
symmetryS S

Article

From Probabilistic to Quantile-Oriented Sensitivity
Analysis: New Indices of Design Quantiles
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Abstract: In structural reliability analysis, sensitivity analysis (SA) can be used to measure how an
input variable influences the failure probability Pf of a structure. Although the reliability is usually
expressed via Pf, Eurocode building design standards assess the reliability using design quantiles
of resistance and load. The presented case study showed that quantile-oriented SA can provide
the same sensitivity ranking as Pf-oriented SA or local SA based on Pf derivatives. The first two
SAs are global, so the input variables are ranked based on total sensitivity indices subordinated to
contrasts. The presented studies were performed for Pf ranging from 9.35 × 10−8 to 1–1.51 × 10−8.
The use of quantile-oriented global SA can be significant in engineering tasks, especially for very
small Pf. The proposed concept provided an opportunity to go much further. Left-right symmetry of
contrast functions and sensitivity indices were observed. The article presents a new view of contrasts
associated with quantiles as the distance between the average value of the population before and
after the quantile. This distance has symmetric hyperbola asymptotes for small and large quantiles of
any probability distribution. Following this idea, new quantile-oriented sensitivity indices based on
measuring the distance between a quantile and the average value of the model output are formulated
in this article.

Keywords: sensitivity analysis; reliability; failure probability; quantile; civil engineering; limit states;
mathematical model; uncertainty

1. Introduction

The reliability of building structures is influenced by inherent uncertainties associated with
the material properties, geometry, and structural load variables to which the reliability measure is
sensitive [1]. A common measure of reliability is the failure probability Pf, which is estimated using
stochastic models [2]. Failure occurs when the load action is greater than the resistance. In this respect,
the key issue is the identification of the significance of input random variables with regard to Pf.

Reliability-oriented sensitivity analysis (ROSA) consists of computing the sensitivity ranking of
input variables ranked according to the amount of influence each has on Pf. It is argued that sensitivity
analysis (SA) should be used “in tandem” with uncertainty analysis and the latter should precede the
former in practical applications [3]. This can encumber the entire computational process, especially in
cases of very small Pf.

Alternatively, the assessment of reliability can be performed by comparing the design quantiles
of load and resistance [4,5]. A structure is reliable if the design resistance is greater than the design
load action. One might ask, if the reliability assessment based on Pf can be replaced by a reliability
assessment based on design quantiles, can the SA of Pf be replaced by the SA of design quantiles?
For this purpose, new types of sensitivity indices oriented to both design quantiles and Pf can be
investigated in engineering applications.
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In civil engineering, classical Sobol SA (SSA) [6,7] is applied in the research of structural
responses [8–16] or responses in geotechnical applications [17,18]. SSA is attractive for a number of
reasons, e.g., it measures sensitivity across the whole input space (i.e., it is a global method), and it
is capable of dealing with non-linear responses, as well as measuring the effect of interactions in
non-additive models. However, SSA is based on the decomposition of variance of the model output,
without a direct reference (only with partial empathy) to reliability [19].

Sobol indices in the context of ROSA can be derived as in [20], by introducing the binary random
variable 1 (failure) or 0 (success) as the quantity of interest [21], where the basis of this transformation
is the importance measure between Pf and conditional Pf defined in [22]. Indices can be derived in
different variants, depending on whether the square of the importance measure [20] or the absolute
value of the importance measure [23,24] is considered, but only the variant [20] after Sobol is based on
decomposition, with the sum of all indices equal to one.

Both classical Sobol indices [6,7] and Sobol indices in the context of ROSA [20] are a subset of
sensitivity indices subordinated to contrasts [25] (in short, Fort contrast indices). The general idea of
Fort contrast indices [25] is that the importance of an input variable may vary, depending on what
the quantity of interest is. Fort contrast indices define different types of indices based on a common
platform, thus providing new perspectives on solving reliability tasks of different types.

It can be shown that Sobol indices in the context of ROSA [20] are Fort contrast indices [25]
associated with Pf (referred to as contrast Pf indices in this article). Furthermore, it can be shown
that the classical Sobol indices [6,7] are Fort contrast indices [25] associated with variance. In general,
the type of Fort contrast index [25] varies, according to the type of contrast used. Contrast functions
permit the estimation of various parameters associated with a probability distribution. By changing the
contrast, SA can change its key quantity of interest. The contrast may or may not be reliability-oriented.

Fort contrast indices can be considered as global since they are based on changes of the key
quantity of interest (Pf, α-quantile, variance, etc.) with regard to the variability of the inputs over their
entire distribution ranges and they provide the interaction effect between different input variables.
On the other hand, contrast functions account for the variability of the inputs regionally, according to
the type of key quantity of interest, e.g., changes around the mean value are important for variance,
changes around the quantile are important for the quantile, etc.

Standard [4] establishes the basis that sets out the way in which Eurocodes can be used for
structural design. Although the concept of the probability-based assessment of structural reliability
has been known about for a long time [5], new types of quantile-oriented SA have not yet been
examined, in the context of structural reliability, at an appropriate depth. It can be expected that
many of the reliability principles applied in [4] can be applied symmetrically in ROSA using new
types of sensitivity indices to find new relationships. The introduced ROSA may be connected to
decision-oriented methods [26] in areas of civil engineering, where decision-making under uncertainty
is presently uncommon.

2. Probability-Based Assessment of Structural Reliability

Let the reliability of building structures be a one-dimensional random variable Z:

Z = g(X) = g(X1, X2, . . . , XM), (1)

where X1, X2, . . . , XM are random variables employed for its computation. The classical theory of
structural reliability [27] expresses Equation (1) as a limit state using two statistically independent
random variables, the load effect (action F), and the load-carrying capacity of the structure (resistance R).

Z = R− F ≥ 0 (2)



Symmetry 2020, 12, 1720 3 of 22

The variable that unambiguously quantifies reliability or unreliability is the probability that
inequality (2) will not be satisfied. If Z is normally distributed, reliability index β is given as

β =
µZ

σZ
, (3)

where µZ is the mean value of Z and σZ is its standard deviation. By modifying Equation (3), we can
express µZ −β·σZ = 0. The failure probability Pf can then be expressed as

Pf = P(Z < 0) = P(Z < µZ − β · σZ) = ΦU(−β), (4)

where ΦU(·) is the cumulative distribution function of the normalized Gaussian probability density
function (pdf). Reliability is defined as Ps = (1 − Pf). For other distributions of Z, β is merely a
conventional measure of reliability. Equation (3) can be modified for normally distributed Z, F,
and R as

β =
µZ

σZ
=

µR − µF√
σ2

R + σ2
F

=
µR − µF

σ2
R√

σ2
R+σ

2
F

+
σ2

F√
σ2

R+σ
2
F

=
µR − µF

αR · σR + αF · σF
, (5)

where αF and αR are values of the first-order reliability method (FORM) sensitivity factors.

αR =
σR√

σ2
R + σ2

F

, αF =
σF√

σ2
R + σ2

F

,with |α| ≤ 1 (6)

It can be noted that Sobol’s first-order indices are equal to the squares of αF and αR: SF = α2
F

and SR = α2
R, respectively [19]. By applying αF and αR according to Equation (6), Equation (5) can be

written with formally separated random variables as

µF + αF · β · σF = µR − αR · β · σR. (7)

Equation (7) is a function of the four statistical characteristics of µF, σF, µR, and σR, from which β,
αF, and αR are computed. The left side in Equation (7) is the design load Fd (upper quantile) and the
right side is the design resistance Rd (lower quantile).

Standard [4] verifies the reliability by comparing the obtained reliability index β with the target
reliability index βd, according to the equation β ≥ βd, which transforms Equation (7) into the design
condition of reliability:

µF + αF · βd · σF ≤ µR − αR · βd · σR, (8)

where αF and αR may be considered as 0.7 and 0.8, respectively [4].

3. Sensitivity Analysis

In structural reliability, the key quantities of interest are the failure probability Pf and the design
quantiles Fd and Rd. In order to analyse the reliability, ROSA must be focused on the same key quantity
of interest: Pf, Fd, and Rd. Local and global types of ROSA are applied in this article.

3.1. Local ROSA

The partial derivative δPf/δµxi with respect to the mean value µ of the input variable Xi presents a
classical measure of change in Pf (see, e.g., [28–32]). The derivative-based approach has the advantage
of being very efficient in terms of the computation time. There are two main disadvantages of using
the derivative as an indicator of sensitivity.

The first disadvantage is that the derivative measures only change at the point (local SA) where it
is numerically realized. If the algorithms on the computer are of the “black-box” type, then only a
numerical evaluation of the derivative is possible. The second disadvantage is that a large absolute
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value of the derivative does not necessarily mean a large influence of the input on the output if the
distribution range of the input variable is small compared to other variables.

A better proportional degree of sensitivity is obtained when the derivative is multiplied by the
standard deviation σXi of the input variable.

Di =
∂P f

∂µXi

σXi (9)

The advantage of using Equation (9) is the inclusion of σXi and the possibility of introducing a
correlation between the input random variables. A limitation of the derivative-based approach occurs
when the analysed variable is of an unknown linearity.

Regarding quantiles, the use of partial derivatives as an indicator of sensitivity analogously
to Equation (9) is not offered. For example, for the additive model X1 + X2, the derivative of the
quantile with respect to the mean value is always equal to one. Conversely, in non-additive models,
the derivative of the quantile with respect to the mean value may give very high or low values, and thus,
the derivative of the quantile does not appear to be a useful measure of sensitivity.

3.2. Global ROSA

Global ROSA can be computed using Fort contrast indices [25], which implicitly depend on
parameters associated with the probability distribution. In engineering applications, it is primarily the
probability Pf [33,34], the design quantiles Fd and Rd [35], or the median [36].

Sensitivity indices subordinated to contrasts associated with probability (in short, contrast Pf
indices) are based on quadratic-type contrast functions [25]. However, contrast Pf indices can be
defined more easily based on the probability of failure and the conditional probabilities of failure [19].
A formula that does not require the evaluation of contrast functions can be used for practical
computation. For practical use, the first-order probability contrast index Ci can be rewritten in the
form of [19]

Ci =
P f

(
1− P f

)
− E

((
P f |Xi

)(
1− P f |Xi

))
P f

(
1− P f

) . (10)

The sensitivity index Ci measures, on average, the effect of fixing Xi on Pf, where Pf = P(Z < 0)
is the failure probability and Pf|Xi = P((Z|Xi) < 0) is the conditional failure probability. The mean
value E[·] is taken over Xi. In Equation (10), the term Pf(1 − Pf) is derived for probability estimator
θ* = Argmin ψ(θ) = Pf from the minimum of contrast min

θ
ψ(θ):

min
θ
ψ(θ) = min

θ
E(ψ(Z,θ)) = min

θ
E(1Z<0 − θ)

2 = V(1Z<0) = P f
(
1− P f

)
, (11)

where V (1Z<0) is the variance in the case where there are only two outcomes of 0 and 1, with one
having a probability of Pf. The largest variance occurs if Pf = 0.5, with each outcome given an equal
chance. The contrast function ψ(θ) = E(1Z<0 − θ)2 vs. θ is convex and symmetrical in the interval
across the vertical axis θ*. The plot of Pf(1 − Pf) vs. Pf is a concave function with left-right symmetry.
The contrast for conditional probability is expressed in a similar manner as (Pf|Xi)(1 − Pf|Xi).

The second-order sensitivity index Cij is computed similarly:

Ci j =
P f

(
1− P f

)
− E

((
P f

∣∣∣Xi, X j
)(

1− P f
∣∣∣Xi, X j

))
P f

(
1− P f

) −Ci −C j, (12)
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where Pf|Xi,Xj = P((Z|Xi,Xj) < 0) is the conditional failure probability for fixed Xi and Xj. E[·] is taken
over Xi and Xj. The index Cij measures the joint effect of Xi and Xj on Pf minus the first-order effects of
the same factors. The third-order sensitivity index Cijk is computed similarly:

Ci jk =
P f

(
1− P f

)
− E

((
P f

∣∣∣Xi, X j, Xk
)(

1− P f
∣∣∣Xi, X j, Xk

))
P f

(
1− P f

) −Ci −C j −Ck −Ci j −Cik −C jk, (13)

where Pf|Xi,Xj,Xk = P((Z|Xi,Xj,Xk) < 0) is the conditional failure probability for fixed triples Xi, Xj,
and Xk. The other indices are computed analogously. All input random variables are considered
statistically independent. The sum of all indices must be equal to one:∑

i

Ci +
∑

i

∑
j>i

Ci j +
∑

i

∑
j>i

∑
k> j

Ci jk + . . .+ C123...M = 1. (14)

Contrast Pf indices can also be derived by rewriting Sobol indices in the context of ROSA [21].
Estimating all sensitivity indices in Equation (14) can be highly computationally challenging and
difficult to evaluate. For a large number of input variables, it may be better to analyse the effects of
input variables using the total effect index (in short, the total index) CTi.

CTi = 1−
P f

(
1− P f

)
− E

((
P f |X∼i

)(
1− P f |X∼i

))
P f

(
1− P f

) (15)

Pf|X~i = P((Z|X~i) < 0) is the conditional failure probability evaluated for a input random variable
Xi and fixed variables (X1, X2, . . . , Xi–1, Xi+1, . . . , XM). The total index CTi measures the contribution
of input variable Xi, including all of the effects caused by its interactions, of any order, with any other
input variable. The total index CTi can also be computed if all sensitivity indices in Equation (14) are
computed. For example, CT1 for M = 3 can be written as CT1 = C1 + C12 + C13 + C123.

The structural reliability can also be assessed using design quantiles (see, e.g., [37]). Sensitivity
indices subordinated to contrasts associated with the α-quantile [25] (in short, contrast Q indices) are
based on contrast functions of the linear type. The contrast function ψ associated with the α-quantile
can be written with parameter θ as [25]

ψ(θ) = E(ψ(Y,θ)) = E((Y − θ)(α− 1Y<θ)), (16)

where Y is scalar (here, F or R). Equation (16) reaches the minimum if the argument θ is the α-quantile
estimator θ* (here, Fd or Rd). The plot of contrast function ψ(θ) vs. θ is convex and, with some
exceptions, asymmetric.

Equation (16) is not quadratic like the contrast associated with Pf, because the distance (Y − θ) is
considered linear. The first-order contrast Q index is defined, on the basis of Equation (16), as

Qi =
min
θ
ψ(θ) − E

(
minE
θ

(ψ(Y,θ)|Xi )
)

min
θ
ψ(θ)

, (17)

where the first term in the numerator (and denominator) is the contrast computed for the estimator of
α-quantile θ* = Argmin ψ(θ). The second term in the numerator is computed analogously, but with
the provision that Xi is fixed. E[·] is taken over Xi.
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The second-order α-quantile contrast index Qij is computed analogously, but with the fixing of
pairs Xi and Xj:

Qi j =
min
θ
ψ(θ) − E

(
minE
θ

(
ψ(Y,θ)

∣∣∣Xi, X j
))

min
θ
ψ(θ)

−Qi −Q j. (18)

The third-order sensitivity index Qijk is computed similarly:

Qi jk =
min
θ
ψ(θ) − E

(
minE
θ

(
ψ(Y,θ)

∣∣∣Xi, X j, Xk
))

min
θ
ψ(θ)

−Qi −Q j −Qk −Qi j −Qik −Q jk. (19)

All input random variables are considered statistically independent. The sum of all indices must
be equal to one: ∑

i

Qi +
∑

i

∑
j>i

Qi j +
∑

i

∑
j>i

∑
k> j

Qi jk + . . .+ Q123...M = 1. (20)

The total index QTi can be written analogously to Equation (15) as:

QTi = 1−
min
θ
ψ(θ) − E

(
minE
θ

(ψ(Y,θ)|X∼i )
)

min
θ
ψ(θ)

, (21)

where the second term in the numerator contains the conditional contrast evaluated for input random
variable Xi and fixed variables (X1, X2, . . . , Xi–1, Xi+1, . . . , XM). Equation (21) is analogous to
Equation (15), but for the quantile.

3.3. Specific Properties of Contrasts Associated with Quantiles

Can contrast indices Q be estimated more easily, without having to evaluate the contrast function
from Equation (16)? Let us study Equation (16) using a simple case study, where Y has a Gaussian pdf:

φ(y, µ, σ) =
1

σ
√

2π
e−

(y−µ)2

2σ . (22)

Figure 1 depicts an example of the evaluation of the contrast function for the 0.4-quantile of the
normalized Gaussian pdf—Y ~ N(0, 1)—where the 0.4-quantile is θ* ≈ −0.253. The estimation of
contrast functionψ(θ*) is based on the dichotomy of the pdf into two parts, separated by the α-quantile.
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Figure 1. Example of the evaluation of Equation (16) for the 0.4-quantile of the Gaussian pdf.

The value of the contrast function in Equation (16) is ψ(−0.253) = E((Y − (−0.253))(0.4−1Y<−0.253))
= 0.386, where the weight 0.6 favors the minority population over the 0.4-quantile and the weight
0.4 puts the majority population after the 0.4-quantile at a disadvantage. In this specific example, it can
be observed that the function ψ(θ*) vs. θ* has an N(0, 1) course and therefore, ψ(−0.253) = φ(−0.253,
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0, 1) = 0.386. In the case of the general Gaussian pdf Y ~ N(µ, σ2), function ψ(θ*) can be written in a
specific form:

ψ(θ∗) = σ2
·φ(θ∗, µ, σ) =

σ
√

2π
e−

(θ∗−µ)2

2σ . (23)

Equation (23) can only be used for estimates of contrast Q indices if Y has a Gaussian pdf;
otherwise, Equation (23) has the form of an approximate relation. Another form of the sensitivity
indices in Equation (20) derived from Equation (23) would be very practical; however, the conditional
Gaussian pdf of Y, Gaussian pdf of Y|Xi, etc., makes the use of Equation (23) problematic in black box
tasks, where skewness and kurtosis can have non-Gaussian values.

Due to the left-right symmetry of the Gaussian pdf in Figure 1, the same contrast function value
can be obtained for the 0.6-quantile (see Figure 2).
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The following approach is more powerful. The value of contrast function ψ(θ*) can be expressed
using the centers of gravity of the green and yellow areas (see Figure 3).
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In the specific case of Y ~ N(0, 1), the dependence between l and θ* is a hyperbola l2 − (θ*)2
≈ 1.62

with asymptotes l = ±θ* (see Figure 4). In a more general case of Y ~ N(µ, σ2), the dependence between
l and θ* is a hyperbola l2 − (θ* − µ)2

≈ σ2
·1.62 with asymptotes l = ±(θ* − µ). The intersection of

two asymptotes is at the center of symmetry of the hyperbola, which is the mean value µ = E(Y).
The skewness and kurtosis (departure from the Gaussian pdf) lead to asymmetric and symmetric
deviations from this hyperbola, but asymptotes of such a curve remain l = ±(θ* − µ). Figure 4 illustrates
an example with the so-called Hermite pdf with a mean value of 0, standard deviation of 1, skewness of
0.9, and kurtosis of 2.9. Although deviations from the hyperbola are significant around the mean value,
the dependence l vs. θ* approaches the asymptotes l = ±(θ* − µ) in the regions of design quantiles
(see Figure 4b). The observation can be generalized to any pdf or histogram of Y.
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Figure 4. Plot of parameter l and function ψ(θ*) vs. the α-quantile θ*: (a) The Gaussian and
non-Gaussian pdf; (b) The same asymptotes of hyperbolic and non-hyperbolic function.

For any pdf of f (y) of Y, an alternative form of the contrast function to Equation (16) can be derived
in a new form:

ψ(θ∗) = l · α · (1− α), (24)

where l is the distance of the centers of gravity of the two areas before and after the α-quantile (see the
example in Figure 3). Sensitivity indices reflect change around the α-quantile estimator θ* using l
while α is constant. Equation (24) is general for any pdf and offers new possibilities for evaluating
contrast via l.

l =

∞∫
θ∗

y · f (y)dy−

θ∗∫
−∞

y · f (y)dy (25)

In general, SSA is relevant to the mean value of Y, while the SA of the quantile (QSA) is relevant
to the α-quantile of Y. However, in many cases, there is a strong similarity between the conclusions of
QSA and SSA if all or at least the total sensitivity indices are examined. It can be shown in a simple
example of Y = X1 + X2 that corr(Q(Y|Xi), E(Y|Xi)) ≈ 1, where Q(Y|Xi) is the conditional α-quantile
and E(Y|Xi) is the conditional mean value. Changing Xi causes synchronous changes in the α-quantile
Q(Y|Xi) and mean value E(Y|Xi).

Although contrasts are of a different type, similarities between the results of QSA and SSA
have been observed in the task of SA of the resistance of a building load-bearing element [35].
Other numerical illustrations of contrast Q indices are presented in [38,39].

4. Case Study of the Ultimate Limit State

Probability-based reliability analysis considers a stochastic model of an ultimate limit state of a
bar under tension (see Figure 5a). The structural member is safe when the sum of loads is less than the
relevant resistance.
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Figure 5. Static model: (a) Bar under tension and (b) probability density functions of R, F1, and F2 for
µp = 0.

The bar is loaded by two statistically independent forces F1 and F2, both of which have a Gaussian
pdf (see Figure 5b and Table 1). Parameter µP changes the mean value of the axial load of the bar,
while the standard deviation of F is constant. The resulting force F = F1 + F2 has a Gaussian pdf with a
mean value of µF = µF1 + µF2 = 309.56 kN + µP and standard deviation σF = (σ2

F1
+ σ2

F2
)0.5 = 33.94 kN.

Table 1. The input random variables on the load action side.

Characteristic Index Symbol Mean Value
µ (kN) Standard Deviation σ

Load Action 1 F1 241.4 + 0.5·µP 24.14 kN
Load Action 2 F2 68.16 + 0.5·µP 23.86 kN

The stochastic computational model for the evaluation of the static resistance R is a function of
three statistically independent random variables: The yield strength fy; plate thickness t; and plate
width b [40]:

R = fy · t · b, (26)

where t·b is the cross-sectional area. The resistance R is a function of material and geometric
characteristics fy, t, and b, whose random variabilities are considered according to the results of
experimental research [41,42]. Random variables fy, t, and b are statistically independent and are
introduced with Gaussian pdfs (see Table 2).

Table 2. The input random variables on the resistance side.

Characteristic Index Symbol Mean Value µ Standard Deviation σ

Yield strength 3 fy 412.68 MPa 27.941 MPa
Thickness 4 t 10 mm 0.46 mm

Width 5 b 100 mm 1 mm

The arithmetic mean µR, standard deviation σR, and standard skewness aR of resistance R can be
expressed using equations (see [40]), based on arithmetic means µfy, µt, and µb and standard deviations
σfy, σt, and σb presented in Table 2.
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The mean value of R can be written as

µR = µ f y · µt · µb. (27)

The standard deviation of R can be written as

σR =

√
µ2

f y ·
(
µ2

t · σ
2
b + σ2

t ·
(
µ2

b + σ2
b

))
+ µ2

t · σ
2
f y ·

(
µ2

b + σ2
b

)
+ σ2

f y · σ
2
t ·

(
µ2

b + σ2
b

)
. (28)

The standard skewness of R can be written as

aR = 6 ·
µR

σ3
R

·

(
µ2

f y · σ
2
t · σ

2
b + σ2

f y · µ
2
t · σ

2
b + σ2

f y · σ
2
t · µ

2
b + 4 · σ2

f y · σ
2
t · σ

2
b

)
. (29)

For example, for input random variables from Table 2, we can write µR = 412.68 kN, σR = 34.057 kN,
and aR = 0.111.

Goodness-of-fit and comparison tests [40] have shown that probabilities down to 1 × 10−19 are
estimated relatively accurately using the approximation of probability density R by a three-parameter
lognormal pdf with parameters µR, σR, and aR. This approximation is also suitable when one variable
in Equation (26) is fixed. Fixing two variables leads to R with a Gaussian pdf with parameters µR
and σR.

In SA, the failure probability P f = P(Z < 0) = P(R < F) can be computed using distributions
F (Gaussian) and R (three-parameter lognormal or Gaussian) as the integral:

P f =

∞∫
−∞

ΦR(y)ϕF(y)dy, (30)

where ϕF(y) is the pdf of load action, ΦR(y) is the distribution function of resistance, and y denotes
a general point of the force (the observed variable) with the unit of Newton. The integration in
Equation (30) is performed in the case study numerically using Simpson’s rule, with more than ten
thousand integration steps over the interval [µZ − 10σZ, µZ + 10σZ].

5. Computation of Sensitivity Indices

The aim of SA in the presented case study is to assess the influence of input quantities F1, F2, fy, t,
and b on the failure probability Pf or design quantiles Fd and Rd.

The numerical parameter of the case study is µP, which changes with the step ∆µP = 10 kN.
Although µP is the computation parameter, sensitivity indices are preferably plotted, depending on
Pf, because Pf has a clear relevance to reliability. The transformation of µP to Pf is expressed using
Equation (30) (see Figure 6a).
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In practice, the procedure is as follows: The value of µP is selected, the sensitivity indices and Pf
are computed, and the indices vs. Pf are then plotted. If the design quantiles are the key quantities
of interest, then the dependency between Pf and the probabilities of the design quantiles can be
considered, according to Figure 6b.

In Figure 6b, the probability of design quantiles Fd and Rd is considered under the condition Fd = Rd
in Equation (7) and σF = σR. Perfect biaxial symmetry of the curves in Figure 6b is only observed
for perfect σF = σR; otherwise, the curve of the variable with the smaller standard deviation has a
steeper slope. In the case study, for β = 3.8 (Pf = 7.2 × 10−5), P(F < Fd) = 0.9963, and P(R < Rd) = 0.0036,
where Fd = Rd = 321.01 kN (µF = 229.97 kN, µR = 412.68 kN, and σF = 33.94 kN ≈ σR = 34.057 kN).

5.1. Local ROSA—Sensitivity Indices Based on Derivatives

Figure 7a shows the partial derivatives of Pf with respect to the mean values µxi. Although the
partial derivative of Pf with respect to µt has the greatest value, t is not the most influential input
variable in terms of the absolute change of Pf due to the uncertainty (variance) of the input variable
t. A better measure of sensitivity is obtained by multiplying the partial derivatives by the standard
deviations of the respective input variables (see Figure 7b). Ranking according to Di gives the sensitivity
ranking of input variables as fy, F1, F2, t, and b.
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The plots in Figure 7 are approximately symmetrical about the vertical axis, but not perfectly
symmetrical. The small amount of asymmetry is due to the small skewness of resistance R in Equation
(1) (see Equation (29)). Perfect symmetry of the curves would occur if F and R had zero skewness
(symmetric pdfs of both F and R).

A small amount of asymmetry is graphically visible upon mirroring the solid curves to the
dashed curves (see Figure 8). The dashed curves are artificial, showing the left-right asymmetry of the
solid curves.Symmetry 2020, 12, x FOR PEER REVIEW 11 of 20 
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In Figure 8a, the dashed curves are lower than the solid curves on the left side of the graph. On the
right side of the graph, the opposite is true. The same is observed in Figure 8b. A small amount of
asymmetry occurs due to the small positive skewness of R. If R had a (theoretically) negative skewness,
then the dashed curves would be higher than the solid curves on the left sides of each graph, and the
opposite would be true on the right sides of the graphs.

5.2. Global ROSA—Contrast Pf Indices

For the case study, contrast Pf indices are depicted in Figures 9–13. All contrast Pf indices were
computed numerically using Equation (30) for the interval Pf ∈ [9.35 × 10−8, 1–1.51 × 10−8].
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indices Di. For example, for Pf = 0.3, indices C1, C2, and C12 (load action) have slightly smaller values
and indices C3, C4, C5, C34, C35, C45, and C345 (resistance) have slightly higher values, compared to the
perfect symmetry. For the other indices, there is a mix of both influences.

In the interval Pf ∈[0.1, 0.9], the first-, fourth-, and fifth-order indices generally have higher values
than the second- and third-order indices.

In civil engineering, the target values of Pf for reliability classes RC1, RC2, and RC3 taken from [4]
are 8.5 × 10−6, 7.2 × 10−5, and 4.8 × 10−4 (also see [19]). Figure 11b shows the contribution of all 31
indices for target value Pf = 7.2× 10−5. First-order indices are represented minimally, where

∑
Si = 0.017.

On the contrary, the representation of higher-order indices is significant, especially those related to fy,
F1, and F2 (see Figure 11b).

In Figure 11, fy occurs in all significant parts of the graph, but the same is true for F1 or F2.
Determining the order of importance of input variables using 31 indices can be difficult. The use
of total indices CTi is more practical. Input variables are ranked based on CTi as fy, F1, F2, t, and b
(see Figure 12). This is the same ranking as was found using index Di (Figure 7b).

Figure 12b shows the total sensitivity indices for small Pf, which are relevant for the design of
building structures. Figure 13 shows the local extremes of some sensitivity indices in the interval of
small Pf. Interestingly, the sensitivity indices of small Pf have plots that are not obvious (cannot be
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extrapolated) from the plots in the interval Pf ∈ [0.1, 0.9]. Similar local extremes as in Figure 13 were
not observed for Di in Figure 7.

5.3. Global ROSA—Contrast Q Indices

In the case study, contrast Q indices were estimated using the Latin Hypercube Sampling (LHS)
method [43,44], according to the procedure in [35]. Indices Qi were estimated from Equation (17) using
double-nested-loop computation. In the outer loop, E[·] was computed using one thousand runs of the
LHS method. In the nested loop, conditional contrast values were computed using four million runs
of the LHS method. The unconditional contrast value in the denominator was computed using four
million runs of the LHS method. Higher-order indices were estimated similarly.

The target value Pf = 7.2 × 10−5 is considered according to [4]. In Equation (7), the design value
of resistance Rd is considered as the 0.0036-quantile and the design load value Fd is considered as
the 0.9963-quantile (see Figure 6). Sensitivity analysis is performed for R with a three-parameter
lognormal pdf when no or one variable in Equation (26) is fixed; otherwise, a Gaussian pdf is used in
the stochastic model.

It can be noted that standard design quantiles Fd = Rd = 321.01 kN computed using Equation (7)
consider F and R with a Gaussian pdf. However, the design resistance value computed using a
three-parameter lognormal pdf (stochastic model) is 325.00 kN. The small difference is because the
skewness aR = 0.111 was neglected in Equation (7).

The SA results of the 0.9963-quantile of F are depicted in Figure 14a. Input random variables for
F are considered according to Table 1, where the value of µP for Pf = 7.2 × 10−5 is µP = −79.592 kN.
Input random variables for R are considered according to Table 2. The results of SA of the 0.0036-quantile
of R are depicted in Figure 14b.
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By computing total indices QT1 = 0.71, QT2 = 0.70 and QT3 = 0.86, QT4 = 0.59, and QT5 = 0.13,
the order of importance of input variables can be determined as F1 and F2 and fy, t, and b. Variables F
and R have the same weight in Equation (2) and therefore, the order of importance of all five input
variables can be determined as fy, F1, F2, t, and b, based on the estimates of all QTi.

This is a typical example of how the ranking of input parameters based on total indices can give
reliable results. The results are satisfactory, although ROSA is not evaluated directly using Pf; it is
“only” based on the SA of design quantiles Rd and Fd.

In the presented study, the results for other values of the α-quantile are the same as in Figure 14.
In practice, this means that the change in µP (generally a change in µF) is not reflected in the results of
contrast Q indices.
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6. New Sensitivity Indices of Small and Large Design Quantiles

6.1. The Asymptotic Form of Contrast Q Indices for Small and Large Quantiles

For small and large (design) quantiles, contrast Q indices can be rewritten using Equation (24)
and the asymptotes of hyperbolic functions described in Chapter 3.3. The first-order contrast Q index
can be rewritten as

Qi =
l · α · (1− α) − E((l|Xi ) · α · (1− α))

l · α · (1− α)
=

l− E(l|Xi )

l
. (31)

By substituting the hyperbolic function l2 − (θ* − µ)2 = σ2
·l20 for l, we can obtain an approximate

relation for Qi:

Qi ≈

√
V(Y) · l0 + (Q(Y) − E(Y))2

− E
(√

V(Y|Xi ) · (l0|Xi ) + (Q(Y|Xi ) − E(Y|Xi ))
2
)

√
V(Y) · l0 + (Q(Y) − E(Y))2

, (32)

where Q(Y) = θ*, E(Y) = µ, and V(Y) = σ2. The non-dimensional parameter l0 can be calculated from
Equation (25) as l0 = l2/σ2 at the point θ* = µ. However, the precise value of l0 is not important if
|Q(Y)-E(Y)| is large and l0 does not affect the asymptotes. By substituting the hyperbolic functions with
their asymptotes, Equation (31) can be simplified as

Qi =
l− E(l|Xi )

l
≈

∣∣∣Q(Y) − E(Y)
∣∣∣− E

(∣∣∣Q(Y|Xi ) − E(Y|Xi )
∣∣∣)∣∣∣Q(Y) − E(Y)

∣∣∣ . (33)

Using asymptotes, the index is independent of variance and l0. The second-order probability Q
index can be rewritten analogously:

Qi j ≈

∣∣∣Q(Y) − E(Y)
∣∣∣− E

(∣∣∣∣Q(
Y
∣∣∣Xi, X j

)
− E

(
Y
∣∣∣Xi, X j

)∣∣∣∣)∣∣∣Q(Y) − E(Y)
∣∣∣ −Qi −Q j. (34)

The third-order probability Q index can be rewritten analogously:

Qi jk ≈

∣∣∣Q(Y) − E(Y)
∣∣∣− E

(∣∣∣∣Q(
Y
∣∣∣Xi, X j , Xk

)
− E

(
Y
∣∣∣Xi, X j, Xk

)∣∣∣∣)∣∣∣Q(Y) − E(Y)
∣∣∣ −Qi −Q j −Qk −Qi j −Qik −Q jk (35)

Equations (33)–(35) represent an asymptotic form of contrast Q indices that can be used for SAs of
low and high quantiles. Higher-order contrast Q indices can be rewritten analogously. The sum of all
indices thus estimated is equal to one.

In civil engineering, the design quantile of resistance tends to be less than the 0.01-quantile and
the design quantile of load action tends to be greater than the 0.99-quantile [4]. The asymptotic form
of contrast Q indices reveals the degree of sensitivity as the distance between the quantile and the
average value.

In the case study presented here, the use of Equation (33)–(35) leads to practically the same results
as shown in Figure 14b, but only when low and high quantiles are analysed; otherwise, the formulas
cannot be used. The computation of indices eliminates the repeated evaluation of contrast functions in
the second loop.
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6.2. New Quantile-Oriented Sensitivity Indices for Small and Large Quantiles: QE Indices

In Equation (33) to (35), replacing the absolute values with squares (Q(Y) − E(Y))2, (Q(Y|Xi) −
E(Y|Xi))2, etc., leads to new sensitivity indices, which we denote as QE indices. The new first-order
quantile-oriented index is defined as

Ki =
(Q(Y) − E(Y))2

− E
(
(Q(Y|Xi ) − E(Y|Xi ))

2
)

(Q(Y) − E(Y))2 . (36)

The new second-order QE index is defined as

Ki j =
(Q(Y) − E(Y))2

− E
((

Q
(
Y
∣∣∣Xi, X j

)
− E

(
Y
∣∣∣Xi, X j

))2
)

(Q(Y) − E(Y))2 −Ki −K j. (37)

The new third-order QE index is defined as

Ki jk = 1−
E
((

Q
(
Y
∣∣∣Xi, X j , Xk

)
− E

(
Y
∣∣∣Xi, X j, Xk

))2
)

(Q(Y) − E(Y))2 −Ki −K j −Kk −Ki j −Kik −K jk. (38)

Sensitivity indices Ki, Kij, and Kijk were formulated via analogies to Equations (33)–(35) and
were tested by numerical experiments using linear and non-linear Y functions and LHS simulations.
Only low and high quantiles can be studied. The sum of the indices of all orders was equal to one in all
cases. The total index KTi can be formulated analogously to Equation (21).

The new sensitivity indices can be explained using an analogy to Sobol sensitivity indices.
The classical Sobol’s first-order sensitivity index has the form

Si =
V(Y) − E(V(Y|Xi ))

V(Y)
. (39)

Equation (36) can be interpreted using Equation (39). The key idea is to introduce l2 as a variance.
Equation (36) can be rewritten analogously to Equation (39) in the form

Ki =
l2 − E

(
(l|Xi )

2
)

l2
, (40)

where l is the standard deviation of the “artificial” two-point probability mass function (pmf) having
left-right symmetry around quantile Q(Y) (see Figure 15). Half of the population is mirrored behind
the quantile Q(Y) and replaced by a dot on each side of Q(Y). In SA, only low and high quantiles of Y
can be analysed, indicating high l and low σY in unconditional and conditional pdfs.
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Let µP = −79.592 kN (Pf = 7.2 × 10−5). In the case study, QE indices were obtained on the load
action side as K1 = 0.50, K2 = 0.49, and K12 = 0.01 and on the resistance side as K3 = 0.65, K4 = 0.25,
K5 = 0.01, K34 = 0.08, K35 = 0.00, K35 = 0.00, and K345 = 0.01 (see Figure 16). By computing the total
indices QT1 = 0.51, QT2 = 0.50 and QT3 = 0.74, QT4 = 0.34, and QT5 = 0.02, the order of importance of
input variables can be determined as F1 and F2 and fy, t, and b. The sensitivity ranking based on all
five QTi is fy, F1, F2, t, and b.
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7. Discussion

In the case study, input variables were listed in decreasing order of sensitivity as fy, F1, F2, t, and b.
Although the values of sensitivity indices of the different ROSA types vary, each ROSA gives the same
sensitivity ranking:

• QT3 = 0.86 > QT1 = 0.71 > QT2 = 0.70 > QT4 = 0.59 > QT5 = 0.13;
• CT3 = 0.92 < CT1 = 0.892 < CT2 = 0.887 < CT4 = 0.69 < CT5 = 0.16;
• |D3| = 1.64 × 10−4 > |D1| = 1.52 × 10−4 > |D2| = 1.50 × 10−4 > |D4| = 1.02 × 10−4 > |D5| = 0.21 × 10−4;
• KT3 = 0.74 > KT1 = 0.51 > KT2 = 0.50 > KT4 = 0.34 > KT5 = 0.02.

These results were obtained for Pf = 7.2× 10−5 and the corresponding design quantiles (see previous
sections). Contrast Q and Pf indices of higher-orders have a significant share in both types of ROSA;
therefore, key information is provided by total indices. Regarding the sensitivity ranking, the total
indices of design quantiles are a good proxy of the total indices of Pf. However, the result cannot be
generalized beyond the Gaussian (or approximately Gaussian) design reliability conditions.

The proposed SA concept is applicable in tasks where the reliability can be assessed by comparing
two α-quantiles of two statistically independent variables analogous to R and F (see Equation (2)).
The pdfs of R and F should be close to Gaussian (see Equation (8)), with condition σF ≈ σR. Then, ROSA
can be effectively evaluated using the SA of design quantiles Rd and Fd, without having to analyse
either Pf or the interactions between R and F. This is advantageous because estimates of contrast Q
indices are usually numerically easier than estimates of contrast Pf indices, especially for small values
of Pf.

For inequalities σF , σR, the total indices of design quantiles should be corrected using weights
based on the sensitivity factors αF and αR from Equation (6). For example, if σF→ 0, then αF→ 0 and
αR→ 1. When the influence of input variables on the load action side approaches zero, the reliability is
only influenced by the variables on the resistance side. In the presented case study, the corrections
of QTi indices are as follows: αF·QT1, αF·QT2, αR·QT3, αR·QT4, and αR·QT5. The correction of indices
KTi can be performed similarly. If σF = σR, corrections are not necessary because αF = αF = 0.7071.
Initial studies have shown the rationality of this approach; however, further analysis is necessary.
Corrections of indices CTi are not performed. If σF → 0, then CTi of the variables on the load action
side approaches zero naturally. If an extreme value distribution is used, such as a Gumbel or Weibull
pdf [45,46], then the proposed concept cannot be used.
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Contrast Q indices are based on measuring the fluctuations around the quantile, which is the
distance l between the average value of the population before and after the quantile (see Figure 3).
For low and high quantiles, contrast Q indices can be rewritten using asymptotes l = ±θ* of hyperbolic
functions (see Figure 4). Although contrast Q indices do not have an analogy to the variance
decomposition offered by Sobol’s indices through the Hoeffding theorem, studies of contrasts in
applications [35,36] show some similarities between contrast Q indices and Sobol’s indices. The new
QE indices and Sobol’s indices have formulas based on the squares of the distances from the average
value and therefore, their comparison may be interesting in further work.

It can be noted that QE indices Ki, Kij, and Kijk give significant values of first-order indices Ki
(compared to Qi) and relatively small values of higher-order indices, which is also a property observed
in Sobol’s indices in the case study [35]. QE indices are based on quadratic measures of sensitivity like
Sobol, but associated with quantiles. This domain deserves much more work in order to make QE
indices a useful and practical tool.

All of the presented techniques are appropriate for SA of the stochastic model type considered
in this article. For a general model, an important criterion is also the ease with which the SA can
be performed. The most fundamental aspect of sensitivity techniques is local SA based on partial
derivatives for computing the rate of change in Pf with respect to a given input parameter. Although
the sensitivity ranking determined on the basis of Di is the same as from CTi, QTi, or KTi, this conclusion
cannot be generalized, and Di is not suitable for application in every task. The one-at-a-time techniques
are only valid for small variabilities in parameter values or linear computation models; otherwise,
the partials must be recalculated for each change in the base-case scenario. In contrast, contrast-based
SA does not have these limitations because computational models can generally be non-linear and
sensitivity indices take into account the variability of inputs throughout their distribution range and
provide interaction effects between different input variables.

The results of ROSA can be compared with traditional SA techniques, such as the correlation
between input Xi and output Z. Spearman’s rank correlation coefficients are computed using one
million LHS runs as corr(X1, Z) = −0.49, corr(X2, Z) = −0.48, corr(X3, Z) = 0.56, corr(X4, Z) = 0.38,
and corr(X5, Z) = 0.08. The second traditional SA technique is SSA. Sobol’s first-order indices Si are
computed according to Equation (39), using double-nested-loop computation [35], whereas the inner
loop has four million runs and the outer loop ten thousand runs. The model output is Z. The values of
Si are S1 = 0.25, S2 = 0.24, S3 = 0.34, S4 = 0.16, and S5 = 0.01. Sobol’s higher-order sensitivity indices are
negligible. Both the correlation and SSA give the same sensitivity ranking as ROSA: fy, F1, F2, t, and b.
The case study shows that the normalization of the newly proposed indices KTi leads to the classical Si,
i.e., KTi/2.11 ≈ Si. Although correlations and Sobol’s indices are commonly used in SA of the limit states
of structures, neither is directly reliability-oriented [19]. Further analysis of the relationship between
the new QE indices and traditional Sobol indices is needed because it can provide new insights into
the use of SSA in reliability tasks.

The dominance of the yield strength is an important finding for static tensile tests of steel specimens
in the laboratory. In structural systems, the slender members under compression may be influenced
by other initial imperfections, such as bow and out-of-plumb imperfections [9,10]. In a general steel
structure, these imperfections can change the order of importance of the input random variables.

Symmetry is an important part of sensitivity indices and contrast functions (see, e.g., Equation (11) or
Equation (24)). Reliability P~f = (1 − Pf) or unreliability Pf leads to the same contrast Pf indices, because
Pf(1 − Pf) = P~f(1 − P~f). In the case study, the plots of the sensitivity indices were slightly asymmetric
due to the small values of skewness of R. The plots of sensitivity indices vs. Pf would be perfectly
symmetric in the case of a perfectly symmetric pdf of R and F, with zero skewness.

In the presented study, conclusions were made using SA subordinated to a contrast [25] and SA
based on partial derivatives of Pf and new types of QE indices. Other types of SA of Pf like [47] or
SA of the quantile [48] have not been studied. Numerous other types of sensitivity measures exist,
such as [49–59], and it cannot be expected that the conclusions would be confirmed using any sensitivity
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index. The advantage of SA subordinated to a contrast is the use of a single platform (contrast) for the
analysis of different parameters associated with a probability distribution.

8. Conclusions

This article has examined the relationships between the principles of semi-probabilistic reliability
assessment of building structures according to the EN1990 standard and reliability-oriented sensitivity
analysis (ROSA). The probability distributions of load and resistance close to Gaussian have
been considered.

The article proposes new tools for performing ROSA. It has been shown that ROSA can be credibly
evaluated using total indices of quantiles of resistance and load action, without the need to study the
failure probability. ROSA of design quantiles gives the same sensitivity ranking as the two types of
ROSA oriented to failure probability. Although this conclusion has been established based on one case
study, the initial results suggest the possibility of using quantile-oriented ROSA in structural reliability
studies. It should be interesting to develop a general approach for determining how to combine the
various known indices, and in what order, in order to tackle a reliability task.

New quantile-oriented sensitivity indices denoted as QE indices have been formulated in the
article. The first study showed that the distance between the quantile and the average value can be a
very interesting measure of sensitivity, with the possibility of further development.

The apparent efforts to develop new types of sensitivity analyses show that the scientific
community is still looking for the right combination of computational methods to solve specific
problems. An important problem in structural reliability analysis is how to reduce the failure
probability. Research focused on design quantities complements the development of failure probability
estimation methods.

In engineering applications, the inclusion of quantile-oriented sensitivity analysis among the
tools for assessing the effects of input variables on reliability makes it possible to effectively reduce
the computational cost of sensitivity analysis of reliability with numerically demanding models.
An example is the sensitivity analysis of design quantiles of numerous load cases, where the design
quantile of the resistance of a structure only needs to be analysed once. It is worth noting that the
specification of which parameters constantly appear close to the top of the list with the order of
sensitivity is more important than the actual ranking. In practice, we can neglect the discrepancy
between rankings for less important variables because these variables have a minimal or no effect on
the reliability of structures.
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