
Received April 2, 2020, accepted April 21, 2020, date of publication April 27, 2020, date of current version May 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2990726

Pool & Discard Algorithm for Chance Constrained
Optimization Problems
JAKUB KŮDELA 1 AND PAVEL POPELA2
1Institute of Computer Science and Automation, Faculty of Mechanical Engineering, Brno University of Technology, 61669 Brno, Czech Republic
2Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic

Corresponding author: Jakub Kůdela (jakub.kudela@vutbr.cz)

This work was supported in part by the Ministry of Education, Youth and Sports of the Czech Republic INTER-COST Project
under Grant LTC18053, and in part by the Project ‘‘Computer Simulations for Effective Low-Emission Energy’’ by Operational
Program Research, Development and Education, Priority Axis 1: Strengthening Capacity For High-Quality Research under Grant
CZ.02.1.01/0.0/0.0/16_026/0008392.

ABSTRACT In this paper, we describe an effective algorithm for handling chance constrained optimization
problems, called the Pool &Discard algorithm. The algorithm utilizes the scenario approximation framework
for chance constrained optimization problems, and the warm-start and problem modification features
of modern solvers. The exploitation of the problem structure and efficient implementation allows us to
considerably speed up the computations, especially for large instances, when compared with conventional
methods.

INDEX TERMS Chance constrained programming, scenario approximation, P&D algorithm, stochastic
programming, constraint removal.

I. INTRODUCTION
This article describes a novel method for handling chance
constrained optimization problems that was developed in
the author’s dissertation [1]. The introduction into the topic
of chance constrained optimization is derived (more or less
directly) from [2] – with most of the used notation adapted
from [2] as well. Let X ⊆ <

nx be a convex and closed
domain of optimization and consider a family of constraints
x ∈ Xξ parameterized in ξ ∈ 4. The uncertain parameter
ξ describes different instances of an uncertain optimization
scenario. We adopt a probabilistic description of uncertainty
and suppose that the support 4 for ξ is endowed with
a σ -algebra D and that a probability measure P is defined
over D. The probability measure P describes the probability
with which the uncertain parameter ξ takes value in4. Then,
a chance constrained optimization program is written as:

CCPε : minimize
x∈X

cT x

subject to P{ξ : x ∈ Xξ } ≥ 1− ε. (1)

Here, we assume that the σ -algebraD is large enough, so that
{ξ : x ∈ Xξ } ∈ D, i.e. {ξ : x ∈ Xξ } is a measurable set. Also,
linearity of the objective function can be assumed without

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun-Yuan Hsieh .

loss of generality, since any objective of the form

minimize
x∈X

c(x),

where c(x) : X → < is a convex function, can be re-written
as

minimize
x∈X ,y≥c(x)

y,

where y is a scalar variable.
In the CCPε (1), constraint violation is tolerated, but the

violated constraint set must be no larger than ε. The parameter
ε allows us to trade robustness (in terms of the probability of
constraint violation) for performance (in terms of the optimal
objective value): the optimal objective value J∗ε of CCPε is a
decreasing function of ε and provides a quantification of such
a trade-off. Depending on the particular application (the range
of applications is quite wide), ε can take different values and
has not necessarily to be thought of as a ‘‘small’’ parameter.

Chance constrained programming has been around for
more than half a century, at least since the work of Charnes,
Cooper and Symonds in the fifties, see [3]. In [3], how-
ever, only individual chance constraints were considered.
Joint probabilistic constraints, as in (1), were first consid-
ered by Miller and Wagner, [4], in an independent context,
while a general theory is due to Prékopa, see [5], [6].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 79397

https://orcid.org/0000-0002-4372-2105
https://orcid.org/0000-0003-4746-3179

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

Prékopa was also the one to introduce the convexity the-
ory based on logconcavity, which was a fundamental step
toward solvability of a large class of chance constrained
problems. The books [7] and [8] provide an excellent and
broad overview on logconcavity theory in stochastic pro-
gramming, and related results. Yet another study about the
convexity of chance constrained problems is [9], while con-
vex approximations of chance constrained problems are con-
sidered in [10], [11], and [12]. Stability of the solution under
perturbation of the chance constrained problem is studied
in [13] and [14]. Although chance constrained problems can
be efficiently solved in some special cases, it remains true that
the feasible set of CCPε is in general non-convex in spite of
the convexity of the sets Xξ . Therefore, an exact numerical
solution of CCPε is, at least in general, extremely hard to
find.

II. SAMPLE COUNTERPART APPROACH
We can view the variable x ∈ X ⊆ <nx as the ‘‘design
variable’’. The family of possible instances is parameter-
ized by an ‘‘uncertainty vector’’ ξ ∈ 4 ⊆ <nξ . Then,
the prototype optimization problem consists in minimizing a
linear objective cT x, subject to that x satisfies the constraints
g(x, ξ) ≤ 0,∀ξ ∈ 4, where g(x, ξ) : X ×4→ [−∞,∞] is
a scalar-valued function that specifies the constraints. Note
that considering scalar-valued constraint functions can be
assumed without loss of generality, since multiple constraints
g1(x, ξ) ≤ 0, . . . , gm(x, ξ) ≤ 0 can be expressed by a
single scalar-valued constraint by the position g(x, ξ) =
maxi=1,...,m gi(x, ξ). Although convexity is preserved by this
operation, other valuable properties, such as linearity or dif-
ferentiability, are lost. In typical situations, 4 has infinite
cardinality, i.e., it contains an infinite number of possible
instances for ξ .
Assumption 2.1 (Convexity): For each ξ ∈ 4 the sets Xξ

are convex and closed.
Assumption 2.1 requires convexity only with respect to the

design variable x, while generic nonlinear dependence with
respect to ξ is allowed.

Depending on the situation at hand, the measure P can
have different interpretations. On one hand, it can be the
actual probability with which the uncertainty parameter ξ
takes on value in4. On the other hand,P can simply describe
the relative importance we assign to different uncertainty
instances. We have the following definition:
Definition 2.2 (Probability of Violation): Let x ∈ X be

given. The probability of violation of x is defined as

V(x) = P{ξ ∈ 4 : g(x, ξ) > 0}.

For example, if we assume a uniform probability density,
then V(x) measures the ‘‘volume of bad’’ parameters ξ such
that the constraint g(x, ξ) ≤ 0 is violated. A solution x with
small associated V(x) is feasible for most of the problem
instances, i.e., it is approximately feasible for the worst-case
problem. This concept of approximate feasibility has been

introduced in the context of robust control in [15]. Any such
solution is here named an ‘‘ε-level’’ solution:
Definition 2.3 (ε-Level Solution): Let ε ∈ (0, 1). We say

that x ∈ X is an ε-level robustly feasible (or, more simply,
an ε-level) solution, if V(x) ≤ ε.
Our ultimate goal is to devise an algorithm that returns

a ε-level solution, where ε is any fixed small reliability level.
The approach utilized in this paper uses a surrogate model
called ‘‘Scenario Design Problem’’. By scenario it is here
meant any possible realization or instance of the uncertainty
parameter. In the ‘‘scenario design’’ we optimize the objec-
tive subject to a finite number of these randomly selected
scenarios.
Definition 2.4 (Scenario Design Problem): Assume that

S independent identically distributed samples ξ1, . . . , ξS are
drawn according to probabilityP . A scenario design problem
is given by the convex program

SDPS : minimize
x∈X

cT x

subject to g(x, ξ i) ≤ 0, i = 1, . . . , S. (2)

The acronym SDPS refers to the fact that (2) is a convex
program with S constraints. Here we assume the following
technical condition on the scenario problem:
Assumption 2.5 (Feasibility): For all possible extractions

ξ1, . . . , ξS , the optimization problem (2) is either infeasible,
or, if feasible, it attains a unique optimal solution.

The scenario problem SDPS is a standard convex optimiza-
tion problemwith a finite number of constraints S and, hence,
its optimal solution x̂S is (usually) efficiently computable by
means of numerical algorithms [16].

The relationship between the number of sampled
scenarios S and the probability of violation of the optimal
solution to corresponding Scenario Design Problem V(x̂S)
was investigated in [17] and [18] – for a chosen ε we can
always find S large enough such that x̂S is ε-level feasible
for the original problem (1) with arbitrarily high confidence.
There is, however, no guarantee, that the resulting optimal
objective value of (2) will be anywhere close to the true
optimal value J∗ε . The results derived in [18] show that the
distribution function of V(x̂S) is bounded by a beta distribu-
tion with parameters nx and S − nx + 1, and imposing that
V(x̂S) ≤ ε holds with high confidence implies that V(x̂S) will
be much less than ε in many cases, resulting in a conservative
solution.

Next we introduce a concept that is crucial for the success
of the Pooling part of the upcoming algorithm. Of the S
generated scenarios, only some of these S will be ‘‘bounding’’
in the sense that they prevent the solution from ‘‘falling’’ to a
lower objective value.
Definition 2.6 (Support Scenario): Scenario ξ i, i ∈ {1,

. . . , S}, is a support scenario for the scenario problem SDPS
if its removal changes the optimal solution of SDPS .
The following theorem, whose proof can be found in [18]

or in a different form in [19], gives us the bound on the
number of support scenarios:

79398 VOLUME 8, 2020

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

Theorem 2.7 (Number of Support Scenarios): The num-
ber of support scenarios for SDPS is at most nx , the size of x.
What is most important about this result is the fact that the

number of support scenarios does not depend on the number
of generated scenarios S. The first main contribution of this
paper is an efficient way of solving (2), with the use of
Theorem 2.7.

III. POOLING PART OF THE POOL & DISCARD
ALGORITHM
The idea behind the Pooling part of the algorithm is the
following: if one were to verbally describe the problem (2),
the one word that came to our mind was ‘‘long’’, as there
are much more constraints than decision variables. Moreover,
the number of support constraints (or support scenarios), that
the optimal solution of (2) depends upon is very small, when
compared to the overall number of constraints (or scenarios).

The method consists of solving (2) by the following proce-
dure. First, we start by completely neglecting the constraints
in (2) that correspond to the different scenarios and solve this
relaxed optimization problem. Thenwe find themost violated
constraints (by computing the slacks), add them to the relaxed
problem and find a new optimal solution.

The Pooling part can be summarized as follows:
Step 0. Set I = ∅.
Step 1. Solve the following problem:

minimize
x∈X

cT x

subject to g(x, ξ i) ≤ 0, i ∈ I, (3)

and obtain a solution x̂.
Step 2. Check feasibility of the solution by computing the

slacks si:

si = g(x̂, ξ i), i ∈ {1, . . . , S}. (4)

Step 3. If max
i∈{1,...,S}

si > 0, find the associated index of the

maximum value î = argmax
i∈{1,...,S}

si, add it to the set I

and return to Step 1. Otherwise, set x∗ = x̂, I∗ = I
and terminate.

It is important to remark that by the end of this procedure,
we not only get the optimal solution of (2), but also an index
set I that contains the support scenarios – this will be very
significant for the success of the Discarding part of the P&D
algorithm.

Another equally important remark concerns the efficient
implementation of the algorithm. In Step 1, we are sequen-
tially solving problems that are extremely similar, only dif-
fering in a single constraint. The use of warm-starts (when
made possible by a proper choice of solution method) or even
problem modification1 (when supported by our choice of a
solver) have immense effect on the efficiency of the Pooling
part. For the implementation of the numerical examples that

1https://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.0/
ilog.odms.cplex.help/CPLEX/OverviewAPIs/topics/Modify.html

are investigated in this paper, we have chosen the JuMP pack-
age [20] for modeling optimization in the Julia language [21]
and the CPLEX 12.7 solver [22]. This combination allowed
us to use the algorithm to its full extent.2 The machine,
on which we conducted the numerical examples, was a PC
with 3.6 GHz AMD Ryzen 5 2600X Six-Core CPU, 32 GB
RAM, NVIDIA GeForce GTX 1050 Ti, running on 64-bit
Windows 10.

A. NUMERICAL EXAMINATION – ASSET ALLOCATION
PROBLEM
The first numerical example we chose to demonstrate the util-
ity of the Pooling part of the P&D algorithm is the (by now,
almost canonical) asset allocation problem [8]. Suppose we
have n assets x1, . . . , xn that we want to invest in. The returns
r1, . . . , rn of these assets are random variables. Our goal is
to allocate our resources to these different assets, in order
to maximize the ε quantile (often called the Value at Risk,
or VaR) of the returns. This formulation neglects several of
the important real-world issues – we do not allow short posi-
tion, do not consider more than one trading period, etc. – the
example is, above all else, intended to show the capabilities
of the P&D algorithm. Our asset allocation problem can be
summarized as follows:

maximize
x≥0,t∈<

t

subject to P{t ≤
n∑
j=1

rjxj} ≥ 1− ε,

n∑
i=j

xj ≤ 1. (5)

Our ability to solve (with no quotation marks) this problem
depends heavily on the distribution of the returns r1, . . . , rn
and the chosen quantile ε. Thanks to [23], we know that the
feasible set of a scalar chance constraint

P{aT x ≤ b} ≥ 1− ε,

is convex, provided that the vector (aT , b)T of the coeffi-
cients has symmetric logarithmically concave density and
ε < 1/2. We will use this result and model the returns r
as random variables that are independent and normally dis-
tributed (and, hence, have a symmetric logarithmically con-
cave density). More precisely, the return rj has the following
distribution

rj ∼ N (µj, σj), µj = 1+ 0.1
j− 1
n− 1

, σj = 0.1
j− 1
n− 1

,

i.e., the first return is ‘‘deterministic’’, with return r1 = 1,
and the nth return has mean µn = 1.1 and standard deviation
σn = 0.1. Because of the chosen distribution of returns,

2The implementation of all of the presented numerical examples can be
found on the authors GitHub: https://github.com/JakubKudela89

VOLUME 8, 2020 79399

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

the problem (5) can be transformed [8] into the following sec-
ond order cone problem (SOCP, see [16]):

maximize
x≥0,t∈<

t

subject to
n∑
j=1

µj·xj ≥ t

+8−1(1− ε)·||(σ1·x1, . . . , σn·xn)||2,
n∑
j=1

xi ≤ 1, (6)

where8−1(1−ε) is the 1−ε quantile of the standard normal
distribution. As an SOCP, this problem falls into the category
of ‘‘easy’’ to solve (we can compute the optimal solution with
little effort for large values of n – well into thousands) and as
such provides the perfect ground for illustrating the capacities
of the P&D algorithm.

The scenario approach, works with a sample of S scenarios
of the returns r ij , j = 1, . . . , n, i = 1, . . . , S. Using these
scenarios, the sample counterpart to (5) has the following
form:

maximize
x≥0,t∈<

t

subject to t ≤
n∑
j=1

r ij xj, i ∈ {1, . . . , S}

n∑
j=1

xj ≤ 1. (7)

First of all, we will investigate on (7) the dependence
of computation time of the Pooling part (CTPP) of the
P&D algorithm for varying number of assets n and scenar-
ios S. Additionally, we provide the computation time for
the Pooling part without the use of warm-starts and problem
modification (CnoWS) and the computation time for solving
the problem (7) conventionally (CTC), i.e., passing it to the
solver (CPLEX) with all the scenarios.

The results of the computations are summarized in Table 1
and clearly demonstrate the effectiveness of the Pooling part
of the P&D algorithm. As the number of scenarios grows,
CTPP grows very slowly when compared to CTC, becoming
over 20 times faster for the largest number of considered
scenarios. The main factor in the effectiveness of the Pooling
part is the low growth in the number of iterations needed to
solve the problems with more scenarios – this should not be
too surprising, since the number of support scenarios stays
the same (for the same n). The variant without warm-start
or problem modification CnoWS eventually (for high values
of n) suffers from too big of an overhead when constructing
the corresponding optimization problem, but can still outper-
form CTC in large number of instances.

IV. CONSTRAINT REMOVAL ALGORITHM
If all the S constraints are enforced, however, one can-
not expect that good approximations of chance constrained

TABLE 1. Results of the computation. Average over 10 runs.

solutions are obtained. To get a less conservative solution we
use the framework introduced in [2] for relaxing problem (7).
Their approach allows us to remove k constraints out of
the S scenario constraints. A general removal procedure is
formalized in the following definition:
Definition 4.1 (Constraint Removal Algorithm): Let

k < S. An algorithmA for constraints removal is any rule by

79400 VOLUME 8, 2020

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

which k constraints out of a set of S constraints are selected
and removed. The output of A is the set A{ξ1, . . . , ξS} =
{i1, . . . , ik} of the indexes of the k removed constraints.
The sample-based optimization program where k

constraints are removed as indicated by A is expressed as

SDPAS,k : minimize
x∈X

cT x

subject to g(x, ξ i) ≤ 0,

i ∈ {1, . . . , S} \A{ξ1, . . . , ξS}, (8)

and its solution will be hereafter indicated as x∗S,k .
We introduce the following assumptions:
Assumption 4.2 (Constraint Violation): Almost surely

with respect to the multi-sample (ξ1, . . . , ξS), the solution
x∗S,k of the sample-based optimization program SDPAS,k vio-
lates all the k constraints that A has removed.

This assumption requires that the algorithm A chooses
constraints whose removal improves the solution by violating
the removed constraints, and it rules out for example algo-
rithms that remove inactive constraints only, or algorithms
that remove constraints at random. Thus, this assumption is
very natural and reflects the fact that we want to remove the
constraints that improve the optimal objective value.

The next Theorem (proved in [2]) provides theoretical
guarantees that V(x∗S,k) ≤ ε, i.e. that the optimal solution x∗S,k
of the optimization program SDPAS,k is feasible for the CCPε .
Theorem 4.3 (Feasibility): Let β ∈ (0, 1) be any small

confidence parameter value. If S and k are such that(
k + nx − 1

k

) k+nx−1∑
i=0

(
S
i

)
εi(1− ε)S−i ≤ β, (9)

then PS
{V(x∗S,k) ≤ ε} ≥ 1− β.

The final result establishes that the objective value of CCPε
(whose optimal objective value will be denoted as J∗ε) can
be approached at will, provided that sampled constraints
are optimally removed. Let Aopt be the optimal constraints
removal algorithm which leads – among all possible elim-
inations of k constraints out of S – to the best possible
improvement in the cost objective; further, let x∗S,k,opt and
J∗S,k,opt be the corresponding optimal solution and objective
value. We have the following theorem (again, proved in [2]).
Theorem 4.4 (Optimality): Let β ∈ (0, 1) be any small

confidence parameter value, and let ν ∈ (0, ε) be a perfor-
mance degradation parameter value. If S and k are such that(
k + nx − 1

k

) k+nx−1∑
i=0

(
S
i

)
εi(1− ε)S−i

+

S∑
i=k+1

(
S
i

)
(ε − ν)i(1− ε + ν)S−i ≤ β, (10)

then
(i) V(x∗S,k) ≤ ε
(ii) J∗S,k,opt ≤ J

∗
ε−ν

simultaneously hold with probability at least 1− β.

One optimal way of removing constraints consists in
discarding those constraints that lead to the largest possible
improvement of the cost function. This approach is imple-
mented by the following integer program, which has been
described and investigated in [24], [25] and [26]:

minimize
x∈X

cT x

subject to g(x, ξ i)−Mzi ≤ 0, i = 1, . . . , S,
S∑
i=1

zi ≤ k, z ∈ {0, 1}S . (11)

whereM is a constant large enough so that, if zi = 1, then the
constraint is satisfied for any candidate solution x. For k = 0,
the formulations (2) and (11) are equivalent. By construction,
problem (11) provides a framework for optimally selecting
the constraints to be removed based on the inequality (10).
However, solving (11) may be computationally challenging
due to the increase in complexity from (2) to (11) that arises
from the introduction of one binary variable per each of
the S scenarios. In recent years, there have been developed
strengthening procedures (see [27] and [28]) for some spe-
cial structured problems, that significantly improve upon the
formulation (11).

V. POOL & DISCARD ALGORITHM
The Discarding part of the algorithm consists of utilizing
the index set I, finding the support scenarios among this
set and finding the one scenario, whose removal decreases
the optimal objective value the most – this is repeated k
times, where k is either set a priori (by Theorem 4.3), or is
terminated once an estimate of the probability of violation
of obtained solution V(x) reaches certain threshold. This
approach is almost identical to the one discussed in [29]
(called greedy constraint removal), with the distinction that
our algorithm utilizes the Pooling step and uses warm-starts
(primarily utilizing I) throughout the iterations and as such
can be rather effective (this will be demonstrated in the fol-
lowing sections). The P&D algorithm can be summarized as
follows:
Step 0. Solve the pooling part described above to obtain I∗

and x∗. Set γ > 0, k > 0, Ip = ∅.
Repeat k times, or terminate once
an estimate of V(x∗) reaches a threshold:

Step 1. Find the set of support scenarios Ir ⊂ I∗ – either
by examining the slacks (si > −γ) or the associated
dual variables (µi > γ).

Step 2. For each of the support scenarios ir ∈ Ir , solve the
following problem:

minimize
x∈X

cT x

subject to g(x, ξ i) ≤ 0,

i ∈ {1, . . . , S} \ {ir ∪ Ip}, (12)

using the Pooling part, warm-started by using I =
I∗ \ {ir } and x = x∗. Denote the solution to (12)

VOLUME 8, 2020 79401

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

as x∗ir , its optimal objective function value v∗ir and its
final set of scenarios I∗ir .

Step 3. Find the index with the best optimal objective value:
i∗ = argmin

ir
v∗ir . Set x

∗
= x∗i∗ , I∗ = I∗i∗ and add

the corresponding scenario to the set of permanently
discarded ones Ip.

The parameter γ can be, in theory, set to 0 – what discourages
us from doing so are the implementation issues of numerical
computing. When reporting the optimal dual variables µ the
solvers rarely return exactly 0, more often, we get values
ranging from 10−8 to 10−16 (the same goes for the slacks in
the active constraints). If we did set γ to 0 we would (likely)
have to consider all the scenarios as possible support scenar-
ios and the execution of the algorithm would be significantly
prolonged. Unless stated otherwise, the parameter γ was set
to 10−6. It should be added, that Step 2. of the Discarding
part can be fully parallelized to work more efficiently on
multi-core machines or distributed computing environments.

A. NUMERICAL EXAMINATION – ASSET ALLOCATION
PROBLEM CONTINUED
We will return to the same problem structure (7) again and
examine the computational time for thewhole P&Dalgorithm
for varying number of variables and scenarios. In the Discard-
ing part of the algorithm, we decided to discard k = bεSc
scenarios – note that this choice does not guarantee, that the
resulting solution obtained by the P&D algorithm will be
a ε-level feasible, not to mention having the objective value
close to the optimal value objective J∗ε .
To examine the effect of the warm-start in the discarding

part (using the best solution x∗ and the index set I∗ from the
previous iteration), we will first compare the computational
times of the P&D algorithm, an algorithm that uses just
the Pooling part without warm-starts (denoted as ‘‘PnoD’’),
and an algorithm that uses neither Pooling nor Discarding
(denoted as ‘‘noPnoD’’, which is essentially the one used
in [29]), on a small-scale example (n = 20, ε = 0.01).
The comparison is summarized in Table 2 – the utilization

of Pooling and the warm-starts in Discarding combined pro-
vide immense computational savings compared to the other
two methods (while arriving at the exact same solution).
To further compare the effectivity of the P&D algorithm,
we set the parameters n, S, and k to the same values that
can be found in [29] and compare the computation times
directly (although they used different distributions for the
asset returns, the problem structure is exactly the same).

TABLE 2. Comparing the algorithms. Average over 10 runs.

The results of the computation are reported in Table 3 – for
n = 20, the results reported in [29] are comparable with the
noPnoD variant of the algorithm, with slight improvement
that is most likely caused by a more powerful machine and
a newer version of the optimization solver. In the largest
instance, the P&D algorithm was more that 200 times faster.
For the n = 200, the authors in [29] used a random scenario
removal strategy, instead of the greedy one (removing one of
the support scenarios at random, instead of the one whose
removal decreased the optimal objective value the most) –
this algorithm is O(n) times faster than the greedy one, but
results in an inferior solution. In this setting, the P&D variant
with randomized removal (denoted as P&D∗) was almost
500 times faster than the one in [29].

The real crux of the matter, however, is the following:
‘‘How good a solution (in terms of ε-level feasibility and
objective value) dowe get by using the P&D algorithm?’’ The
remarkable thing about our optimal asset allocation problem
is that for a chosen value of ε, we can get the optimal solution
by solving the SOCP (6). Moreover, for every asset allocation
x, we can find the corresponding ε quantile of the returns
exactly. Or, alternatively, we can for a given value of the
returns t and a given asset allocation x compute (again,
exactly) the probability P{t ≤

∑n
j=1 rjxj} (i.e., the smallest

value of ε, for which our choice of x and t is feasible).
For the examination, we chose a problem with n = 30

assets and ε = 0.01. The optimal objective value (obtained
by solving (6)) was 1.0309. The results are summarized
in Table 4, Figure 1 and Figure 2. Using the formula for the
needed number of scenarios from [18], with β = 10−10,
we get that to obtain a feasible solution to this problem with
high probability (1 − β), we need to solve (7) with at least
S = 8,547 scenarios (without any discarding). The solution
to this problem had the objective value 1.0179 (third column
of Table 4), with the probability of violation 0.0029 (i.e.
P{t ≤

∑n
j=1 rjxj} = 0.0029) – i.e. we obtained a feasible

solution, but with a rather poor objective value.
Afterwards, we ran the Discarding part of the algorithm,

discarding bεSc scenarios. The objective value improved to
1.0318 (fifth column of the table), but the corresponding
probability of violation increased to 0.0138 – meaning that
the combination of x and t (obtained after discarding) was
no longer feasible. However, during the Discarding part of
the algorithm we stored the particular solutions in each iter-
ation. This allows us to find the last admissible (feasible)
solution and find its corresponding objective and a number
of scenarios that we discarded to get it – in this case the
objective value was 1.0291 (seventh column of the table)
with 31 discarded scenarios. An interesting thing to note is
that even for 5,000 scenarios we still get a feasible solution
(with probability of violation 0.0041) and can remove some
scenarios, but for the lower numbers of scenarios even the
‘‘robust’’ solution is not feasible.

When we vary the number of scenarios several interest-
ing phenomena appears. Firstly, when increasing the num-
ber of scenarios S we get a smaller value of the ‘‘robust’’

79402 VOLUME 8, 2020

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

TABLE 3. Comparing the different algorithms. The results with a ∗ are for random scenario removal. Average over 5 runs.

TABLE 4. The ‘‘quality’’ of the solutions produced by the P&D algorithm, n = 30, target ε = 0.01, optimal objective J∗ε = 1.0309. Varying number of
scenarios, single run of the algorithm.

FIGURE 1. The ‘‘quality’’ of the solutions produced by the P&D algorithm, n = 30. Varying number of scenarios, single run of the algorithm.

solution objective (the solution after the Pooling part) and
smaller corresponding probability of violation (both of these
are rather intuitive). Secondly, when we increase the num-
ber of scenarios, the probability of violation of the solution
after discarding bεSc scenarios approaches ε and the num-
ber of removed scenarios for an admissible solution gets
closer to bεSc. Thirdly, and most impressively, the admissible

solution objective gets surprisingly close to the optimal value
of (6).

Another feature of the P&D algorithm is that since we
remove one scenario at a time, we can use the successive
results to construct an approximation of the trade-off between
reliability and optimal objective function value. This is best
shown on Figure 1, where we can see the progression of the

VOLUME 8, 2020 79403

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

FIGURE 2. The ‘‘quality’’ of the solutions produced by the P&D algorithm, n = 30. Varying number of scenarios, single run of the algorithm. Close up on
ε = 0.01.

TABLE 5. Results of the computations, n = 20. Average over 10 runs.

TABLE 6. Results of the computations, n = 30. Average over 10 runs.

P&D algorithm for different number of scenarios – each point
corresponds to a solution with different number of removed
scenarios (typically, more removed scenarios correspond to
points more up and to the right). We included the optimal
trade-off curve obtained by solving the SOCP (6) for different
values of ε (called ‘‘exact solution’’ in the legend of Figure 2).

It must be emphasized that the P&D algorithm does not
in any way incorporate any knowledge about the underlying

distribution of the random variables. All it ‘‘sees’’ are the
realizations in the form of individual scenarios.

The relationship between computational times, number of
scenarios S, number of variables n and chosen probability
of violation ε is further investigated in Tables 5, 6 and 7.
From these results we can see that when we increase ε,
the computation times increase linearly. The same cannot
be said for when increasing S – the number of scenario

79404 VOLUME 8, 2020

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

TABLE 7. Results of the computations, ε = 0.02. Average over 10 runs.

removals and computational times of the pooling steps grow
simultaneously, resulting in a superlinear increase computa-
tional time. Similar (and more impactful) behaviour can be
observed in Table 7, where the number of variables n changes
– this results in a larger number of possible support scenarios
and larger solution times for the successive optimization
problems.

When we increase the number of scenarios S, the resulting
solutions (after discarding bεSc scenarios) get very close to
the true optimum J∗ε , although it was not guaranteed by any
theory. In similar fashion, the probability of violation of the
solutions get very close to ε.

VI. NONLINEAR JOINT CHANCE CONSTRAINED EXAMPLE
In this section we investigate the performance of the algo-
rithm on nonlinear example that appeared in the numerical
sections of the state-of-the-art methods in [30] and [31]. Both
of these methods are scenarios (or sample) based and use the
indicator function approximation (although they approach it
in different ways). In the method described in [30], the con-
straints need to be convex in x and the problem can be a
joint chance constrained one. In the method described in [31],
the constraints do not have to be convex, but must be contin-
uously differentiable in x and the authors deal with a single
chance constraint only. The problem both papers have chosen
for the numerical examination is the following one:

minimize
x≥0

−

n∑
j=1

xj

subject to P{
n∑
j=1

ξ2ijx
2
j −b ≤ 0, i = 1, . . . ,m}

≥ 1− ε, (13)

where ξij, i = 1, . . . ,m and j = 1, . . . , n are independent
and identically distributed standard normal random variables,
b ∈ <. In the case of [31],m = 1 (a single chance constraint).
Optimal solution x∗ of the problem (13), derived in [30],

is:

x∗1 = x∗2 = · · · = x∗n =
[
b/F−1

χ2
n
((1− ε)

1
m)
] 1
2
, (14)

where F−1
χ2
n

is the inverse chi-squared distribution function
with n degrees of freedom.

Because of the nature of the problem (quadratic and
convex), we were able to use the CPLEX solver, and utilize

the problem modification feature again. We start the numer-
ical examination with the same setting as [31]: n = 10,
m = 1, b = 10, ε = 0.05. The parameter γ that controls
the selection of scenarios to discard, was set to 10−3. Using
the formula (14), the optimal objective value of this problem
is −7.390. We generate a number of scenarios S (the values
were log-spaced between 102 and 104) and set the P&D
algorithm to discard bεSc of them. After that we estimate
the reliability (1− ε) of the obtained solution using 105 new
scenarios. The results of the computations are summarized
in Table 8.

TABLE 8. Results of the computation. J∗ε = −7.390. Average values
over 10 runs.

Unsurprisingly, the more scenarios are taken into account,
the better (closer to the theoretical optimum) the result. The
computational time is quite good, considering [31] report
around 500 s as the computational time for their algorithm
(that uses 500 scenarios and reports the optimal objec-
tive value -7.627) and the big-M mixed-integer formula-
tion does not converge in an hour [31] (again, using ‘‘just’’
500 scenarios).

The second setting we investigate is from [30]: n = 10,
m = 10, b = 100, ε = 0.1. The optimal objective value,
using (14), is−20.82. Note that in this setting we are dealing
with a ‘‘proper’’ joint chance constraint problem, with non-
linear (but convex) constraint functions. In the Pooling part
of the algorithm, when we find a scenario with a violated
constraint, we have a choice of either adding all of the m
constraints that correspond to this scenario to the problem,
or to add only the violated ones. In our implementation we
chose the former, since it corresponds more closely to the
description of the P&D algorithm we gave in the previous
sections, although additional computational savings could be
gained by properly implementing the latter approach. The
number of scenarios used in the examination ranged between
102 and 104 and the number of scenarios to discard was set
to bεSc. The results of the computations are listed in Table 9.

VOLUME 8, 2020 79405

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

FIGURE 3. Approximation of trade-off between reliability and optimal objective value. Nonlinear joint chance constrained example.

TABLE 9. Results of the computation. J∗ε = −20.82. Average values over
10 runs.

To compare the results with the ones achieved in [30],
where they used 10,000 scenarios for the computations – the
numbers the authors report are a bit vague:
‘‘Our algorithm typically requires less than 10 iterations to
converge to the optimal value, and each iteration approxi-
mately takes 6 s on average.’’
The main objections being that their algorithm was presented
on two problemswith different dimensions (the one presented
here and a smaller one), and that, at least judging from the
figures (as there is no other way to find the value), their
‘‘optimal solution’’ was around −20.4, which is rather far
from the real one. It is important to emphasize again that the
P&D algorithm does not produce just one solution – as a sort
of a by-product it generates a sequence of decisions, that are
‘‘optimal’’ with respect to an increasing number of discarded
scenarios. When we estimate the reliability of these solu-
tions, we get an approximation of the trade-off between the
reliability level (1-ε) and optimal objective value. Naturally,
this approximation gets better as we increase the number of
scenarios. The approximation of the trade-off for the setting
described above is depicted in Figure 3 – it shows just one
run of the P&D algorithm for different number of scenarios
and the optimal values computed using the formula (14). The

reliability of the solution is estimated using 105 different
scenarios. If we stopped the algorithm with 200 scenarios
once the estimate of the reliability of the solution gets lower
than the desired level 1 − ε and use the previous value,
we would discard only 12 scenarios with the objective value
−20.47 and estimated reliability 0.9143 – this takes around
6 s. Note that the robust solution for this problem, i.e. the
solution for ε = 0, is clearly 0, since each ξ2ij can attain any
nonnegative value.

VII. CONCLUSION
Themain advantage of the P&D algorithm lies in the exploita-
tion of the structure of the scenario design problem, which is
done on two levels:
• The Pooling part of the P&D algorithm utilizes the fact
that the number of support scenarios is usually very
small compared to the number of sampled scenarios.
By iteratively solving much smaller problems we can
get the solution faster and need less memory, than we
would need to solve the scenario design problemwith all
scenarios at once (compare the columns CTC and CTPP
in Table 1).

• The Discarding part of the algorithm fully utilizes the
set I that contains the current support scenarios, to find
the ones that will be discarded (either be the greedy
or the randomized algorithm). Since it only solves
comparatively much smaller problems (and, each sce-
nario removal should terminate in just a few iterations),
it brings additional computational savings (compare the
columns PnoD and P&D in Table 2). The combined
effect of the two parts of the algorithm is best seen

79406 VOLUME 8, 2020

J. Kůdela, P. Popela: Pool & Discard Algorithm for Chance Constrained Optimization Problems

in the difference between columns noPnoD and P&D
in Table 2.

The numerical examinations show that P&D algorithm
provides a powerful framework for handling certain types
of chance constrained optimization problems. When com-
pared with conventional approaches [29] on a linear example
(see Table 3), it was several hundred times more efficient in
the largest instances. On the nonlinear examples, it was on
par with the state-of-the-art methods [31] and [30].

Further investigation are possible – in the Pooling part
of the algorithm for joint chance constrained problems,
the choice between including all constraints for a violated
scenario, or just the ones that are violated, could bring addi-
tional computational savings. Also, the use of P&D (or just
the use of Pooling) could be applied in other classes of
convex optimization problems (e.i., semi-definite problems in
control) that need to be set in chance constrained (or robust)
setting and require the consideration of large number of
scenarios.

REFERENCES
[1] J. Kudela, ‘‘Advanced decomposition methods in stochastic convex opti-

mization,’’ Ph.D. dissertation, Inst. Math., Brno Univ. Technol., Brno,
Czechia, 2019.

[2] M. C. Campi and S. Garatti, ‘‘A Sampling-and-Discarding approach to
chance-constrained optimization: Feasibility and optimality,’’ J. Optim.
Theory Appl., vol. 148, no. 2, pp. 257–280, Feb. 2011.

[3] A. Charnes, W. W. Cooper, and G. H. Symonds, ‘‘Cost horizons and
certainty equivalents: An approach to stochastic programming of heating
oil,’’ Manage. Sci., vol. 4, no. 3, pp. 235–263, Apr. 1958.

[4] R. Jagannathan, ‘‘Chance-constrained programming with joint con-
straints,’’ Oper. Res., vol. 22, no. 2, pp. 358–372, Apr. 1974.

[5] A. Prekopa, ‘‘On probabilistic constrained programming,’’ inProc. Prince-
ton Symp. Math. Program., 1970, pp. 1–8.

[6] A. Prékopa, ‘‘Contributions to the theory of stochastic programming,’’
Math. Program., vol. 4, no. 1, pp. 202–221, Dec. 1973.

[7] A. Prékopa, Stochastic Programming, 1st ed. Norwell, MA, USA: Kluwer,
1995.

[8] A. Ruszczynski and A. Shapiro, Stochastic Programming (Handbooks in
Operations Research and Management Science), 1st ed. Amsterdam, The
Netherlands: Elsevier, 2003, vol. 10.

[9] R. Henrion and C. Strugarek, ‘‘Convexity of chance constraints with
independent random variables,’’ Comput. Optim. Appl., vol. 41, no. 2,
pp. 263–276, Nov. 2008.

[10] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization, 1st ed.
Princeton, NJ, USA: Princeton Univ. Press, 2009.

[11] A. Nemirovski, ‘‘On safe tractable approximations of chance constraints,’’
Eur. J. Oper. Res., vol. 219, no. 3, pp. 707–718, Jun. 2012.

[12] A. Nemirovski and A. Shapiro, ‘‘Convex approximations of chance con-
strained programs,’’ SIAM J. Optim., vol. 17, no. 4, pp. 969–996, Jan. 2007.

[13] R. Henrion and W. Römisch, ‘‘Metric regularity and quantitative stability
in stochastic programs with probabilistic constraints,’’ Math. Program.,
vol. 84, no. 1, pp. 55–88, Jan. 1999.

[14] R. Henrion and W. Römisch, ‘‘HÃlder and Lipschitz stability of solution
sets in programs with probabilistic constraints,’’Math. Program., vol. 100,
no. 3, pp. 589–611, 2004.

[15] B. R. Barmish and P. S. Shcherbakov, ‘‘On avoiding vertexization of
robustness problems: The approximate feasibility concept,’’ IEEE Trans.
Autom. Control, vol. 47, no. 5, pp. 819–824, May 2002.

[16] S. P. Boyd and L. Vandenberghe, Convex Optimization, 1st ed. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[17] G. Calafiore and M. C. Campi, ‘‘Uncertain convex programs: Random-
ized solutions and confidence levels,’’ Math. Program., vol. 102, no. 1,
pp. 25–46, Jan. 2005.

[18] M. C. Campi and S. Garatti, ‘‘The exact feasibility of randomized solu-
tions of uncertain convex programs,’’ SIAM J. Optim., vol. 19, no. 3,
pp. 1211–1230, Jan. 2008.

[19] V. L. Levin, ‘‘Application of E. Helly’s theorem to convex programming,
problems of best approximation and related questions,’’ Math. USSR-
Sbornik, vol. 8, no. 2, pp. 235–247, Feb. 1969.

[20] I. Dunning, J. Huchette, and M. Lubin, ‘‘JuMP: A modeling language
for mathematical optimization,’’ SIAM Rev., vol. 59, no. 2, pp. 295–320,
Jan. 2017.

[21] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, ‘‘Julia: A fresh
approach to numerical computing,’’ SIAM Rev., vol. 59, no. 1, pp. 65–98,
Jan. 2017.

[22] IBM ILOG CPLEX Optimization Studio: CPLEX User’s Manual.
Version 12, Release 7. IBM Corp, New York, NY, USA, 2016.
[Online]. Available: https://www.ibm.com/support/knowledgecenter/
SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf

[23] C. M. Lagoa, X. Li, and M. Sznaier, ‘‘Probabilistically constrained linear
programs and risk-adjusted controller design,’’ SIAM J. Optim., vol. 15,
no. 3, pp. 938–951, Jan. 2005.

[24] J. Luedtke and S. Ahmed, ‘‘A sample approximation approach for opti-
mization with probabilistic constraints,’’ SIAM J. Optim., vol. 19, no. 2,
pp. 674–699, Jan. 2008.

[25] J. Luedtke, S. Ahmed, and G. Nemhauser, ‘‘An integer programming
approach for linear programs with probabilistic constraints,’’ Integer Pro-
gram. Combinat. Optim., pp. 410–423, 2010.

[26] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro, ‘‘Sample average approxi-
mation method for chance constrained programming: Theory and applica-
tions,’’ J. Optim. Theory Appl., vol. 142, no. 2, pp. 399–416, Aug. 2009.

[27] Y. Song, J. R. Luedtke, and S. Käkyavuz, ‘‘Chance-constrained binary
packing problems,’’ INFORMS J. Comput., vol. 26, no. 4, pp. 735–747,
Nov. 2014.

[28] S. Ahmed, J. Luedtke, Y. Song, and W. Xie, ‘‘Nonanticipative dual-
ity, relaxations, and formulations for chance-constrained stochastic pro-
grams,’’ Math. Program., vol. 162, nos. 1–2, pp. 51–81, Mar. 2017.

[29] B. K. Pagnoncelli, D. Reich, and M. C. Campi, ‘‘Risk-return trade-off with
the scenario approach in practice: A case study in portfolio selection,’’
J. Optim. Theory Appl., vol. 155, no. 2, pp. 707–722, Nov. 2012.

[30] F. Shan, L. Zhang, and X. Xiao, ‘‘A smoothing function approach to joint
chance-constrained programs,’’ J. Optim. Theory Appl., vol. 163, no. 1,
pp. 181–199, Oct. 2014.

[31] L. Adam and M. Branda, ‘‘Nonlinear chance constrained problems: Opti-
mality conditions, regularization and solvers,’’ J. Optim. Theory Appl.,
vol. 170, no. 2, pp. 419–436, Aug. 2016.

JAKUB KŮDELA received the M.S. degree in
mathematical engineering from the Brno Univer-
sity of Technology, in 2014, and the Ph.D. degree
in applied mathematics from the Brno University
of Technology in 2019.

Since 2018, he has been a Research Assistant
with the Institute of Automation and Computer
Science, Brno University of Technology. His
research interests include the development of
computational methods for various optimization

problems and engineering applications.

PAVEL POPELA received the Ph.D. degree in
econometrics from Charles University Prague,
in 1998. Since 1986, he has been as a Senior
Lecturer and a Researcher with the Brno Univer-
sity of Technology. His research interests include
stochastic programming models and methods.

VOLUME 8, 2020 79407

	INTRODUCTION
	SAMPLE COUNTERPART APPROACH
	POOLING PART OF THE POOL & DISCARD ALGORITHM
	NUMERICAL EXAMINATION – ASSET ALLOCATION PROBLEM

	CONSTRAINT REMOVAL ALGORITHM
	POOL & DISCARD ALGORITHM
	NUMERICAL EXAMINATION – ASSET ALLOCATION PROBLEM CONTINUED

	NONLINEAR JOINT CHANCE CONSTRAINED EXAMPLE
	CONCLUSION
	REFERENCES
	Biographies
	JAKUB KUDELA
	PAVEL POPELA

