variational problem with fixed endpoints
(the coordinates g; do not change at instants ¢, and t,), the
first element on the right side of (14) is zero. Integrating (12)
with respect to time and subtracting from (14) yields
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(15)

The i-th term of the outer sum in (15) represents the sum
of the first-order derivatives of voltages across all the ele-
ments within the i-th loop. With KVVL taken into con-
sideration for this loop, this term must be equal to zero. The
entire expression (15) must therefore be zero, irrespective of
how the entire trajectory varies. Let us define the dissipative
tunction D of the whole circuit as the difference of the
“positive” dissipative function of resistors and the “negative”
dissipative cofunction of FDNRs:

D="D-"D" (16)

Then, in a circuit built exclusively from resistors and
FDNRs, the following variational principle holds:

t,
5] Ddt = 0. (17)
tl

5. Hamilton’s Principle and Duality of
(o, B) Elements

Hamilton’s variational principle (2) of classical mechanics
has been formulated for generalized coordinates g; and
generalized velocities dgi/dt. The E-L equation (3), which
expresses the balance of generalized forces, is its direct
consequence. Such generality made it useful also for other
branches of science. The generalized coordinates and gen-
eralized forces can be chosen, with regard to the physical
situation, very flexible. In electrical engineering, for exam-
ple, the generalized coordinates/forces need not necessarily
be charges g/voltages v. The choice of a different method of
circuit analysis, e.g., the method of node variables, leads to
different coordinates and different generalized forces such as
integrals of voltages (fluxes) and electric currents in the
classical case of R-C-L circuits. However, the situation
changes if the (a, 5) elements come onstage.

It is apparent from Figure 3 that a circuit made up
exclusively of L and C elements (green color) will have its
dual circuit made up exclusively of R and FDNR elements
(red color) and vice versa. If the functional rules of con-
stitutive relations of each inductor and its corresponding
resistor are the same for capacitors and FDNRs, then the
equations of motion of both circuits will differ only in the
index a. In this case, equations describing an L-C circuit will
become equations of R-FDNR just by changing the voltage
v(® to its derivative, v The transition from the L-C to the
dual R-FDNR circuit by increasing « is a special case of
transformation, described in [12] as the MOVE trans-
formation. Via this transformation, the original circuit can
be modified such that the topology remains unchanged but
each element is replaced by another element which is shifted
in Chua’s table by an offset (A, Af3), where A and Af can be
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F1Gure 3: Circuits composed of color-marked pairs of elements located on X = « + f§ diagonals are mutually dual and Hamilton’s variational
principle applies to them. The symbol Ly denotes the Lagrangian of the corresponding circuit. Note that L, is denoted in the text as a

dissipative function D of R-FDNR circuits.

arbitrary integers. The duality of such a transformation
consists in the fact that when utilizing new generalized
coordinates and velocities, the new circuit is governed by
formally the same equations as the original circuit.

The MOVE transformation only changes the generalized
coordinates, and it cannot have any effect on the validity of
Hamilton’s variational principle. This change will modify
only the physical dimension of the Lagrange function, while
its form remains unchanged. The color-coded pairs of the
elements in Figure 3 are located on the common diagonals of
the table, on which the sum ¥ = « + 5 remains constant. One
can easily check that the physical dimension of the La-
grangian of a circuit consisting of elements from the
¥-diagonal is equal to [VAs™]. In L-C circuits, £ = -1 and
the Langrangian has the dimension of energy [VAs] = [J].
Since 2 = 0 in R-FDNR circuits, the role of the Lagrangian is
superseded by the dissipative function with the physical
dimension of power [VA].

As can be seen in Figure 3, dual L-C and R-FDNR
circuits share the same generalized coordinates and veloc-
ities, i.e., the loop charges and currents. The difference is in
the physical dimensions of the terms of the loop equations of
KVOL in the first and KVWL in the second case. This
corresponds with the types of the prospective excitations via
v or dv/dt sources.

The MOVE transformation can also yield a circuit made
up entirely of ML-MC elements (blue color in Figure 3).
Hamilton’s principle must hold for such a circuit as well. The
ML and MC memory elements lie on the diagonal with
> = -3, and the physical dimension of the Lagrangian L_; is
[Js7].

The ML-MC circuit (blue color in Figure 3) can be
obtained from an L-C circuit by dual MOVE transformation,
which decreases both the indices o and 3 by 1. The transition
in a-direction takes effect in changing the generalized co-
ordinates from the original loop charges g to their time
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FIGURE 4: Analysis of the oscillator formed from a nonlinear resistor and a linear FDNR with the constitutive relations (18), a = 10 mQ,
b =100 A, and ¢ = 1 MQs 2. The waveforms of current (at the top) and dissipative function *D of nonlinear resistor (6) and “D of FDNR,
the latter being equal (due to element linearity) to the dissipative cofunction “D* (8). The sum *D+~D is constant. It is in accordance with

the content conservation law [14].

integrals o = q"V. The transition in B-direction will change
the loop law from KV@L to KVVL, i.e., from voltage to
flux balance. This corresponds with the types of prospective
excitation in the form of flux sources ¢. The same type of
equations and the same link to analogous type of the La-
grangian imply the validity of Hamilton’s principle, the same
as for the classical case of L-C circuits.

Examples of two other dual pairs, MR—F;, and Ly;,—1, are
shown in Figure 3. It is known that the elements located on
the diagonal defined in Chua’s table for constant difference
a — 3 of indices share the same linearized model and that
these elements are interconnected via the so-called SHIFT
dual transformation [13]. That is why the (0, -2) and (0, 1)
elements in Figure 3 can be considered as linear FDNR and
linear inductor. It is then obvious that two other pairs,
namely, the memristor-linear FDNR and the linear inductor-
inerter, are also in accordance with Hamilton’s principle.

Figure 4 illustrates the current and power conditions of
the oscillator built from a nonlinear resistor and a linear
FDNR in parallel. The nonlinear constitutive relation v =
fr(i) of the resistor and the linear constitutive relation
vD = £,.(g) of the FDNR are in the forms

frG)=a- arctan(é), s
18

fr(q) =cq,

where a, b, and ¢ are parameters with values given in the
legend of Figure 4.

The simulation results are shown in Figure 4. The os-
cillation with a period of 47 ms is induced by the initial
condition vV (0) = 1.5 Vs~!. The oscillator fulfills the con-
ditions of the validity of Hamilton’s principle, and its La-
grangian is of L, type (see Figure 3). Even though the circuit
is compounded exclusively of dissipative elements, it is
conservative in the sense that it conserves the power quantity
called the content [14], which in this case is equal to the sum
of dissipative functions of the resistor and the FDNR. The
dual circuit with the Lagrangian L_, is a classical LC os-
cillator, which conserves energy.

6. Conclusion

Within the classical mechanics, Hamilton’s variational
principle cannot be applied to dissipative processes. The
same holds in the related scientific disciplines that have
taken up this principle thanks to the fact that their specific
generalized forces and coordinates are compatible with
Hamilton’s principle. Electrical engineering is no exception.
Its link to mechanics through fundamental R-C-L elements
is well known and frequently used via electromechanical
analogies.

In terms of Chua’s table, Hamilton’s principle is only
given for systems consisting of (0, —1) and (-1, 0) elements,
which lie on the diagonal X = —1. It is well known that
adding the dissipative element (0, 0), which lies on the
diagonal X = 0, into the above systems, cancels the validity of
Hamilton’s variational principle.
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Chua’s table provides a new view on the fundamental
electrical elements. It brings new challenges not only for
electrical engineering, but also for mechanics. A new me-
chanical element, the inerter, discovered in 2002, cannot be
substituted in its nonlinear form by any combination of
known inertial, accumulative, or dissipative mechanical
elements. While the classical inertia provides the algebraic
bond between momentum and velocity, the inerter provides
the algebraic bond between the derivatives of those quan-
tities, i.e., between the acting force and acceleration. The
classical mechanics did not take into account the existence of
this fundamental law. The inerter is therefore a heteroge-
neous element for Hamilton’s variational principle. As an
element that lies on the diagonal X = 1, it does not come up
to the expectations that accompanied the birth of Hamilton’s
variational principle. To the best of our knowledge, no paper
has been published that would formulate a variational
principle involving this element.

It follows from the analysis in part IV that each circuit
consisting of C (0, —1) and L (-1, 0) elements is accompanied
by its dual circuit consisting of the (&, ) and (¢ — 1,8+ 1)
elements, with a and f3 being arbitrarily chosen indices. Note
that the (&, ) and (a — 1, § + 1) elements lie on the common
diagonal ¥ = « + 8. Hamilton’s variational principle must
hold for all those dual circuits. The generalized forces and
coordinates will be v(® and iP, respectively.

Within the classical mechanics and electrical engineer-
ing, no other element exists for making a pair with the
resistor-type dissipative element, which is necessary for the
synthesis of systems that do not violate Hamilton’s varia-
tional principle. It is shown in the paper that this missing
element is the FDNR (1, —1) element. Its linear form, the (0,
—2) element, creates a similar pair with the memristor. The
applicability of Hamilton’s variational principle to dissipa-
tive systems can therefore be considered only after the
original set of the three fundamental R, C, L elements has
been extended by other elements from Chua’s table.

Note that the validity of Hamilton’s variational principle
for systems consisting of any pair of elements which are the
nearest neighbours on arbitrary £-diagonal of Chua’s table is
in accordance with the idea of generalized coordinates in
classical mechanics. According to Noether’s theorem [15],
the quantity called generalized energy is conserved in such
circuits. The generalized energy, having the physical unit
[Volt - Amper - sec>], is the sum of the potential functions
of the elements of both types from the pairs in Figure 3. In
the light of the above theorem, the conclusions made in the
paper are in accordance with the rule that classical Ham-
ilton’s principle holds only for conservative systems.
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