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Abstract: The paper presents the comparison of optimization-regulation algorithms applied to the
secondary cooling zone in continuous steel casting where the semi-product withdraws most of its
thermal energy. In steel production, requirements towards obtaining defect-free semi-products are
increasing day-by-day and the products, which would satisfy requirements of the consumers a
few decades ago, are now far below the minimum required quality. To fulfill the quality demands
towards minimum occurrence of defects in secondary cooling as possible, some regulation in the
casting process is needed. The main concept of this paper is to analyze and compare the most
known metaheuristic optimization approaches applied to the continuous steel casting process. Heat
transfer and solidification phenomena are solved by using a fast 2.5D slice numerical model. The
objective function is set to minimize the surface temperature differences in secondary cooling zones
between calculated and targeted surface temperatures by suitable water flow rates through cooling
nozzles. Obtained optimization results are discussed and the most suitable algorithm for this type
of optimization problem is identified. Temperature deviations and cooling water flow rates in the
secondary cooling zone, together with convergence rate and operation times needed to reach the stop
criterium for each optimization approach, are analyzed and compared to target casting conditions
based on a required temperature distribution of the strand. The paper also contains a brief description
of applied heuristic algorithms. Some of the algorithms exhibited faster convergence rate than others,
but the optimal solution was reached in every optimization run by only one algorithm.

Keywords: continuous casting; secondary cooling; numerical modeling; thermal-solidification model;

heuristic optimization

1. Introduction

The use of the continuous steel casting process has been experiencing a constant
growth since the 1950s, when the ingot casting was replaced by the new method, which
could satisfy increasing demands towards higher steel quality and production rate. Since
those days, the continuous casting (CC) method evolved to a dominant steel production
process. To avoid casting of semi-products with defects such as cracks, the casting regula-
tion in real time is a necessity. Heat withdrawal from the strand can be now controlled by
mathematical numerical models, even the real-time decisions during the casting process
can be made owing to sophisticated code structure [1].

The CC of steel can be done with horizontal, vertical, or radial continuous casting
machines (CCMs). The last-mentioned machine is the most used type worldwide as it
overcomes the drawbacks of the other two machines [2]. That is the reason why the
radial CC is also considered in this study. The CCM (see Figure 1) is a complex machine
composed of many parts, which are usually divided to sections of the primary cooling
zone (mold), the secondary cooling zone (water-air nozzle cooling), the tertiary cooling
zone (radiation only with no nozzles), the cutting section and the chill zone where the cast
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semi-products (billet, bloom, slab, etc.) rest until they are further proceeded. Some of these
parts contribute to the heat withdrawal from a strand and these must be implemented
in the numerical heat transfer and solidification model. As the process is transient, the
initial and boundary conditions need to be specified for a precise prediction of the heat
withdrawal and the temperature distribution. In the primary cooling zone referred to as
the mold, heat transfer is governed mainly by heat conduction across the interfacial gap
between the strand and the mold wall. In the secondary cooling zone, the most challenging
task is to precisely describe heat transfer and its phenomena, including water-spray cooling,
droplets impingement to the surface of the strand and liquid film boiling that may occur at
the strand surface.

|

Detail of the mould

Secondary
cooling

| [71 Cooling spray

Spray
cooling

nozzles Tertiary

cooling

M Liquid steel
B Mushy region
1 Solidified steel

Figure 1. Radial continuous casting machine (CCM) depicting primary, secondary and tertiary
cooling zones [3] (with the permission of Elsevier).

The main objective of this paper is to investigate and compare some of the well-known
heuristic approaches coupled with a solidification model in terms of the computational
efficiency, robustness, and accuracy to the CC problem. This approach makes it possible
to appropriately assess the efficiency and accuracy of individual optimization algorithms,
reducing a direct influence of the heat transfer and solidification model of the CC since the
model is identical in all considered cases with distinct optimization algorithms. According
to the literature survey focusing on minimization of the occurrence of defects in CC (mainly
defects in secondary cooling), the target strand surface temperatures along the caster were
set in this respect. The optimization problem was formulated to find adequate cooling
intensities (water flow rates in secondary cooling) for all the cooling nozzles in order to
reach specified ranges of the target surface temperature.
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1.1. Conditions towards High-Quality Steel Casting

A crucial question is how to maximize the steel quality and productivity with the min-
imal cost. One of the main causes of crack formation is the exceeding maximum allowable
mechanical strain and stress, which the cast steel grade can withstand. A literature survey
on metallurgical problems and crack formations in continuous steel casting affecting the
quality of steel, particularly in the secondary cooling zone, is presented below. Some of
these properties can be implemented to the solidification thermal model, but to evaluate
all of them, the stress-strain, fluid flow, segregation models and their coupling need to be
considered [1]. Brimacombe [4] summarized fundamentals of steel and identified different
types of cracks. The knowledge base about the high-quality casting was set. The serious
problem in CC—the breakout of the liquid steel below the mold—can be initialized with a
too high temperature of the liquid steel in the tundish [5]. As a result, the mold does not
provide a sufficient cooling rate to create the necessary solidified shell at the surface of the
strand. Nevertheless, if the shell would withstand the hydrostatic pressure of the liquid
steel, the whole casting would be shifted in terms of the optimal temperature intervals
along the CCM this would also affects the steel quality of the strand. Moreover, the origin
of cracks caused by bending and straightening (unbending) processes is also influenced by
the temperature-dependent ductility of steel [6].

The crack formation including centerline, intermediate, triangle, midway cracks, etc. is
particularly triggered by an improper setup of primary and secondary cooling intensities,
excessive oscillation of the mold and excessive gaps between supporting rollers, especially
in slab casting [7]. The most frequent surface defects are transversal cracks, which are
particularly initialized by deep oscillation marks followed by the tension generated by
bulging, bending, and straightening of the strand. Another cause for developing mechan-
ical strain can be poor accuracy of arcing between the segments and abnormal roll-gap
shrinkage, which leads to excessive bulging. There is also an influence of the thermal
stress, which results from an uneven cooling of the strand shell in the secondary cooling
zone. Kulkarni and Babu [8] considered coupled thermal and mechanical conditions and
proposed 17 quality criteria, which allow for the reduction of occurrence of defects during
the casting process. This approach of optimization needs both thermal and mechanical
models to be coupled. From studies of Cheung et al. and Kong et al. [9,10], it is known
that the temperature regeneration between cooling sections should be less than 150 °C
to avoid stress due to bulging and reheating in the secondary cooling zone. Reheating
beyond 150 °C/m leads to a high probability of forming intermediate cracks. Surface
cracks are formed if the surface temperature decreases into a zone of low steel ductility,
which depends on steel grade; Santos et al. [11] identified it as being under around 850 °C.
Cheung et al. [12] discussed the formation of cracks in steel casting and contributed to
high-quality casting knowledge base with other optimal casting conditions. The authors
discussed the centerline segregation and its impact to the crack formation while the cen-
terline of the strand was liquid in the unbending part and pointed out that the center
solidification of the strand must be completed before the point where a high deformation
is applied (unbending point).

Brimacombe and Sorimachi [6] documented that the steel has reduced ductility over
specific temperature ranges (Figure 2) dependent on the steel composition, which has
important implications for the crack formation. Kim et al. [13] mentioned the so-called
reduced ductility regions, namely zero ductility temperatures (ZDTs) and liquid impen-
etrable temperatures (LITs). Internal cracks detected in strands mainly originate in the
mushy zone where the solid fraction of steel reaches 0.9 and 0.99 value for the LITs and
ZDTs, respectively. These LIT and ZDT zones are sensitive for cracking because the steel is
brittle in these temperature zones and has a higher tendency to hot cracking, and thus, it
has a higher tendency towards the creation of defects [14]. The problem of crack formation
in these locations is that the dendrite arms are dense enough to prevent the liquid steel
to fill in gaps [15]. A lower solidification temperature is observed in these areas, which
is a consequence of micro-segregation, and together with the shrinkage, the steel is more
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prone to cracking while the tensile stress can reach lower values and cause cracking. The
LITs and ZDTs are functions of chemical compositions and vary for different steel grades.
Steel grades with larger temperature differences between the LIT and ZDT have a higher
tendency to hot cracking and thus have a higher tendency to form defects such as internal
cracks in the CC.

0, O, ®

Ductility —

900 1200 1500 Tm
Test temperature (K)

Figure 2. Schematic representation of temperature regions with reduced ductility redrawn from [16]
(with the permission of Elsevier). For further details, see [16].

1.2. Numerical Modeling of Thermal Behavior in CC

In the steel CC, many numerical models have been used since the computational
technique developed significantly. In the available literature, a number of implementations
using the finite difference, finite volume or finite element methods can be found. In some
previous works (e.g., by Fic et al. [17]), models with rather unrealistic assumptions of steel
undergoing the phase change at a constant temperature were considered. The user-friendly
packages that can predict variable-dependent thermophysical and mechanical properties
were introduced in [18,19] and enabled more accurate modelling. Meng and Thomas [20]
developed a 1D transient heat transfer model of the strand coupled with a 2D steady-state
heat transfer model of the mold. Metallurgical phenomena such as the slag behavior in the
mold and effects of oscillation marks were examined. Alizadeh et al. [21] proposed a 2D
model and observed that the casting speed is the most effective parameter to heat removal
in the mold, which means that it is the most important factor in control of the solidified
shell thickness and strand temperature. Hardin et al. [22] presented a parametric study on
more advanced transient 2D model, which allowed to observe the temperature response
on the casting speed changes. One of the first 3D solidification model was introduced
by Tieu and Kim [23] in 1997. The part of their work points to advantages of the 3D
approach in comparison to 2D models. Another approach towards 3D heat transfer in
the CC process is to use the so-called slice model, which neglects the heat transfer by
conduction in the casting direction. This type of the solidification model is presented, for
example, by Tambunan [24].

Due to limitations in terms of the computational performance, these models are
often simplified: They use a simple geometry, constant thermophysical properties, average
boundary conditions, use of empirical formulas for heat removal in the mold and secondary
cooling, simulate only one quarter of the strand cross-section, etc. However, computational
capabilities have progressed to the point where models used in the CC control include only
minor physical simplifications, can provide more accurate results and can be used for steel
quality optimization in real processing time. Utilizing the GPU-based model [3] enabled to
overstep large numbers of shortcomings and resulted in a significantly reduced computing
time while compared to CPU-based models.
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1.3. Optimization and Regulation Algorithms in CC

To reach the optimal temperature intervals for a particular grade of steel and to react to
dynamical changes such as an abrupt change of the casting speed, the solidification model
must be coupled with optimization and control algorithms. One-dimensional mold cooling
optimizations were among the very first optimization approaches which examined break
outs at the mold exit due to the inappropriate shell thickness. During the two decades
of the twenty-first century, computational techniques and performance experienced an
exponential increase and simulation results can be obtained in the fraction of time that
was needed two decades ago. This allowed many optimization algorithms to develop
and get into practice. There are many papers which combine numerical modelling and
optimization-regulation approaches in CC, such as Santos et al. [11], who applied the
genetic algorithm and determined the optimum settings of water flow rates in different
sprays zones. Optimized cooling conditions of mold and secondary cooling zones resulted
in a shorter metallurgical length with the same quality [9]. Ji et al. [25] verified the use of
the ant colony algorithm and Zheng et al. [26] used swarm optimization. Rao et al. [27]
published a comprehensive review dealing with parameter-based optimization of selected
casting processes. The authors pointed out that various optimization techniques such
as simulated annealing [28], genetic algorithm [29] and particle swarm optimization [30]
applied to the CC process does not always find the optimal solution. To control the
casting process, these supervision systems include regulation algorithms such as the PID
regulation which exhibit a slower response against a very fast regulation using fuzzy
logic [31]. Mauder et al. in [31] introduced a 3D fully-transient and advanced optimal
control algorithm based on the fuzzy logic that enabled a smooth regulation of cooling
nozzles to the casting speed change.

Unfortunately, these works often needed a large number of optimization iterations
before the optimal solution was found. It is; therefore, impossible to compare these
approaches to each other since every author used his/her own specific solidification model
and other specific conditions and setup. This drawback was the motivation for the present
paper. In this paper, five optimization algorithms and their performance applied to the
optimization of the CC are compared in terms of the heuristic search of appropriate water
flow rates through cooling nozzles to reach the target temperature distribution of the strand,
which would satisfy requirements towards a higher steel quality.

2. Slice Solidification Model

The mathematical formulation of heat transfer and solidification to the temperature
distribution and solid shell profile prediction is based on the governing equation of transient
heat conduction, called the Fourier-Kirchhoff equation [32]. To decrease the computational
time in solving the optimization problem requiring a large number of evaluations of
the model with various casting parameters, the 3D Fourier-Kirchhoff equation can be
reformulated for the so-called 2.5D moving slice model neglecting conduction heat transfer
in the casting direction (z). The heat transfer equation for the 2.5D slice model formulated
with the enthalpy approach reads

oH 0 oT 9 oT oH
] M)

ﬁ = a {keff(T)ax:| + @ . [keff(T>ay Ug/

where kg is the effective thermal conductivity (W-m~1.K™1), T is the temperature (K),
H is the volume enthalpy (] m~3), t is the time (s) and x, y, and z are spatial coordinates.
Fluid flow of the liquid steel can be calculated by the computational fluid dynamics (CFD)
techniques. However, computational time of such simulations is too excessive for real-time
applications. The influence of fluid flow can be accounted in a simplified way by means of
the effective thermal conductivity keg. Increasing heat transfer due to convection in the flow
of liquid steel at different distances from the meniscus can be considered by an increased
effective thermal conductivity as proposed by Zhang et al. [33]. For more information
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about the solidification model in terms of equations, initial and boundary conditions, see
the previous works of the co-authors of this paper [3,31].

The advantage of the model applied in this paper, when compared to models using
empirical formulas for the heat transfer coefficient under the water-air cooling nozzles, is
the use of experimentally measured characteristics of all nozzles used at the caster. As a
result of many years of experience with computational inverse heat transfer in the heat
transfer and fluid flow laboratory at Brno University of Technology, the heat transfer
coefficient characteristics of nozzles can be experimentally determined with the use of a
so-called hot plate and used in solidification numerical models [34]. In general, the heat
transfer coefficient (hitc) of each nozzle is determined as a function of the casting speed,
water mass flow rate, air pressure and the surface temperature and it can be expressed as

htc = f (Ucast/ Myater, Pairs Tsurf ) : @

The purpose of the slice model is to provide a thermo-solidification 2.5D analysis
for a slice perpendicular to the longitudinal strand axis, see Figure 3. The whole casting
strand (in this paper, the length from the meniscus to the cutting torch is considered
27.2 m) is divided into a number of slices having a defined thickness. In this paper, it
was decided to set the slice thickness to 25 mm. The thickness of the slice needs to be
chosen properly to achieve a sufficient precision of the boundary conditions describing
heat withdrawal from the strand. The initial slice starts at the meniscus in the mold and
moves downwards through the whole caster until it reaches the cutting part of the CCM.
The explicit finite difference method was used in the thermal numerical model. Thus, the
maximum numerical time step had to be defined to avoid numerical oscillations in the
explicit calculation. The time step of the explicit scheme needs to be smaller than the wall-
clock time required by the slice for its movement to the following position in the casting
direction. The required time to move the slice to the following position was determined as
a ratio between the thickness of the slice and the casting speed. New temperature field of
the moving slice is initially set to the final temperature field of the previous slice and the
boundary conditions corresponding to the slice location are applied for the evaluation of
heat transfer. This type of 2.5D slice model significantly reduces the computational time in
contrast to the fully 3D model, where the complete temperature distribution of the strand
is calculated in each time step.
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Figure 3. Idea of the 2.5D slice model.
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Thermophysical Properties

A low-carbon steel grade 18CrNiMo7-6 and a billet having the cross-section of
150 mm x 150 mm were considered in this paper. The thermophysical properties of the
steel grade were determined in the temperature range from 1600 °C to the room tempera-
ture by means of the solidification analysis package IDS (version 1.3.1, created at Helsinki
University of Technology, Laboratory of Metallurgy) [19] The temperature-dependent
enthalpy and other thermophysical properties (density, specific heat, thermal conductivity)
identified with the IDS for the steel grade 18CrNiMo7-6 are shown in Figure 4.
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Figure 4. Thermophysical properties of structural steel 18CrNiMo7-6.

3. Optimization Approach

The 2.5D slice solidification model predicts the temperature distribution of the strand
under certain values of the casting parameters, such as the casting speed, heat withdrawal
in the mold, the secondary cooling intensity, etc. The problem is how to set these input
parameters in a way to get a high-quality steel with a minimum occurrence of defects. This
is referred to as an inverse problem and, to solve this issue, optimization algorithms need
to be used. The solidification model is based on the discretization of Equation (1), which
generally leads to millions of nonlinear finite-difference equations. A direct optimization
approach with mathematical programming methods is not applicable, as the computational
complexity and computation time grow exponentially with the size of the numerical mesh.
Thus, it is needed to separate the optimization algorithm and the solidification model,
which is referred to as the so-called black-box approach. In this approach, the optimization
algorithm controls input parameters (speed of casting, intensity of water spray cooling, etc.)
to the solidification model. The solidification model predicts the temperature distribution
under the particular casting parameters and provides it to the optimization algorithm.
Based on the temperature distribution, the optimization algorithm evaluates the objective
function, somehow modifies input casting parameters and repeats the described process
in a closed loop until the optimal solution is found. The computational efficiency of the
optimization algorithm is usually assessed from the viewpoint of the number of iterations,
which the algorithm needs to reach the optimal solution [35].

To deal with complex computational problems such as the CC, some optimization
algorithms have been inspired by biological mechanisms in the nature. The nature acts
as a source of concepts and principles for designing artificial computing systems [36]. So-
called nature-inspired meta-heuristic algorithms attempt to solve optimization problems
by mimicking biological or physical phenomena. Meta-heuristics can be grouped in four
main categories based on the applied techniques, population and convergence logic used
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to reach the optimal solution (see Figure 5): evolution-based, physics-based, swarm-based
and human-based methods [37]. Laws of the natural evolution inspired the evolutionary-
based methods. A randomly generated population starts the optimization process and
evolves over subsequent generations with the combination of the best individuals to form
the next generation of individuals [38]. The nature-inspired operations over individuals
for the creation of the next generation are the mutation, crossover, elitism and many
more, depending on a particular algorithm. On the other hand, algorithms imitating the
physical rules, such as the simulated annealing algorithm employing the logic of annealing
characteristics in metal processing and steel cooling, has usually only a single population.
The algorithms mimicking the social behavior of individuals living in groups are called
swarm-based algorithms. These algorithms usually include less operations compared to
evolutionary-based approaches. Hence, they are easier for implementation and preserve
search-space information over subsequent iterations, while evolution-based algorithms
discard any information once a new generation of the population is formed. In human-
based algorithms, the search process is divided into two phases: an initial exploration of
the space and a consequent local exploitation.

[ Meta-heuristic algorithms ]

|
| | l |

[ Evolutionary algorithms Physics-based algorithms Swarm-based algorithms [ Human-based algorithms]

Figure 5. Classification of metaheuristic optimization methods and the selection of used algorithms in this paper (in green
circles): Genetic algorithm (GA), differential evolution (DE), evolution strategy (ES), genetic programing (GP), simulated
annealing (SA), charged system search (CSS), central force optimization (CFO), big-bang big-crush (BBBC), particle swarm
optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), firefly (FF) algorithm, harmony search (HS),
teaching learning-based optimization (TLBO), tabu search (TS), group search optimizer (GSO).

Optimization algorithms applied in this paper were selected in a way to examine at
least one representative algorithm from each group of the metaheuristics. The simulated
annealing (SA) algorithm was chosen from the physics-based algorithms. The vector-based
differential evolution (DE) method as a representative of evolution-inspired algorithms
was chosen, particularly due to its very good convergence [39]. The particle swarm op-
timization (PSO) and the firefly (FF) algorithm are the representatives of swarm-based
algorithms since the PSO was proven to be very competitive with evolutionary and physi-
cally based algorithms [40] and the FF algorithm was already successfully applied in the
CC optimization by the authors of the present paper [41].The last considered algorithm is
the teaching-learning-based optimization (TLBO) from the category of the human-based
algorithms and can be considered as the most recent algorithm among the algorithms
applied in this paper.

The description of main ideas of these algorithms is provided in the following section
and further information can be found in [40]. One of the crucial issues of meta-heuristics is
a determination and proper tuning of their parameters. In the group of considered five
meta-heuristics, the TLBO is an only parameter-less method, thus no parameter of the
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method needs to be determined. This can be beneficial in cases with rather simpler and fast
optimization tasks, but the disadvantage is that the only option how to tune the algorithm
is a proper selection of the random walk. Randomization is usually achieved with the use
of pseudo-random numbers, based on some common stochastic processes, such as the Lévy
flights or the Markov chain [40].

3.1. Simulated Annealing (SA)

The SA is one of the earliest and most popular metaheuristic algorithms developed
in 1983 by Kirkpatrick et al. [42]. The SA is a trajectory-based, random-search technique
for global optimization. It mimics the annealing process in materials processing when a
metal cools and solidifies into a crystalline state with the minimum energy and growing
crystals to reduce defects in the metallic structure. The annealing process involves a careful
control of the temperature and its cooling rate, often referred to as the annealing schedule.
The advantage of the SA against the deterministic methods is its ability to avoid being
trapped in a local optimum solution. In this paper, the geometric cooling schedule and the
temperature T during the annealing process is

T = Toa!, 3)

with a stabilizing parameter « and an initial temperature Ty. In most practical applications,
a € [0.7, 0.99] is frequently used [40]. If a new value of the objective function is worse than
the previous one, the algorithm accepts the new solution only if the randomly generated
number r from the uniform distribution [0, 1] satisfies the condition

p= e[_ATf] >r 4)

where Af is the difference of the values of the objective function. This setting leads to faster
stabilization and a more extensive local search.

3.2. Differential Evolution (DE)

The DE algorithm was initially developed in 1997 by Storn and Price [43]. The DE
is a vector-based meta-heuristic algorithm, which has good convergence properties. This
algorithm has some similarity to pattern search and genetic algorithms due to its use
of crossover and mutation. The DE generates vectors of new parameters by adding the
weighted difference between two population vectors to a third vector as

ol = X, + F(xg — xﬁ), 5)

where F € [0, 2] is a mutation parameter referred to as the differential weight. The setup of
F € [0.7, 0.9] is recommended as a good first choice [40]. Parameters of the mutated vector
are then mixed with parameters of another predetermined vector to form the trial vector as

! / j=12,...,d 6)

Xj; otherwise,

1 { vﬁ.l ifr; <C,,

The parameter controlling the crossover probability C, € [0,1] is recommended to be
C; = 0.5 [40], thus the j-th component has a 50% probability to be mutated, while the
r; € [0,1] is a uniformly distributed random number. If the value of the objective function
of the trial vector is better than the target vector, the trial vector replaces the target vector as

S { ”zH—l iff(”zt'+1) < f(x)), @)

1 .
xt otherwise.

Each population vector serves once as the target vector. It is recommended that the
population size should depend on the dimensionality of the problem [40].
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3.3. Particle Swarm Optimization (PSO)

The PSO was developed by Kennedy and Eberhart in 1995 [44] and became one of the
most widely used swarm-intelligence based algorithms due to its simplicity and flexibility.
The behavior of the algorithm is based on the stochastically-drawn movement of particles
(t)

in the space while they are attracted to the current best particle x:f and to the current

global best particle g* over the populations as
1 *(t
ot = ol + e (8" — x}) + Bein (xl-( - x;‘), ®)
where a and j are learning and acceleration parameters, respectively, which are typically
equal to 2 [40]; and ¢; 1 and ¢; ; are random uniformly-distributed vectors having the values
between 0 and 1. In each step, the particles are moved to new positions no matter if the
new positions are better or not in terms of the value of the objective function as
S S s |
X; =x;+0 P (9)

Many improvements of the PSO have been published, including, for example, an
accelerated PSO (APSO) [45] with an enhanced scheme allowing a better convergence rate.

3.4. Firefly (FF) Algorithm
Due to similarities between the PSO and the FF algorithm, the FF method received
negative feedback within the research community. The inspiration between flashing
patterns and the behavior of fireflies gave rise to the firefly algorithm proposed by Xin-She
Yang [46] in 2010. A new position of a firefly in each generation is determined as
xl?+1 = xl+ ﬁ(x]t — xf) + e, (10)
where the new position of the current firefly is determined by an attractiveness parameter
B and a randomization parameter «. In this paper, the geometric annealing schedule is

implemented, which reads
a = wpb?, (11)

meaning that with the increasing number of generations, the randomness involved in the
algorithm decreases. The attractiveness between fireflies is modeled as

B =PBoe i, (12)

where By is the attractiveness at the distance r;; = 0, 7 is the light absorption coefficient and
rj,j is the Cartesian distance between the two fireflies i and j. The term for attractiveness is
more significant for those fireflies that are closer to each other.

3.5. Teaching Learning-Based Optimization (TLBO)

The TLBO approach is one of the recently developed optimization algorithms [47].
This method exhibits great performance, which was assessed in [48]. The TLBO is a
parameter-less algorithm, which consists of two phases. The first one is called the teacher
phase, in which the group of learners (population) is normally distributed (with an obtained
mean Xmean ;) and learns from the teacher who is the learner with the best fitness among
the whole population Xiescher ;- In this phase, the learners attempt to get their values of the
objective function towards the teacher’s value of the objective function as

D; = ri(xteacher,i - TFxmean,i)/ (13)
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where r; is a random number within the range [0, 1] and TF is the teaching factor defined
as a heuristic step which can be either 1 or 2. The difference modifies the current vector
and forms the new vector as

Xnew,i = Xold,i + Di. (14)

Xnew,i 1S accepted if it leads to better objective function, otherwise it remains unchanged
and equals to vector of a previous generation x4 ;. The second phase is called the learner
phase, in which the learner shares knowledge and interacts with other different learners to
further improve his/her performance. In this phase, the obtained new vector in teacher
phase is set to x,1q,;, while x; is a randomly selected vector (i # j) from the learners and the
new vector is

N { Xoidi + 7i(Xold,i — Xj), if f(xo1a,i) < f(x)) (15)
new, Xold,i — i (xolcl,i — xj)/ iff(xold,i) > f(x]) '

where r; is a random number within the range [0, 1]. Finally, the new vector xpey ; is
accepted if it provides a better value of the objective function value.

4. Results and Discussion

The computational model was set up with the geometry and configuration of the radial
CCM operated in Tfinec Iron and Steelworks in the Czech Republic. The CCM produces
steel billets with the cross section of 150 mm x 150 mm, it has a tube-based water-cooled
mold and the secondary cooling zone incorporates 178 water cooling nozzles. The length
of the mold is 1000 mm and the radius of the radial part of the CCM is 8900 mm. The
straightening of the curved strand starts at the distance of 14,255 mm from the meniscus
(called the unbending point), where the strand is assumed to be fully solidified in order to
withstand high tensile strain in this location. The secondary cooling zone is divided into
six sections, each independently controlled and having a different set of cooling nozzles.
The casting speed is set to 2.78 m /s and does not vary during the optimization. The target
temperature distribution and cooling profile of secondary cooling zone was assumed as
shown in Figure 6 (based on operational experience) and the optimization problem can be
formulated as

d d
min 'El Terr,i = 'Zl(Ttarget,i - Tcalc,i )
1= 1=
Subjected to : zy < Zunbpoint
Tunbending > Tunbending,min (16)

Tcalc,i >Tcalc,i,min
Vloop,i,min < Vloo i < Vloop,i,max-

Stop criterium : Y 7 Ter i < Terr,max

where the objective function is the sum of average surface temperature errors in individual
loops, d is the number of cooling loops, Tiarget,i is the target average surface temperature in
the i-th section of secondary cooling zone, T, ; is the calculated average surface tempera-
ture in the i-th section of the secondary cooling zone, Terr,max is the maximum allowable
surface temperature error set to 50 °C, zp is the metallurgical length, zynppoint is the loca-
tion of the unbending point of the CCM and Tynpending iS the average surface temperature
at the unbending point. According to [11,12], the surface temperature at the unbending
point Tynpending Must be higher than Tynpendingmin (Which is considered 1100 °C in this
work) and the average surface temperature in each secondary cooling zone T, ; must
be higher than T, ; min (Which is considered 850 °C in this work) to avoid brittle regions

with reduced ductility. Water flow rates Vloop,i through the cooling loops in the secondary
cooling zone are also limited as specified in Table 1.
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Figure 6. Considered target temperature distribution along the CCM for the steel grade 18CrNiMo7-6, with the longitudinal
temperature profiles depicted in the middle of strand faces T SR (small radius), T LR (large radius), T Left (left side), T
Right (right side) and T Centre being the temperature in the core of strand.

Table 1. Considered target water flow rates in the secondary cooling zone for given casting speed

2.78 m/s.
Water Flow Rates
Val Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Loop 6 Total
alue (Umin)  (Umin)  (Umin)  (Umin)  (/min)  Umin)  (Umin)
Minimum 0 0 0 0 0 0 0
Target 160 170 120 120 100 75 745
Maximum 300 250 140 140 140 100 1070

The aim of optimization was to determine casting conditions under which the sum
of the average zone surface temperature errors is less than 50 °C. This accounts for about
8 °C of the temperature deviation per section in average, which is a rather hard condition
to be achieved. In this work, the target water flow rates through the cooling loops in
the secondary cooling zone were assumed as presented in Table 1 for the casting speed
2.78 m/s. In case of all optimization algorithms, the maximum number of algorithm-related
operations was set to 1000. This means that the SA with a steady population was allowed
to develop into 1000 generations. However, in swarm-based algorithms, such as the FF
or the PSO, the population (including 10 individuals) was allowed to develop only into
100 generations. In this work, the population size was set identically to the number of
generations applied in swarm-based algorithms (the FF and the PSO). In case of the DE,
the number of individuals is recommended to be dependent on the dimensionality of a
problem [40]. This recommendation was neglected, and the DE algorithm included the
same number of individuals and maximum number of generations, such as were in FF
and PSO. In the TLBO, the number of students was set to 10 individuals; however, due
to the two-phase optimization approach (teacher and student phases), the maximum of
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50 generations was established, whereas there were two evaluations of the solidification
model for one individual in one generation. The recommended values of parameters for
the SA, the DE and the PSO algorithms were defined in the previous chapter and the main
parameters and their values applied in this work are listed in Table 2. The random walks
involved in all algorithms were simulated in terms of the uniform distribution.

Table 2. Used optimization parameters.

Algorithm Parameters of Optimization and Their Values
SA Ty =150,0 = 0.8, 7 =1
DE F=08,C =05
FF Bo=1,a =01, = 00010 =098
PSO a=26=2
TLBO -

The 2.5D slice thermal-solidification numerical model, which was described in the
foregoing section, was capable to simulate the temperature distribution of the cast strand
in approximately 15 s on a PC with Intel(R) Core(TM) i7-3770 CPU @ 3.4GHz and 16 GB
RAM. The size of the computational mesh 2.5 mm x 2.5 mm was set according to the
mesh independency test mentioned above and with respect to appropriate treatment with
boundary conditions, which were applied to all computational slices of thickness 25 mm.
The majority (about 73%) of the computational time required by the numerical model is
spent with a determination of boundary conditions, especially with the distribution of
the heat transfer coefficients under cooling nozzles. As metaheuristics are random-based
algorithms and a repeated execution of a particular algorithm under identical setup does
not in general lead to the same result, the optimization study in this work included 500
runs with 100 runs per each algorithm. The maximum number of operations available
to an algorithm per one run was considered 1000, as explained above, which gives the
overall maximum of 500,000 evaluations of the heat transfer and solidification model. This
approach was used to assess the stability of algorithms in terms of the optimal solution. The
flow block diagram representing the introduced optimization process is shown in Figure 7.

According to Table 3 with the results, the overall best solutions were achieved with
the use of the DE algorithm. In this case, the temperature error was 11.37 °C, with a slightly
higher (by about 2.4 1/min) overall water flow rate through the secondary cooling zone
when compared to the target solution. The only algorithm which achieved a solution with
a lower overall water flow rate through the secondary cooling zone was the FF, as its best
solution exhibits about a 2% lower water flow rate than the target solution. As for the
temperature error of the FF for its best solution, it is about 21.4 °C, which is similar to
those of the SA, the PSO and the TLBO. The highest mean-value water flow rate of about
756.6 1/min was achieved with the PSO algorithm. Figure 8 demonstrates the water flow
rates for the best solution within the set of 100 runs. A fairly similar behavior in the first
cooling loop for each metaheuristic algorithm can be seen, nevertheless the other cooling
loops exhibit some minor deviations against the target water flow rates.

The overall results listed in Table 4 show that the only algorithm exhibiting a worse
convergence rate than other algorithms is the PSO algorithm, with only 78 of 100 runs
reaching the stop criterium. In case of the SA, the DE, the FF and the TLBO algorithms, the
stop criterium was in the majority of runs reached. The FF algorithm reports even a 100%
convergence success. The lowest mean-value and median-value number of operations
performed by the algorithm to reach the solution was in case of the DE algorithm, which
also exhibits the smallest variation of the number of generations needed to converge in
each run, as depicted in Figure 9 where the median, the lower and upper quartiles for
the number of operations are shown. The best (lowest) median value for the number of
operations was achieved in case of the SA algorithm. On the other hand, the worst behavior
in terms of the required number of operations was observed in case of the FF algorithm.
This can be attributed to the geometric annealing schedule with an initial larger exploration
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and gradually increasing exploitation. The minimum number of operations needed to reach
the solution was achieved for the SA, the DE and the PSO with 70, 68 and 73 operations
per run, respectively. The convergence graph of individual algorithms, representing the
averaged minimum temperature error (value of the objective function) reached by the
algorithm in dependence to the number of operations, can be seen in Figure 10.

Process to analyse algorithms

Select optimization
approach

Temperature deviations,
Convergence rate,
water flow rates, etc.

Optimization run cases
For given algorithm
For 1:100

Steel grade

Optimization of continuous casting process

Heuristic generation of
new water flow rates

Input of
operational
parameters

Operations in
optimization run
For 1:1000

Analyse results
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optimization approach
reached

Mesh generation properties (IDS)

Water-air

cooling nozzles
database caster Initiallization No

Geometry of

Save results — water flow rates,

Numerical
computing of
temperature

distribution

Time to move slice
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Calculate boundary
conditions for given
slice location and
temperatures of a
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End of the caster?

Stop criterium an
conditions satisfied
Or
maximum number
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temperature distribution, etc.
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Figure 7. Flow block diagram representing the applied optimization process.
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Table 3. Mean-value temperature errors and water flow rates and the best temperature error and water flow rates (values in
the brackets) for each algorithm for the casting speed of 2.78 m/s.

Water Flow Rates
Optimization Temperature Error Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Loop 6 Total
Algorithm O (I/min) (I/min) (/min) (/min) (I/min) (I/min) (1/min)
SA 44.19 160.25 168.06 120.36 118.67 100.86 74.23 742.43
(23.35) (160.27)  (172.78) (113.7) (131.79) (89.31) (77.75) (745.69)
DE 42.11 160.55 167.45 124.61 122.30 100.79 76.32 752.02
(11.37) (160.53)  (172.29)  (119.88)  (119.66) (98.21) (76.79) (747.36)
FE 41.09 159.67 169.39 121.72 119.05 107.07 74.89 746.66
(21.38) (160.13)  (168.41)  (114.23)  (107.86)  (106.71) (73.48) (730.83)
PSO 48.89 160.04 167.61 125.02 122.10 107.08 74.71 756.56
(24.31) (159.06)  (160.54)  (135.46)  (121.92)  (101.71) (78.83) (757.51)
TLBO 42.96 161.37 165.28 119.84 118.33 104.39 73.45 742.66
(23.14) (160.39)  (177.22)  (107.03)  (121.17)  (101.94) (77.52) (745.28)
ESA mDE mFF mPSO mTLBO mTarget
200
180
g 160
£ 140
—
= 120
£ 100
"5 80
£ 60
3 40
20
0
1 2 3 4 5 6
Cooling loop (-)
Figure 8. The water flow rates through the secondary cooling zone of the best solutions of
individual algorithms.
Table 4. Overall results for the considered continuous casting (CC) optimization problem.
- SA DE FF PSO TLBO
Median of the number of operations (-) 271 280 392 305 320
Mean of the number of operations (-) 369.18 294.3 433.42 451.7 382.6
Minimum number of operations (-) 70 68 142 73 120
Percentage of cases in which the stop criterium was reached (%) 96 99 100 78 95
Metallurgical length of the best solution (m) 14.175 14.200 14.150 14.175 14.150
Mean temperature error (°C) 44.19 42.11 41.09 48.89 42.96
Best (lowest) temperature error (°C) 23.35 11.37 21.38 24.31 23.14

Worst (highest) temperature error (°C) 154.51 52.27 49.98 194.06 98.03
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Figure 10. The averaged minimum temperature error reached by the algorithm to particular operation.

If the stop criterium was set to a lower temperature error, the computational time
increased. Based on the obtained results, it can be summarized that overall best behavior
was exhibited by the DE algorithm. As for the computer implementation of the algorithms,
none of the considered algorithms required more extensive experience but the SA algorithm
can be considered as the easiest one from the implementation viewpoint. The worse
behavior of the PSO algorithm could be due to inappropriately selected optimization
parameters « and 8, which lead to an entrapment in a local minimum, while the algorithm
needs a lowest number of operations to reach the limit of the temperature error of 100 °C
when compared to other algorithms, as demonstrated in Figure 10. The use of the enhanced
PSO—the APSO—would improve the convergence rate of the PSO.

5. Conclusions

In the paper, five metaheuristic algorithms from each group of the metaheuristic
classification were tested and assessed in the problem of continuous steel casting. A 2.5D
slice thermal-solidification numerical model was developed and used for the optimization
procedure. The objective of the optimization was to minimize the average temperature
errors in each section of the secondary cooling zone within predefined temperature intervals
by determination of appropriate water flow rates through cooling nozzles. The target values
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of the temperature intervals were specified in certain locations in the secondary cooling
zone of the caster according to the literature review focusing on casting of high-quality
final products.

e  The best median value in terms of the number of operations needed by the algorithms
to reach the solution was observed for the simulated annealing (SA) algorithm (with
271 operations per run and with the convergence rate of 96%) and for the differential
evolution (DE) algorithm (with 280 operations per run and with the convergence rate
of 99%).

e  The best convergence rate was achieved in case of the FF algorithm in which all the
runs reached the stop criterium, but with approximately 121 more operations per run
than the DE algorithm.

e  The particle swarm optimization (PSO) was surprisingly the worst algorithm among
the considered algorithms, with 22 non-converged runs. A better behavior and per-
formance of the algorithms could further be achieved by tuning of parameters of the
individual algorithms.

e  The teaching-learning-based optimization (TLBO), which is a method containing no
algorithm-specific control parameters, exhibited medium performance among the
considered algorithms and its convergence rate was 95%.

In conclusion, the DE algorithm was identified as the best performance algorithm for
the considered control problem. Nevertheless, the performance of the SA, the FF and the
TLBO algorithms was evaluated as good, which makes them also suitable for the solution
of this kind of control problems.
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